リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A mysterious triangle of blood, bones, and nerves」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A mysterious triangle of blood, bones, and nerves

Asada, Noboru Katayama, Yoshio 神戸大学

2023.02.08

概要

The relationship between bone tissue and bone marrow, which is responsible for hematopoiesis, is inseparable. Osteoblasts and osteocytes, which produce and consist of bone tissue, regulate the function of hematopoietic stem cells (HSC), the ancestors of all hematopoietic cells in the bone marrow. The peripheral nervous system finely regulates bone remodeling in bone tissue and modulates HSC function within the bone marrow, either directly or indirectly via modification of the HSC niche function. Peripheral nerve signals also play an important role in the development and progression of malignant tumors (including hematopoietic tumors) and normal tissues, and peripheral nerve control is emerging as a potential new therapeutic target. In this review, we summarize recent findings on the linkage among blood system, bone tissue, and peripheral nerves.

この論文で使われている画像

参考文献

15

1. Calvo W (1968) The innervation of the bone marrow in laboratory animals. Am J

16

Anat 123:315-28 doi:10.1002/aja.1001230206

17

2. Pinho S, Frenette PS (2019) Haematopoietic stem cell activity and interactions

18

with the niche. Nat Rev Mol Cell Biol 20:303-20 doi:10.1038/s41580-019-0103-9

19

3. Torres LS, Asada N, Weiss MJ, Trumpp A, Suda T, Scadden DT, Ito K (2022)

20

Recent advances in "sickle and niche" research - Tribute to Dr. Paul S Frenette.

21

Stem Cell Reports 17:1509-35 doi:10.1016/j.stemcr.2022.06.004

22

Asada N and Katayama Y

4. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of

transplanted hemopoietic stem cells: inferences for the localization of stem cell

niches. Blood 97:2293-9 doi:10.1182/blood.v97.8.2293

5. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin

RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden

DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature

425:841-6 doi:10.1038/nature02040

6. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T,

Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the

10

haematopoietic stem cell niche and control of the niche size. Nature 425:836-41

11

doi:10.1038/nature02041

12

7. Lymperi S, Horwood N, Marley S, Gordon MY, Cope AP, Dazzi F (2008) Strontium

13

can increase some osteoblasts without increasing hematopoietic stem cells.

14

Blood 111:1173-81 doi:10.1182/blood-2007-03-082800

15

8. Ma YD, Park C, Zhao H, Oduro KA, Jr., Tu X, Long F, Allen PM, Teitelbaum SL,

16

Choi K (2009) Defects in osteoblast function but no changes in long-term

17

repopulating potential of hematopoietic stem cells in a mouse chronic

18

inflammatory arthritis model. Blood 114:4402-10 doi:10.1182/blood-2008-12-

19

196311

20

9. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding

21

JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is

22

required for haematopoietic stem-cell maintenance. Nature 495:227-30

23

doi:10.1038/nature11926

24

10. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and

23

Asada N and Katayama Y

perivascular cells maintain haematopoietic stem cells. Nature 481:457-62

doi:10.1038/nature10783

11. Cao H, Cao B, Heazlewood CK, Domingues M, Sun X, Debele E, McGregor NE,

Sims NA, Heazlewood SY, Nilsson SK (2019) Osteopontin is An Important

Regulative Component of the Fetal Bone Marrow Hematopoietic Stem Cell Niche.

Cells 8 doi:10.3390/cells8090985

12. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT,

Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key

component of the hematopoietic stem cell niche and regulator of primitive

10

hematopoietic progenitor cells. Blood 106:1232-9 doi:10.1182/blood-2004-11-

11

4422

12

13. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid

13

progenitors

occupy

distinct

14

doi:10.1038/nature11885

bone

marrow

niches.

Nature

495:231-5

15

14. Yu VW, Saez B, Cook C, Lotinun S, Pardo-Saganta A, Wang YH, Lymperi S,

16

Ferraro F, Raaijmakers MH, Wu JY, Zhou L, Rajagopal J, Kronenberg HM, Baron

17

R, Scadden DT (2015) Specific bone cells produce DLL4 to generate thymus-

18

seeding

19

doi:10.1084/jem.20141843

progenitors

from

bone

marrow.

Exp

Med

212:759-74

20

15. Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A, Ono N,

21

Kronenberg HM, Frenette PS (2014) Osterix marks distinct waves of primitive

22

and definitive stromal progenitors during bone marrow development. Dev Cell

23

29:340-9 doi:10.1016/j.devcel.2014.03.013

24

16. Yu VW, Lymperi S, Oki T, Jones A, Swiatek P, Vasic R, Ferraro F, Scadden DT

24

Asada N and Katayama Y

(2016) Distinctive Mesenchymal-Parenchymal Cell Pairings Govern B Cell

Differentiation

doi:10.1016/j.stemcr.2016.06.009

in

the

Bone

Marrow.

Stem

Cell

Reports

7:220-35

17. Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E, Rankin AL, Yuan

J, Kuo CJ, Schipani E, Giaccia AJ (2012) The HIF signaling pathway in

osteoblasts directly modulates erythropoiesis through the production of EPO.

Cell 149:63-74 doi:10.1016/j.cell.2012.01.051

18. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt

signaling. Bone 42:606-15 doi:10.1016/j.bone.2007.12.224

10

19. Sato M, Asada N, Kawano Y, Wakahashi K, Minagawa K, Kawano H, Sada A,

11

Ikeda K, Matsui T, Katayama Y (2013) Osteocytes regulate primary lymphoid

12

organs

13

doi:10.1016/j.cmet.2013.09.014

and

fat

metabolism.

Cell

Metab

18:749-58

14

20. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a

15

hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730-7

16

doi:10.1038/nm0797-730

17

21. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden

18

M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid

19

leukaemia

20

doi:10.1038/367645a0

after

transplantation

into

SCID

mice.

Nature

367:645-8

21

22. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H et al. (2007)

22

Chemotherapy-resistant human AML stem cells home to and engraft within the

23

bone-marrow endosteal region. Nat Biotechnol 25:1315-21 doi:10.1038/nbt1350

24

23. Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, Khiabanian

25

Asada N and Katayama Y

H, Lee A, Murty VV, Friedman R, Brum A, Park D, Galili N, Mukherjee S, Teruya-

Feldstein

Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts.

Nature 506:240-4 doi:10.1038/nature12883

J,

Raza A,

Rabadan

R,

Berman

E,

Kousteni

(2014)

24. Bowers M, Zhang B, Ho Y, Agarwal P, Chen CC, Bhatia R (2015) Osteoblast

ablation reduces normal long-term hematopoietic stem cell self-renewal but

accelerates leukemia development. Blood 125:2678-88 doi:10.1182/blood-2014-

06-582924

25. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser

10

CP, Clohisy DR, Adams DJ, O'Leary P, Mantyh PW (2002) Origins of skeletal

11

pain: sensory and sympathetic innervation of the mouse femur. Neuroscience

12

113:155-66 doi:10.1016/s0306-4522(02)00165-3

13

26. Abeynayake N, Arthur A, Gronthos S (2021) Crosstalk between skeletal and

14

neural

tissues

is

critical

15

doi:10.1016/j.bone.2020.115645

for

skeletal

health.

Bone

142:115645

16

27. Fujita S, Morikawa T, Tamaki S, Sezaki M, Takizawa H, Okamoto S, Kataoka K,

17

Takubo K (2022) Quantitative Analysis of Sympathetic and Nociceptive

18

Innervation Across Bone Marrow Regions in Mice. Exp Hematol 112-113:44-59

19

e6 doi:10.1016/j.exphem.2022.07.297

20

28. Lorenz MR, Brazill JM, Beeve AT, Shen I, Scheller EL (2021) A Neuroskeletal

21

Atlas: Spatial Mapping and Contextualization of Axon Subtypes Innervating the

22

Long Bones of C3H and B6 Mice. J Bone Miner Res 36:1012-25

23

doi:10.1002/jbmr.4273

24

29. Castaneda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG,

26

Asada N and Katayama Y

Kaczmarska MJ, Ghilardi JR, Mantyh PW (2011) The majority of myelinated and

unmyelinated sensory nerve fibers that innervate bone express the tropomyosin

receptor

doi:10.1016/j.neuroscience.2011.01.039

kinase

A.

Neuroscience

178:196-207

30. Grills BL, Schuijers JA, Ward AR (1997) Topical application of nerve growth factor

improves

fracture

healing

doi:10.1002/jor.1100150212

in

rats.

Orthop

Res

15:235-42

31. Wang L, Zhou S, Liu B, Lei D, Zhao Y, Lu C, Tan A (2006) Locally applied nerve

growth factor enhances bone consolidation in a rabbit model of mandibular

10

distraction osteogenesis. J Orthop Res 24:2238-45 doi:10.1002/jor.20269

11

32. Schinke T, Liese S, Priemel M, Haberland M, Schilling AF, Catala-Lehnen P,

12

Blicharski D, Rueger JM, Gagel RF, Emeson RB, Amling M (2004) Decreased

13

bone formation and osteopenia in mice lacking alpha-calcitonin gene-related

14

peptide. J Bone Miner Res 19:2049-56 doi:10.1359/JBMR.040915

15

33. Mrak E, Guidobono F, Moro G, Fraschini G, Rubinacci A, Villa I (2010) Calcitonin

16

gene-related peptide (CGRP) inhibits apoptosis in human osteoblasts by beta-

17

catenin stabilization. J Cell Physiol 225:701-8 doi:10.1002/jcp.22266

18

34. Wang L, Shi X, Zhao R, Halloran BP, Clark DJ, Jacobs CR, Kingery WS (2010)

19

Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation

20

and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone

21

resorption. Bone 46:1369-79 doi:10.1016/j.bone.2009.11.029

22

35. Mori T, Ogata T, Okumura H, Shibata T, Nakamura Y, Kataoka K (1999)

23

Substance P regulates the function of rabbit cultured osteoclast; increase of

24

intracellular free calcium concentration and enhancement of bone resorption.

27

Asada N and Katayama Y

Biochem Biophys Res Commun 262:418-22 doi:10.1006/bbrc.1999.1220

36. Wang L, Zhao R, Shi X, Wei T, Halloran BP, Clark DJ, Jacobs CR, Kingery WS

(2009) Substance P stimulates bone marrow stromal cell osteogenic activity,

osteoclast differentiation, and resorption activity in vitro. Bone 45:309-20

doi:10.1016/j.bone.2009.04.203

37. Niedermair T, Schirner S, Seebroker R, Straub RH, Grassel S (2018) Substance

P modulates bone remodeling properties of murine osteoblasts and osteoclasts.

Sci Rep 8:9199 doi:10.1038/s41598-018-27432-y

38. Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the

10

collapse

and

paralysis

of

neuronal

11

doi:10.1016/0092-8674(93)80064-l

growth

cones.

Cell

75:217-27

12

39. Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC (1996) Semaphorin

13

III is needed for normal patterning and growth of nerves, bones and heart. Nature

14

383:525-8 doi:10.1038/383525a0

15

40. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H

16

(2012)

Osteoprotection

17

doi:10.1038/nature11000

by

semaphorin

3A.

Nature

485:69-74

18

41. Hayashi M, Nakashima T, Yoshimura N, Okamoto K, Tanaka S, Takayanagi H

19

(2019) Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and

20

Counteracts

21

doi:10.1016/j.cmet.2018.12.021

22

Bone

Aging.

Cell

Metab

29:627-37

e5

42. Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S et al. (2013) Sema3A regulates

23

bone-mass

accrual

through

24

doi:10.1038/nature12115

sensory

28

innervations.

Nature

497:490-3

Asada N and Katayama Y

43. Bajayo A, Bar A, Denes A, Bachar M, Kram V, Attar-Namdar M, Zallone A, Kovacs

KJ, Yirmiya R, Bab I (2012) Skeletal parasympathetic innervation communicates

central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci U S A

109:15455-60 doi:10.1073/pnas.1206061109

44. Chartier SR, Mitchell SAT, Majuta LA, Mantyh PW (2018) The Changing Sensory

and Sympathetic Innervation of the Young, Adult and Aging Mouse Femur.

Neuroscience 387:178-90 doi:10.1016/j.neuroscience.2018.01.047

45. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D,

Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic

10

nervous system. Cell 111:305-17 doi:10.1016/s0092-8674(02)01049-8

11

46. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards

12

WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin

13

regulation of bone resorption by the sympathetic nervous system and CART.

14

Nature 434:514-20 doi:10.1038/nature03398

15

47. Kajimura D, Hinoi E, Ferron M, Kode A, Riley KJ, Zhou B, Guo XE, Karsenty G

16

(2011) Genetic determination of the cellular basis of the sympathetic regulation

17

of bone mass accrual. J Exp Med 208:841-51 doi:10.1084/jem.20102608

18

48. Sato T, Abe T, Chida D, Nakamoto N, Hori N, Kokabu S, Sakata Y, Tomaru Y,

19

Iwata T, Usui M, Aiko K, Yoda T (2010) Functional role of acetylcholine and the

20

expression of cholinergic receptors and components in osteoblasts. FEBS Lett

21

584:817-24 doi:10.1016/j.febslet.2010.01.001

22

49. Sato T, Abe T, Nakamoto N, Tomaru Y, Koshikiya N, Nojima J, Kokabu S, Sakata

23

Y, Kobayashi A, Yoda T (2008) Nicotine induces cell proliferation in association

24

with cyclin D1 up-regulation and inhibits cell differentiation in association with

29

Asada N and Katayama Y

p53 regulation in a murine pre-osteoblastic cell line. Biochem Biophys Res

Commun 377:126-30 doi:10.1016/j.bbrc.2008.09.114

50. Mandl P, Hayer S, Karonitsch T, Scholze P, Gyori D, Sykoutri D, Bluml S, Mocsai

A, Poor G, Huck S, Smolen JS, Redlich K (2016) Nicotinic acetylcholine

receptors

doi:10.1186/s13075-016-0961-x

modulate

osteoclastogenesis.

Arthritis

Res

Ther

18:63

51. Mito K, Sato Y, Kobayashi T, Miyamoto K, Nitta E, Iwama A, Matsumoto M,

Nakamura M, Sato K, Miyamoto T (2017) The nicotinic acetylcholine receptor

alpha7 subunit is an essential negative regulator of bone mass. Sci Rep 7:45597

10

doi:10.1038/srep45597

11

52. Somm E, Guerardel A, Maouche K, Toulotte A, Veyrat-Durebex C, Rohner-

12

Jeanrenaud F, Maskos U, Huppi PS, Schwitzgebel VM (2014) Concomitant

13

alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy

14

homeostasis and increased physical activity in mice. Mol Genet Metab 112:64-

15

72 doi:10.1016/j.ymgme.2014.03.003

16

53. Shi Y, Oury F, Yadav VK, Wess J, Liu XS, Guo XE, Murshed M, Karsenty G (2010)

17

Signaling through the M(3) muscarinic receptor favors bone mass accrual by

18

decreasing

19

doi:10.1016/j.cmet.2010.01.005

sympathetic

activity.

Cell

Metab

11:231-8

20

54. Pareyson D, Marchesi C (2009) Diagnosis, natural history, and management of

21

Charcot-Marie-Tooth disease. Lancet Neurol 8:654-67 doi:10.1016/S1474-

22

4422(09)70110-3

23

55. Pouwels S, de Boer A, Leufkens HG, Weber WE, Cooper C, de Vries F (2014)

24

Risk of fracture in patients with Charcot-Marie-Tooth disease. Muscle Nerve

30

Asada N and Katayama Y

50:919-24 doi:10.1002/mus.24240

56. Abdala R, Levi L, Longobardi V, Zanchetta MB (2020) Severe bone

microarchitecture deterioration in a family with hereditary neuropathy: evidence

of

doi:10.1007/s00198-020-05674-9

the

key

role

of

the

mechanostat.

Osteoporos

Int

31:2477-80

57. Schwartzlow C, Kazamel M (2019) Hereditary Sensory and Autonomic

Neuropathies: Adding More to the Classification. Curr Neurol Neurosci Rep 19:52

doi:10.1007/s11910-019-0974-3

58. Maayan C, Bar-On E, Foldes AJ, Gesundheit B, Pollak RD (2002) Bone mineral

10

density and metabolism in familial dysautonomia. Osteoporos Int 13:429-33

11

doi:10.1007/s001980200050

12

59. Maayan C, Becker Y, Gesundheit B, Girgis SI (2001) Calcitonin gene related

13

peptide

in

familial

dysautonomia.

14

doi:10.1054/npep.2001.0863

Neuropeptides

35:189-95

15

60. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette

16

PS (2006) Signals from the sympathetic nervous system regulate hematopoietic

17

stem

18

doi:10.1016/j.cell.2005.10.041

cell

egress

from

bone

marrow.

Cell

124:407-21

19

61. Kawamori Y, Katayama Y, Asada N, Minagawa K, Sato M, Okamura A,

20

Shimoyama M, Nakagawa K, Okano T, Tanimoto M, Kato S, Matsui T (2010) Role

21

for vitamin D receptor in the neuronal control of the hematopoietic stem cell niche.

22

Blood 116:5528-35 doi:10.1182/blood-2010-04-279216

23

62. Asada N, Katayama Y, Sato M, Minagawa K, Wakahashi K, Kawano H, Kawano

24

Y, Sada A, Ikeda K, Matsui T, Tanimoto M (2013) Matrix-embedded osteocytes

31

Asada N and Katayama Y

regulate mobilization of hematopoietic stem/progenitor cells. Cell Stem Cell

12:737-47 doi:10.1016/j.stem.2013.05.001

63. Lucas D, Bruns I, Battista M, Mendez-Ferrer S, Magnon C, Kunisaki Y, Frenette

PS (2012) Norepinephrine reuptake inhibition promotes mobilization in mice:

potential

doi:10.1182/blood-2011-07-367102

impact

to

rescue

low

stem

cell

yields.

Blood

119:3962-5

64. Kawano Y, Fukui C, Shinohara M, Wakahashi K, Ishii S, Suzuki T, Sato M, Asada

N, Kawano H, Minagawa K, Sada A, Furuyashiki T, Uematsu S, Akira S, Uede T,

Narumiya S, Matsui T, Katayama Y (2017) G-CSF-induced sympathetic tone

10

provokes fever and primes antimobilizing functions of neutrophils via PGE2.

11

Blood 129:587-97 doi:10.1182/blood-2016-07-725754

12

65. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM,

13

Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells

14

maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell

15

147:1146-58 doi:10.1016/j.cell.2011.09.053

16

66. Liu Y, Chen Q, Jeong HW, Han D, Fabian J, Drexler HCA, Stehling M, Scholer

17

HR, Adams RH (2021) Dopamine signaling regulates hematopoietic stem and

18

progenitor cell function. Blood 138:2051-65 doi:10.1182/blood.2020010419

19

67. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem

20

cell release is regulated by circadian oscillations. Nature 452:442-7

21

doi:10.1038/nature06685

22

68. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA,

23

Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and

24

haematopoietic stem cells form a unique bone marrow niche. Nature 466:829-34

32

Asada N and Katayama Y

doi:10.1038/nature09262

69. Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, Tessarollo L,

Frenette PS (2013) Chemotherapy-induced bone marrow nerve injury impairs

hematopoietic regeneration. Nat Med 19:695-703 doi:10.1038/nm.3155

70. Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell

compartment. Nat Rev Immunol 13:376-89 doi:10.1038/nri3433

71. Maryanovich M, Zahalka AH, Pierce H, Pinho S, Nakahara F, Asada N, Wei Q,

Wang X, Ciero P, Xu J, Leftin A, Frenette PS (2018) Adrenergic nerve

degeneration in bone marrow drives aging of the hematopoietic stem cell niche.

10

Nat Med 24:782-91 doi:10.1038/s41591-018-0030-x

11

72. Ho YH, Del Toro R, Rivera-Torres J, Rak J, Korn C et al. (2019) Remodeling of

12

Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion

13

during Premature or Physiological Aging. Cell Stem Cell 25:407-18 e6

14

doi:10.1016/j.stem.2019.06.007

15

73. Li H, Qu J, Zhu H, Wang J, He H, Xie X, Wu R, Lu Q (2021) CGRP Regulates

16

the Age-Related Switch Between Osteoblast and Adipocyte Differentiation. Front

17

Cell Dev Biol 9:675503 doi:10.3389/fcell.2021.675503

18

74. Pierce H, Zhang D, Magnon C, Lucas D, Christin JR, Huggins M, Schwartz GJ,

19

Frenette PS (2017) Cholinergic Signals from the CNS Regulate G-CSF-Mediated

20

HSC Mobilization from Bone Marrow via a Glucocorticoid Signaling Relay. Cell

21

Stem Cell 20:648-58 e4 doi:10.1016/j.stem.2017.01.002

22

75. Garcia-Garcia A, Korn C, Garcia-Fernandez M, Domingues O, Villadiego J,

23

Martin-Perez D, Isern J, Bejarano-Garcia JA, Zimmer J, Perez-Simon JA, Toledo-

24

Aral JJ, Michel T, Airaksinen MS, Mendez-Ferrer S (2019) Dual cholinergic

33

Asada N and Katayama Y

signals regulate daily migration of hematopoietic stem cells and leukocytes.

Blood 133:224-36 doi:10.1182/blood-2018-08-867648

76. Fielding C, Garcia-Garcia A, Korn C, Gadomski S, Fang Z, Reguera JL, Perez-

Simon JA, Gottgens B, Mendez-Ferrer S (2022) Cholinergic signals preserve

haematopoietic stem cell quiescence during regenerative haematopoiesis. Nat

Commun 13:543 doi:10.1038/s41467-022-28175-1

77. Hill EL, Elde R (1991) Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-

immunoreactive nerves in the periosteum of the rat. Cell Tissue Res 264:469-80

doi:10.1007/BF00319037

10

78. Gao X, Zhang D, Xu C, Li H, Caron KM, Frenette PS (2021) Nociceptive nerves

11

regulate

haematopoietic

stem

12

doi:10.1038/s41586-020-03057-y

cell

mobilization.

Nature

589:591-96

13

79. Zahalka AH, Arnal-Estape A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS,

14

Frenette PS (2017) Adrenergic nerves activate an angio-metabolic switch in

15

prostate cancer. Science 358:321-26 doi:10.1126/science.aah5072

16

80. Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, Lacombe J,

17

Armstrong SA, Duhrsen U, Frenette PS (2014) Acute myelogenous leukemia-

18

induced

19

hematopoietic

20

doi:10.1016/j.stem.2014.06.020

sympathetic

stem

neuropathy

cell

promotes

niche.

Cell

malignancy

Stem

in

Cell

an

altered

15:365-75

21

81. Arranz L, Sanchez-Aguilera A, Martin-Perez D, Isern J, Langa X, Tzankov A,

22

Lundberg P, Muntion S, Tzeng YS, Lai DM, Schwaller J, Skoda RC, Mendez-

23

Ferrer S (2014) Neuropathy of haematopoietic stem cell niche is essential for

24

myeloproliferative neoplasms. Nature 512:78-81 doi:10.1038/nature13383

34

Asada N and Katayama Y

82. Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K,

Kokkaliaris KD, Mercier F, Tabaka M, Hofree M, Dionne D, Papazian A, Lee D,

Ashenberg O, Subramanian A, Vaishnav ED, Rozenblatt-Rosen O, Regev A,

Scadden DT (2019) A Cellular Taxonomy of the Bone Marrow Stroma in

Homeostasis

doi:10.1016/j.cell.2019.04.040

and

Leukemia.

Cell

177:1915-32

e16

83. Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E et al. (2019) The bone

marrow

microenvironment

at

doi:10.1038/s41586-019-1104-8

single-cell

resolution.

Nature

569:222-28

10

84. Baccin C, Al-Sabah J, Velten L, Helbling PM, Grunschlager F, Hernandez-

11

Malmierca P, Nombela-Arrieta C, Steinmetz LM, Trumpp A, Haas S (2020)

12

Combined single-cell and spatial transcriptomics reveal the molecular, cellular

13

and spatial bone marrow niche organization. Nat Cell Biol 22:38-48

14

doi:10.1038/s41556-019-0439-6

15

16

17

Figure legends

18

Figure 1. The roles of bone cells and PNS in hematologic malignancies.

19

Constitutive activation of β-catenin in mature osteoblasts enhances the production

20

of the Notch ligand jagged 1(Jag1) in osteoblasts, which leads to the activation of

21

Notch signaling in HSC and promotes the leukemic transformation. Leukemic cells

22

release IL-1β, an inflammatory cytokine, causing the sympathetic neuropathy in the

23

bone marrow, resulting in the decrease of NE signals. Attenuated NE signaling via

35

Asada N and Katayama Y

β2-AR on nestin-positive niche cells downregulates the expression levels of niche

factors essential for HSC maintenance, which turn in results in the normal HSC

distinction in the leukemic bone marrow. LSC, leukemic stem cell.

Figure 2. Roles of the sensory nerve in bone remodeling. CGRP from sensory

nerve induce osteoblast differentiation via CALCRL/RAMP1 receptor complex and

suppresses the differentiation of osteoclast, resulting in the facilitation of bone

formation. Substance P (SP) promotes macrophage differentiation into osteoclasts,

which promotes osteoclast bone resorption function, but also promotes osteoblast

10

function, which in turn contributes to bone formation. NK1R, neurokinin 1 receptor.

11

12

Figure 3. Hematopoietic regulation by PNS in the bone marrow. G-CSF

13

treatment elicits the NE surge in the bone marrow by suppressing NE reuptake at

14

sympathetic nerve endings, which in turn the suppression of both osteoblasts and

15

osteocytes via β2-AR. NE-β2-AR signaling also stimulates the production of PGE2

16

from neutrophils during the G-CSF-induced HSC mobilization, leading to a febrile

17

side effect. Dopamine also contributes to the HSC maintenance via D2-type receptor

18

(D2R) signaling. Nonmyelinating Schwann cells, wrapping the sympathetic nerves,

19

function as niche cells by transforming TGF-β from latent form into activated form.

20

CGRP released from sensory nerves binds to CALCRL/RAMP1 receptor complex

21

on HSCs and promotes HSC chemotaxis by activating downstream signaling.

36

Asada N and Katayama Y

Capsaicin containing diet, which stimulates nociceptive nerve activity, increases the

efficiency of HSC mobilization.

37

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る