リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「乳癌でのイソクエン酸脱水素酵素(IDH)アイソフォームの免疫局在:IDH2は増殖に関係し予後不良因子となる」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

乳癌でのイソクエン酸脱水素酵素(IDH)アイソフォームの免疫局在:IDH2は増殖に関係し予後不良因子となる

峯村 洋行 東北大学

2021.03.25

概要

イソクエン酸脱水素酵素(isocitrate dehydrogenase: IDH)はイソクエン酸を酸素的脱炭素反応によりα-ケトグルタル酸(α-ketoglutarate: α-KG)に変換する重要な酵素で、3つのアイソフォーム(IDH1、IDH2、IDH3: IDH1-3)が存在することが分かっている。IDHアイソフォームの過剰発現もしくは発現低下は様々なヒト悪性腫瘍で報告されており、癌の進行に関与するIDHの重要性が示唆されている。つい最近、乳癌におけるIDH1とIDH2それぞれの免疫局在について報告がされたが、すべてのIDHアイソフォームを同時に調べた報告はなく、乳癌での重要性は解明されていない状態である。したがって、今回の研究ではまず初めに226例の浸潤性乳管癌症例に対してIDH1、IDH2、IDH3α(IDH1-3α)の免疫染色を行った。免疫染色によるIDH1-3αの発現は乳癌症例の53%、38%、41%に対してそれぞれ見られ、正常乳腺組織での発現状況はIDH1陽性、IDH2陰性、IDH3α陽性であった。IDH1の発現状態は病理学的T因子(pathological T factor: pT)、Ki-67と逆相関したが、IDH3αの発現状態はどの病理学的因子とも相関しなかった。一方、IDH2の発現状態はステージ、pT、組織学的異型度、脈管侵襲、HER2、Ki-67、微小血管密度と正相関した。さらに、IDH2の発現状態は、乳癌患者の予後不良と有意に相関し、無病生存期間において独立した予後不良因子となった。この関係は、癌における発現が正常の乳腺組織と逆になっているIDH1陰性/IDH2陽性/IDH3α陰性のサブグループで特に顕著であった。続けて行ったin vitroでのsiRNAでIDH2を抑制する実験において、IDH2のノックダウンにより乳癌細胞株であるT47DとSKBR-3の増殖能が低下することが明らかになった。これらの結果から、IDH1やIDH3ではなく、IDH2が最も乳癌の進行する性質に関与し、乳癌における予後因子となる可能性が示唆された。乳癌におけるIDH2の役割をより詳細に調べていくことで、乳癌進行と代謝経路の関係究明やIDH2を標的とする治療法の開発につながることが期待される。

この論文で使われている画像

参考文献

1. Fisher B, Anderson S. The breast cancer alternative hypothesis: is there evidence to justify replacing it? J Clin Oncol 2010;28:366-374. doi: 10.1200/JCO.2009.26.8292.

2. Muftah A, Aleskandarany M, Al-Kaabi M, et al. Ki67 expression in invasive breast cancer: the use of tissue microarrays compared with whole tissue sections. Breast Cancer Res Treat 2017;164:341-348. doi: 10.1007/s10549-017-4270-0.

3. Djalalov S, Beca J, Amir E, et al. Economic evaluation of hormonal therapies for postmenopausal women with estrogen receptor-positive early breast cancer in Canada. Curr Oncol 2015;22:84-96. doi: 10.3747/co.22.2120.

4. Tevaarwerk A, Gray R, Schneider B, et al. Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy: little evidence of improvement over the past 30 years. Cancer 2013;119:1140-1148. doi: 10.1002/cncr.27819.

5. Hiroyuki M, Kiyoshi T, Yasuhiro M, et al. Abnormal expression of miR‐1 in breast carcinoma as a potent prognostic factor. Cancer Sci 2015;106:1642-1650. doi: 10.1111/cas.12808.

6. Hiroyuki M, Kiyoshi T, Ai S, et al. CITED2 in breast carcinoma as a potent prognostic predictor associated with proliferation and chemoresistance. Cancer Sci 2016;107:1898-1908. doi: 10.1111/cas.13081.

7. Yan V, Yi-Juan H. Chapter Three - Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases. Adv Genet 2016;93:147-190. doi: 10.1016/bs.adgen.2015.11.004.

8. Sato A, Takagi K, Miki Y, et al. Cytochrome c1 as a favorable prognostic marker in estrogen receptor-positive breast carcinoma. Histol Histopathol 2019;34:1365-1375. doi: 10.14670/HH-18-130.

9. Catarina S, Rosa P, Pedro S, et al. Breast Cancer Metabolomics: From Analytical Platforms to Multivariate Data Analysis. A Review. Metabolites 2019;9:102. doi: 10.3390/metabo9050102.

10. Rashed R, Darwish H, Omran M, et al. A novel serum metabolome score for breast cancer diagnosis. Br J Biomed Sci 2020;77:196-201. doi: 10.1080/09674845.2020.1784568.

11. Jiawei Y, Tiffany H. Lipid Metabolism in Regulation of Macrophage Functions. Trends Cell Biol 2020;30:979-989. doi:10.1016/j.tcb.2020.09.006.

12. Cara R, Lukas S, Andreas K. The effects of 2-hydroxyglutarate on the tumorigenesis of gliomas. Contemp Oncol (Pozn) 2018;22:215-222. doi: 10.5114/wo.2018.82642.

13. Tiffany R, Bryan D, Darell D, et al. Isocitrate dehydrogenase 1: what it means to the neurosurgeon. J Neurosurg 2013;118:1176-1180. doi: 10.3171/2013.3.JNS122282.

14. Wei X, Hui Y, Ying L, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011;19:17-30. doi: 10.1016/j.ccr.2010.12.014.

15. Mélissa C, Laurence M, Marie-Eve L, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun 2016;7:12700. doi: 10.1038/ncomms12700.

16. Huang J, Yu J, Tu L, et al. Isocitrate Dehydrogenase Mutations in Glioma: From Basic Discovery to Therapeutics Development. Front Oncol 2019;9:506. doi: 10.3389/fonc.2019.00506.

17. Matthew S, Bill H, Hai Y. Isocitrate dehydrogenase mutations in gliomas. Neuro Oncol 2016;18:16-26. doi: 10.1093/neuonc/nov136.

18. Bergaggio E, Piva R. Wild-Type IDH Enzymes as Actionable Targets for Cancer Therapy. Cancers (Basel) 2019;11:563. doi: 10.3390/cancers11040563.

19. Geisbrecht B, Gould S. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem 1999;274:30527-30533. doi: 10.1074/jbc.274.43.30527.

20. Ma T, Peng Y, Huang W, et al. The β and γ subunits play distinct functional roles in the α2βγ heterotetramer of human NAD-dependent isocitrate dehydrogenase. Sci Rep 2017;7:41882. doi: 10.1038/srep41882.

21. Maria E, Abdel-Wahab O, Chao L, et al. Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Dierentiation. Cancer Cell 2010;18:553-567. doi: 10.1016/j.ccr.2010.11.015.

22. Sarah C, Britta W, Huei-Chi W, et al. IDH2 Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity. Cancer Res 2016;76:7118-7129. doi: 10.1158/0008- 5472.CAN-16-0298.

23. Nadjla A, Gaëtan M, Caroline T, et al. Solid papillary carcinoma with reverse polarity of the breast harbors specific morphologic, immunohistochemical and molecular profile in comparison with other benign or malignant papillary lesions of the breast: a comparative study of 9 additional cases. Mod Pathol 2018;31:1367-1380. doi: 10.1038/s41379-018- 0047-1.

24. Bleeker F, Lamba S, Leenstra S, et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 2009;30:7-11. doi: 10.1002/humu.20937.

25. Raynaud S, Carbuccia N, Colin C, et al. Absence of R140Q mutation of isocitrate dehydrogenase 2 in gliomas and breast cancers. Oncol Lett 2010;1:883-884. doi: 10.3892/ol_00000156.

26. Ahmet Z, Ryma B, Ronak H, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23:703-713. doi: 10.1038/nm.4333.

27. COSMIC. https://cancer.sanger.ac.uk/cosmic. (2021年1月4日参照)

28. Zeng L, Morinibu A, Kobayashi M, et al. Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis. Oncogene 2015;34:4758-4766. doi: 10.1038/onc.2014.411.

29. Liu W, Chan S, Chang H, et al. Isocitrate dehydrogenase 1-snail axis dysfunction significantly correlates with breast cancer prognosis and regulates cell invasion ability. Breast Cancer Res. 2018;20:25. doi: 10.1186/s13058-018-0953-7.

30. Aljohani A, Toss M, Kurozumi S, et al. The prognostic significance of wild-type isocitrate dehydrogenase 2 (IDH2) in breast cancer. Breast Cancer Res Treat 2020;179:79-90. doi: 10.1007/s10549-019-05459-7.

31. Mayama A, Takagi K, Suzuki H, et al. OLFM4, LY6D and S100A7 as potent markers for distant metastasis in estrogen receptor-positive breast carcinoma. Cancer Sci 2018;109:3350-3359. doi: 10.1111/cas.13770.

32. Hammond M, Hayes D, Dowsett M, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Journal of Clinical Oncology 2010;28:2784-2795. doi: 10.1200/JCO.2009.25.6529.

33. Sato-Tadano A, Suzuki T, Amari M, et al. Hexokinase II in breast carcinoma: a potent prognostic factor associated with hypoxia-inducible factor-1α and Ki-67. Cancer Sci 2013;104:1380-1388. doi: 10.1111/cas.12238.

34. Krishnapriya S, Malipatil B, Surekha S, et al. Microvessel Density (MVD) in Locally Advanced Breast Cancer. Asian Pac J Cancer Prev 2019;20:1537-1545. doi: 10.31557/APJCP.2019.20.5.1537.

35. Takagi K, Miki Y, Onodera Y, et al. ARHGAP15 in Human Breast Carcinoma: A Potent Tumor Suppressor Regulated by Androgens. Int J Mol Sci 2018;19:804. doi: 10.3390/ijms19030804.

36. Tan F, Jiang Y, Sun N, et al. Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Mol Cell Proteomics 2012;11:M111.008821. doi: 10.1074/mcp.M111.008821.

37. Calvert A, Chalastanis A, Wu Y, et al. Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation. Cell Rep 2017;19:1858-1873. doi: 10.1016/j.celrep.2017.05.014.

38. Zarei M, Lal S, Parker S, et al. Posttranscriptional Upregulation of IDH1 by HuR Establishes a Powerful Survival Phenotype in Pancreatic Cancer Cells. Cancer Res 2017;77:4460-4471. doi: 10.1158/0008-5472.CAN-17-0015.

39. Robbins D, Wittwer J, Codarin S, et al. Isocitrate dehydrogenase 1 is downregulated during early skin tumorigenesis which can be inhibited by overexpression of manganese superoxide dismutase. Cancer Sci 2012;103:1429-1433. doi: 10.1111/j.1349- 7006.2012.02317.x.

40. Wang L, Tong S, Hu H, et al. Quantitative proteome analysis of ovarian cancer tissues using a iTRAQ approach. J Cell Biochem 2012;113:3762-3772. doi: 10.1002/jcb.24250.

41. Chen X, Xu W, Wang C, et al. The clinical significance of isocitrate dehydrogenase 2 in esophageal squamous cell carcinoma. Am J Cancer Res 2017;7:700-714. www.ajcr.us /ISSN:2156-6976/ajcr0049960.

42. Li J, He Y, Tan Z, et al. Wild-type IDH2 promotes the Warburg effect and tumor growth through HIF1α in lung cancer. Theranostics 2018;8:4050-4061. doi: 10.7150/thno.21524.

43. Lian C, Xu Y, Ceol C, et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 2012;150:1135-46. doi: 10.1016/j.cell.2012.07.033.

44. Liu W, Tian M, Jin L, et al. High expression of 5-hydroxymethylcytosine and isocitrate dehydrogenase 2 is associated with favorable prognosis after curative resection of hepatocellular carcinoma. J Exp Clin Cancer Res 2014;33:32. doi: 10.1186/1756-9966-33- 32.

45. Wu D. Isocitrate dehydrogenase 2 inhibits gastric cancer cell invasion via matrix metalloproteinase 7. Tumour Biol 2016;37:5225-5230. doi: 10.1007/s13277-015-4358-2.

46. Jasmine L, Fotini M, Lisa A, et al. IDH3α regulates one-carbon metabolism in glioblastoma. Sci Adv 2019;5:eaat0456. doi: 10.1126/sciadv.aat0456.

47. Menendez J, Lupu R. Fatty acid synthase and the lipogenic phenotypein cancer pathogenesis. Nat Rev Cancer. 2007;7,763–777. doi:10.1038/nrc2222.

48. Mullen A, Wheaton W, Jin E, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2012;7381:385–388 doi: 10.1038/nature10642.

49. Ramon C, Nicholas C. Hypoxic Regulation of Glutamine Metabolism through HIF1 and SIAH2 Supports Lipid Synthesis that Is Necessary for Tumor Growth. Cell Metab 2014;19:285-292. doi: 10.1016/j.cmet.2013.11.022.

50. Wise D, Ward P, Shay J, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylationof alpha-ketoglutarate to citrate to support cell growth and viability.Proc Natl Acad Sci USA 2011;108:19611-19616. doi:10.1073/pnas.1117773108.

51. Koh H, Lee S, Son B, et al. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem 2004;279:39968-39974 doi:10.1074/jbc.M402260200.

52. Ward P, Patel J, Wise D, et al, Coller HA, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010;17:225-234. doi: 10.1016/j.ccr.2010.01.020.

53. The Human Protein Atlas. https://www.proteinatlas.org/. (2021年1月16日参照)

54. Torrens-Mas M, Pons D, Sastre-Serra J, et al. SIRT3 Silencing Sensitizes Breast Cancer Cells to Cytotoxic Treatments Through an Increment in ROS Production. J Cell Biochem 2017;118:397-406. doi: 10.1002/jcb.25653.

55. Yan H, Parsons D, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–773

56. Kim S, Kim S, Ku H, et al. Suppression of tumorigenesis in mitochondrial NADP(+)- dependent isocitrate dehydrogenase knock-out mice. Biochim Biophys Acta 2014;1842:135-143. doi: 10.1016/j.bbadis.2013.11.008.

57. Terunuma A, Putluri N, Mishra P, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest 2014;124:398-412. doi: 10.1172/JCI71180.

58. Smolková K, Dvořák A, Zelenka J, et al. Reductive carboxylation and 2-hydroxyglutarate formation by wild-type IDH2 in breast carcinoma cells. Int J Biochem Cell Biol 2015;65:125-133. doi: 10.1016/j.biocel.2015.05.012.

59. Seok J, Yoon S, Lee S, et al. The oncometabolite d‑2‑hydroxyglutarate induces angiogenic activity through the vascular endothelial growth factor receptor 2 signaling pathway. Int J Oncol 2019;54:753-763. doi: 10.3892/ijo.2018.4649.

60. Koseki J, Colvin H, Fukusumi T, et al. Mathematical analysis predicts imbalanced IDH1/2 expression associates with 2-HG-inactivating β-oxygenation pathway in colorectal cancer. Int J Oncol 2015;46:1181-1191. doi: 10.3892/ijo.2015.2833.

61. Ralph J, Anthony M, Evgueni D, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 2007;104:19345-19350. doi: 10.1073/pnas.0709747104.

62. Ramachandran N, Colman R. Chemical characterization of distinct subunits of pig heart DPN-specific isocitrate dehydrogenase. J Biol Chem 1980;18:8859–8864.

63. Hamoud A. Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell Biosci 2017;7:37. doi: 10.1186/s13578-017-0165-3.

64. Dali L, Shenglan L, Allen Z, et al. Expression of SREBP2 and cholesterol metabolism related genes in TCGA glioma cohorts. Medicine (Baltimore) 2020;99:e18815. doi: 10.1097/MD.0000000000018815.

65. FDA granted regular approval to enasidenib for the treatment of relapsed or refractory AML. News release. FDA. August 1, 2017. https://bit.ly/34w9Wdn. (2021年1月4日参照)

66. Bristol Myers Squibb provides update on phase 3 IDHENTIFY trial in patients with relapsed or refractory acute myeloid leukemia. News release. Bristol Myers Squibb. https://bit.ly/2Yz3xuj. (2021年1月4日参照)

67. Elisa B, Chiara R, Giulia G, et al. IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies. Blood 2019;133:156-167. doi: 10.1182/blood-2018-05-850826.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る