リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Oxidative etching mechanism of the diamond (100) surface」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Oxidative etching mechanism of the diamond (100) surface

Enriquez, John Isaac 大阪大学

2021.04.15

概要

We performed density functional theory calculations with van der Waals corrections to elucidate diamond oxidation mechanism on the atomic-level which could lead to insights that will advance the improvement of nascent nanofabrication technologies. We developed a comprehensive theory of oxidative etching of the diamond (100) surface, from the adsorption of gas phase O2, including details of metastable adsorption states, intersystem crossing, and induced surface dereconstruction, to the desorption of CO and CO2, complete etching of the top surface layer and its subsequent stabilization. Oxygen adsorption induce C-dimer bond breaking through the formation of carbonyl structures at low surface coverage. At high surface coverage, adjacent carbonyls can transform into the more stable ether chain with small energy barrier requirement. A mix of carbonyl and ether will form in surfaces with defects, and several models of possible structures have been presented. CO desorption creates a point defect that serves as nucleation site for the preferred etching direction along [011], perpendicular to the top layer C-dimer bonds. We obtained a wide range of desorption activation energies, which depend on the existence of point defects and reconstruction of surfaces. C-dimer formation and oxygen adsorption stabilize vacancies and single-atomic-layer-deep trough.

この論文で使われている画像

参考文献

[1] C.J. Wort, R.S. Balmer, Diamond as an electronic material, Mater. Today 11 (2008) 22e28, https://doi.org/10.1016/s1369-7021(07)70349-8.

[2] Aharonovich, A.D. Greentree, S. Prawer, Diamond photonics, Nat. Photon. 5 (2011) 397e405, https://doi.org/10.1038/nphoton.2011.54.

[3] M. Toros, T. Kiss, Graziosi, H. Sattari, P. Gallo, N. Quack, Precision micro- mechanical components in single crystal diamond by deep reactive ion etching, Microsystems & Nanoengineering 4 (2018), https://doi.org/10.1038/ s41378-018-0014-5.

[4] Z. Zhang, H. Wu, L. Sang, J. Huang, Y. Takahashi, L. Wang, et al., Single-crystal diamond microelectromechanical resonator integrated with a magneto- strictive galfenol film for magnetic sensing, Carbon 152 (2019) 788e795, https://doi.org/10.1016/j.carbon.2019.06.072.

[5] A. Gruber, A. Dra€benstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczy- skowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science 276 (1997) 2012e2014, https://doi.org/10.1126/ science.276.5321.2012.

[6] S. Prawer, A.D. Greentree, Applied PHYSICS: diamond for quantum computing, Science 320 (2008) 1601e1602, https://doi.org/10.1126/science.1158340.

[7] C. Chen, Y. Mei, J. Cui, X. Li, M. Jiang, S. Lu, et al., Man-made synthesis of ul- trafine photoluminescent nanodiamonds containing less than three silicon- vacancy colour centres, Carbon 139 (2018) 982e988, https://doi.org/ 10.1016/j.carbon.2018.08.013.

[8] C.E. Bradley, J. Randall, M.H. Abobeih, R.C. Berrevoets, M.J. Degen, M.A. Bakker, et al., A ten-qubit solid-state spin register with quantum memory up to one minute, Phys. Rev. X (2019) 9, https://doi.org/10.1103/physrevx.9.031045.

[9] C. He´bert, E. Scorsone, A. Bendali, R. Kiran, M. Cottance, H.A. Girard, et al., Boron doped diamond biotechnology: from sensors to neurointerfaces, Faraday Discuss 172 (2014) 47e59, https://doi.org/10.1039/c4fd00040d.

[10] X. Chen, W. Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing, Chem. Soc. Rev. 46 (2017) 734e760, https://doi.org/10.1039/ c6cs00109b.

[11] M. Inaba, T. Muta, M. Kobayashi, T. Saito, M. Shibata, D. Matsumura, et al., Hydrogen-terminated diamond vertical-type metal oxide semiconductor field-effect transistors with a trench gate, Appl. Phys. Lett. 109 (2016), 033503, https://doi.org/10.1063/1.4958889.

[12] B. He, Y. Yang, M. Yuen, X. Chen, C. Lee, W. Zhang, Vertical nanostructure arrays by plasma etching for applications in biology, energy, and electronics, Nano Today 8 (2013) 265e289, https://doi.org/10.1016/j.nantod.2013.04.008.

[13] T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, et al., A diamond nanowire single-photon source, Nat. Nanotechnol. 5 (2010) 195e199, https://doi.org/10.1038/nnano.2010.6.

[14] W. Smirnov, A. Kriele, N. Yang, C. Nebel, Aligned diamond nano-wires: fabrication and characterisation for advanced applications in bio- and elec- trochemistry, Diam. Relat. Mater. 19 (2010) 186e189, https://doi.org/10.1016/ j.diamond.2009.09.001.

[15] M.J. Burek, Y. Chu, M.S.Z. Liddy, P. Patel, J. Rochman, S. Meesala, et al., High quality-factor optical nanocavities in bulk single-crystal diamond, Nat. Com- mun. 5 (2014), https://doi.org/10.1038/ncomms6718.

[16] J.W. Baldwin, M.K. Zalalutdinov, T. Feygelson, B.B. Pate, J.E. Butler, B.H. Houston, Nanocrystalline diamond resonator array for RF signal pro- cessing, Diam. Relat. Mater. 15 (2006) 2061e2067, https://doi.org/10.1016/ j.diamond.2006.09.009.

[17] M.-L. Hicks, A.C. Pakpour-Tabrizi, R.B. Jackman, Diamond etching beyond 10 mm with near-zero micromasking, Sci. Rep. 9 (2019), https://doi.org/ 10.1038/s41598-019-51970-8.

[18] M. Nagai, K. Nakanishi, H. Takahashi, H. Kato, T. Makino, S. Yamasaki, et al., Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour, Sci. Rep. (2018) 8, https://doi.org/10.1038/s41598-018-25193-2.

[19] N. Furushiro, H. Tanaka, M. Higuchi, T. Yamaguchi, S. Shimada, Suppression mechanism of tool wear by phosphorous addition in diamond turning of electroless nickel deposits, CIRP Annals 59 (2010) 105e108, https://doi.org/ 10.1016/j.cirp.2010.03.058.

[20] N. Yang, W. Huang, D. Lei, Control of nanoscale material removal in diamond polishing by using iron at low temperature, J. Mater. Process. Technol. 278 (2020) 116521, https://doi.org/10.1016/j.jmatprotec.2019.116521.

[21] Y. Morofushi, H. Matsushita, N. Miki, Microscale patterning of single crystal diamond by thermochemical reaction between sidero-metal and diamond, Precis. Eng. 35 (2011) 490e495, https://doi.org/10.1016/ j.precisioneng.2011.03.003.

[22] M. Nagai, Y. Nakamura, T. Yamada, T. Tabakoya, T. Matsumoto, T. Inokuma, et al., Formation of U-shaped diamond trenches with vertical {111} sidewalls by anisotropic etching of diamond (110) surfaces, Diam. Relat. Mater. 103 (2020) 107713, https://doi.org/10.1016/j.diamond.2020.107713.

[23] S.J. Sque, R. Jones, P.R. Briddon, Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces, Phys. Rev. B 73 (2006), https:// doi.org/10.1103/physrevb.73.085313.

[24] H. Umezawa, Recent advances in diamond power semiconductor devices, Mater. Sci. Semicond. Process. 78 (2018) 147e156, https://doi.org/10.1016/ j.mssp.2018.01.007.

[25] Y. Sasama, K. Komatsu, S. Moriyama, M. Imura, T. Teraji, K. Watanabe, Takashi Taniguchi, Takashi Uchihashi, Takahide Yamaguchi, High-mobility diamond field effect transistor with a monocrystalline h-BN gate dielectric, Apl. Mater. 6 (2018) 111105, https://doi.org/10.1063/1.5055812.

[26] G. Daligou, J. Pernot, 2D hole gas mobility at diamond/insulator interface, Appl. Phys. Lett. 116 (2020) 162105, https://doi.org/10.1063/5.0002768.

[27] P.S. Mirabedini, B. Debnath, M.R. Neupane, P.A. Greaney, A.G. Birdwell, D. Ruzmetov, Kevin G. Crawford, Pankaj Shah, James Weil, Tony G. Ivanov, Structural and electronic properties of 2D (graphene, hBN)/H-terminated diamond (100) heterostructures, Appl. Phys. Lett. 117 (2020) 121901, https://doi.org/10.1063/5.0020620.

[28] K.G. Crawford, J.D. Weil, P.B. Shah, D.A. Ruzmetov, M.R. Neupane, K. Kingkeo, A. Glen Birdwell, Tony G. Ivanov, Diamond field-effect transistors with V2O5- induced transfer doping: scaling to 50-nm gate length, IEEE Trans. Electron. Dev. 67 (2020) 2270e2275, https://doi.org/10.1109/ted.2020.2989736.

[29] M.Z. Hossain, T. Kubo, T. Aruga, N. Takagi, T. Tsuno, N. Fujimori, et al., Surface phonons, electronic structure and chemical reactivity of diamond (100)(2 ×1, Surface, Japanese Journal of Applied Physics 38 (1999) 6659e6666, https://doi.org/10.1143/jjap.38.6659.

[30] J. Zheng, Oxygen-induced surface state on diamond (100), Diam. Relat. Mater. 10 (2001) 500e505, https://doi.org/10.1016/s0925-9635(00)00439-8.

[31] M. Hossain, T. Kubo, T. Aruga, N. Takagi, T. Tsuno, N. Fujimori, et al., Chem- isorbed states of atomic oxygen and its replacement by atomic hydrogen on the diamond (100)-(2×1) surface, Surf. Sci. 436 (1999) 63e71, https://doi.org/ 10.1016/s0039-6028(99)00609-3.

[32] P. John, N. Polwart, C. Troupe, J. Wilson, The oxidation of (100) textured diamond, Diam. Relat. Mater. 11 (2002) 861e866, https://doi.org/10.1016/ s0925-9635(01)00673-2.

[33] M. Frenklach, D. Huang, R.E. Thomas, R.A. Rudder, R.J. Markunas, Activation energy and mechanism of CO desorption from (100) diamond surface, Appl. Phys. Lett. 63 (1993) 3090e3092, https://doi.org/10.1063/1.110217.

[34] S. Skokov, B. Weiner, M. Frenklach, Molecular-dynamics study of oxygenated (100) diamond surfaces, Phys. Rev. B 49 (1994) 11374e11382, https://doi.org/ 10.1103/physrevb.49.11374.

[35] M. Rutter, J. Robertson, Ab initio calculation of electron affinities of diamond surfaces, Comput. Mater. Sci. 10 (1998) 330e333, https://doi.org/10.1016/ s0927-0256(97)00104-3.

[36] D. Petrini, K. Larsson, A theoretical study of the energetic stability and ge- ometry of hydrogen- and oxygen-terminated diamond (100) surfaces, J. Phys. Chem. C 111 (2007) 795e801, https://doi.org/10.1021/jp063383h.

[37] S. Lu, D. Fan, C. Chen, Y. Mei, Y. Ma, X. Hu, Ground-state structure of oxidized diamond (100) surface: an electronically nearly surface-free reconstruction, Carbon 159 (2020) 9e15, https://doi.org/10.1016/j.carbon.2019.12.003.

[38] F.D. Theije, O. Roy, N.V.D. Laag, W.V. Enckevort, Oxidative etching of diamond, Diam. Relat. Mater. 9 (2000) 929e934, https://doi.org/10.1016/s0925- 9635(99)00239-3.

[39] Q. Sun, M. Alam, Relative oxidation behavior of chemical vapor deposited and type II a natural diamonds, J. Electrochem. Soc. 139 (1992) 933e936, https:// doi.org/10.1149/1.2069328.

[40] S.G. Srinivasan, A.C.V. Duin, Direction dependent etching of diamond surfaces by hyperthermal atomic oxygen: a ReaxFF based molecular dynamics study, Carbon 82 (2015) 314e326, https://doi.org/10.1016/j.carbon.2014.10.076.

[41] R.E. Thomas, R.A. Rudder, R.J. Markunas, Thermal desorption from hydroge- nated and oxygenated diamond (100) surfaces, J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films 10 (1992) 2451e2457, https://doi.org/10.1116/1.577983.

[42] W. Kohn, L.J. Sham, Self-consistent equations including exchange and corre- lation effects, Phys. Rev. 140 (1965), https://doi.org/10.1103/ physrev.140.a1133.

[43] State code. http://www-cp.prec.eng.osaka-u.ac.jp/puki_state.

[44] Y. Morikawa, H. Ishii, K. Seki, Theoretical study ofn-alkane adsorption on metal surfaces, Phys. Rev. B 69 (2004), https://doi.org/10.1103/ physrevb.69.041403.

[45] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865e3868, https://doi.org/10.1103/ physrevlett.77.3865.

[46] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (2006) 1787e1799, https://doi.org/10.1002/jcc.20495.

[47] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188e5192, https://doi.org/10.1103/physrevb.13.5188.

[48] H. Jo´nsson, G. Mills, K.W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, Classical and Quantum Dynamics in Condensed Phase Simulations, 1998, https://doi.org/10.1142/ 9789812839664_0016.

[49] G. Henkelman, B.P. Uberuaga, H. Jo´nsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901e9904, https://doi.org/10.1063/1.1329672.

[50] S. Shikata, T. Tanno, T. Teraji, H. Kanda, T. Yamada, J.-I. Kushibiki, Precise measurements of diamond lattice constant using Bond method, Jpn. J. Appl. Phys. 57 (2018) 111301, https://doi.org/10.7567/jjap.57.111301.

[51] B.D. Thoms, J.E. Butler, HREELS and LEED of the 2 × 1 monohydride dimer row reconstruction, Surf. Sci. 328 (1995) 291e301, https://doi.org/10.1016/0039- 6028(95)00039-9.

[52] A.K. Tiwari, J.P. Goss, P.R. Briddon, N.G. Wright, A.B. Horsfall, R. Jones, H. Pinto, M.J. Rayson, Calculated electron affinity and stability of halogen-terminated diamond, Phys. Rev. B 84 (2011), https://doi.org/10.1103/physrevb.84.245305.

[53] S. Iacobucci, P. Alippi, P. Calvani, M. Girolami, F. Offi, L. Petaccia, D.M. Trucchi, Electronic structure of hydrogenated diamond: microscopical insight into surface conductivity, Phys. Rev. B 94 (2016), https://doi.org/10.1103/ physrevb.94.045307.

[54] P. Krüger, J. Pollmann, Dimer reconstruction of diamond, Si, and Ge (001) surfaces, Phys. Rev. Lett. 74 (1995) 1155e1158, https://doi.org/10.1103/ physrevlett.74.1155.

[55] T. Ogitsu, T. Miyazaki, M. Fujita, M. Okazaki, Role of hydrogen in C and Si (001) homoepitaxy, Phys. Rev. Lett. 75 (1995) 4226e4229, https://doi.org/10.1103/ physrevlett.75.4226.

[56] H. Tamura, H. Zhou, K. Sugisako, Y. Yokoi, S. Takami, M. Kubo, et al., Periodic density-functional study on oxidation of diamond (100) surfaces, Phys. Rev. B 61 (2000) 11025e11033, https://doi.org/10.1103/physrevb.61.11025.

[57] R. Long, Y. Dai, M. Guo, Characterization of diamond (100) surface with ox- ygen termination, Appl. Surf. Sci. 254 (2008) 2851e2855, https://doi.org/ 10.1016/j.apsusc.2007.10.045.

[58] R. Hoffmann, A chemical and theoretical way to look at bonding on surfaces, Rev. Mod. Phys. 60 (1988) 601e628, https://doi.org/10.1103/ revmodphys.60.601.

[59] H. Aizawa, S. Tsuneyuki, First-principles study of CO bonding to Pt(111): validity of the Blyholder model, Surf. Sci. 399 (1998), https://doi.org/10.1016/ s0039-6028(98)00042-9.

[60] H. Ibach, D.L. Mills, in: Electron Energy Loss Spectroscopy and Surface Vi- brations, Academic Press, Inc., NY, NY, 1982, p. 100.

[61] H. Aizawa, Y. Morikawa, S. Tsuneyuki, K. Fukutani, T. Ohno, A density-func- tional study of the atomic structures and vibrational spectra of NO/Pt(111), Surf. Sci. 514 (2002) 394e403, https://doi.org/10.1016/s0039-6028(02)01658-8.

[62] T. Hayashi, Y. Morikawa, H. Nozoye, Adsorption state of dimethyl disulfide on Au(111): evidence for adsorption as thiolate at the bridge site, J. Chem. Phys. 114 (2001) 7615e7621, https://doi.org/10.1063/1.1360245.

[63] T.N. Pham, Y. Hamamoto, K. Inagaki, D.N. Son, I. Hamada, Y. Morikawa, Insight into trimeric formation of nitric oxide on Cu(111): a density functional theory study, J. Phys. Chem. C 124 (2020) 2968e2977, https://doi.org/10.1021/ acs.jpcc.9b08569.

[64] M. Otani, O. Sugino, First-principles calculations of charged surfaces and in- terfaces: a plane-wave nonrepeated slab approach, Phys. Rev. B 73 (2006), https://doi.org/10.1103/physrevb.73.115407.

[65] M. Otani Hamada, O. Sugino, Y. Morikawa, Green’s function method for elimination of the spurious multipole interaction in the surface/interface slab model, Phys. Rev. B 80 (2009), https://doi.org/10.1103/physrevb.80.165411.

[66] J. Klimeˇs, D.R. Bowler, A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83 (2011), https://doi.org/10.1103/ physrevb.83.195131.

[67] van der Hamada, Waals density functional made accurate, Phys. Rev. B 89 (2014), https://doi.org/10.1103/physrevb.89.121103.

[68] K. Kato, T. Uda, K. Terakura, Backbond oxidation of the Si(001) surface: narrow channel of barrierless oxidation, Phys. Rev. Lett. 80 (1998) 2000e2003, https://doi.org/10.1103/physrevlett.80.2000.

[69] S.-P. Chan, G. Chen, X.G. Gong, Z.-F. Liu, Oxidation of carbon nanotubes by SingletO2, Phys. Rev. Lett. (2003) 90, https://doi.org/10.1103/ physrevlett.90.086403.

[70] X.L. Fan, Y.F. Zhang, W.M. Lau, Z.F. Liu, Adsorption of triplet O2 on Si(100): the crucial step in the initial oxidation of a silicon surface, Phys. Rev. Lett. 94 (2005), https://doi.org/10.1103/physrevlett.94.016101.

[71] B.F. Minaev, Electronic mechanisms of activation of molecular oxygen, Russ. Chem. Rev. 76 (2007) 1059e1083, https://doi.org/10.1070/ rc2007v076n11abeh003720.

[72] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Struc- ture and Reactivity, HarperCollins, New York, 1993.

[73] P. John, N. Polwart, C.E. Troupe, J.I.B. Wilson, The oxidation of diamond: the geometry and stretching frequency of carbonyl on the (100) surface, J. Am. Chem. Soc. 125 (2003) 6600e6601, https://doi.org/10.1021/ja029586a.

[74] S.-T. Lee, G. Apai, Surface phonons and CH vibrational modes of diamond (100) and (111) surfaces, Phys. Rev. B 48 (1993) 2684e2693, https://doi.org/ 10.1103/physrevb.48.2684.

[75] D.R. Alfonso, D.A. Drabold, S.E. Ulloa, Phonon modes of diamond (100) sur- faces from ab initio calculations, Phys. Rev. B 51 (1995) 1989e1992, https:// doi.org/10.1103/physrevb.51.1989.

[76] T. Frauenheim, T. Ko€hler, M. Sternberg, D. Porezag, M. Pederson, Vibrational and electronic signatures of diamond surfaces, Thin Solid Films 272 (1996) 314e330, https://doi.org/10.1016/0040-6090(95)06956-9.

[77] J. Raymakers, K. Haenen, W. Maes, Diamond surface functionalization: from gemstone to photoelectrochemical applications, J. Mater. Chem. C 7 (2019) 10134e10165, https://doi.org/10.1039/c9tc03381e.

[78] R.R. Nimmagadda, A. Joshi, W.L. Hsu, Role of microstructure on the oxidation behavior of microwave plasma synthesized diamond and diamond-like car- bon films, J. Mater. Res. 5 (1990) 2445e2450, https://doi.org/10.1557/ jmr.1990.2445.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る