リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the Meyer-Overton correlation and the cutoff phenomenon of long-chain alcohols」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the Meyer-Overton correlation and the cutoff phenomenon of long-chain alcohols

松本, 惇志 東京大学 DOI:10.15083/0002006725

2023.03.24

概要

論文審査の結果の要旨
氏名

松本惇志

本論文は6章からなる。第1章は序論であり、第6章では今後の展望が述べられてい
る。研究内容は、第2章から第5章に記述されている。
第1章では、本研究の背景と目的が述べられている。多様な構造の化合物が類似の麻酔
作用を示す機構は不明である。手がかりの一つは、これらの化合物の作用が脂溶性に応じ
て強くなる Meyer-Overton(MO)相関である。この相関に基づいて、麻酔薬は膜脂質に作
用するという脂質説が提唱された。しかし、オタマジャクシにおいて、C12 までの n-アル
コールは MO 相関に従い麻酔作用が増強するものの、C13 以上になると大量に加えても作
用しないというカットオフ現象が発見され、混乱が始まった。脂溶性の増大にも関わらず
作用を失うというこの現象は MO 相関と矛盾するため、脂質説では説明できないとされ、
代わってタンパク質説が提唱された。この説では、C12 までしか入り込めない疎水性ポケ
ットをもつ標的タンパク質を想定し、カットオフを説明する。しかし、このようなタンパ
ク質の存在は証明されていない。一方、MO 相関とカットオフは、微生物に対する増殖阻
害作用でも確認されており、その原理は微生物で解明できる可能性がある。これらを踏ま
え、本研究の目的として、微生物を用いてカットオフ現象が起きる仕組みを解き明かし、
タンパク質が存在しない人工膜において MO 相関を検証することが述べられている。
第2章では、長鎖アルコールの物性に着目し解析を行っている。長鎖アルコールは、高
融点・低密度・高疎水性という物性を示し、水中での溶解度は低い。そこで高温により溶
解度を上げて作用を調べたところ、出芽酵母の増殖を 25℃では阻害せずカットオフとな
る C13、C14 が、39.8℃では阻害し、好熱細菌の 50℃培養ではカットオフとなる C16 が、
67.5℃では増殖を阻害するようになった。また、振盪や超音波処理でアルコールの分散を
促進すると、カットオフ鎖長が延長した。さらに、長鎖アルコール感受性が高い pdr5(多
剤耐性遺伝子)破壊株では、25℃でも C13 が増殖を阻害した。これらの結果から、カット
オフは長鎖アルコールの水中での溶解度が生物作用濃度に達しないために起こる現象で
あると結論している。
第3章では、メチレンブルー(MB)を用いた簡便な酵母生存率の評価法を構築してい
る。MB は生細胞よりも死細胞によく吸着されるため、細胞懸濁液上清の MB の吸光度の
減少は生存率を反映する。詳細な検討により、小スケール、短時間の実験でも生存率と
MB 濃度低下が直線関係となる最適条件を得て、これに基づく新たな生存率評価法が提案
されている。
第4章では、長鎖アルコールが作用する生物側の条件を詳細に検討している。長鎖だが
二重結合を持つため常温で液体のオレイルアルコール(C18:1)には、抗菌や毒性などの生
1

物作用は知られていなかった。C18:1 は、出芽酵母の増殖を阻害しなかったが、細胞壁を持
たない細胞性粘菌の増殖は阻害し、抗菌作用が初めて示された。酵母においても、細胞壁
を除去して C18:1 を膜に直接接触させると、生存率が低下し殺菌作用を示した。さらに細
胞壁を持つ酵母でも、増殖がおこらない状態で長時間処理すれば、C18:1 が膜に蓄積して殺
菌作用を示す事を見いだした。この評価法により、増殖阻害ではカットオフとなる長鎖ア
ルコール(C14 と C16)の殺菌作用が初めて判明した。これらの結果から、長鎖アルコール
も膜内で十分な濃度に達すれば、カットオフとならず生物作用を示すという結論を導い
ている。
第5章では、アルコールと脂質膜との直接作用を検討している。麻酔薬やアルコールに
よる生体膜の膜ドメイン形成阻害が既に示唆されていたが、この作用に脂質とタンパク
質のどちらが重要かは不明であった。そこで、タンパク質を含まない人工膜を調製してア
ルコールのドメイン形成への影響を解析したところ、各鎖長のアルコールとも膜ドメイ
ン形成を阻害し、その阻害強度は鎖長に応じて強くなった。これらの結果から、アルコー
ルは脂質膜に直接作用して MO 相関を示すと推論している。
第6章では、今後の展望として、MO 相関の原理と麻酔機構の解明には、人工膜と細胞
の両方を用いた複合的な解析が必要であることを論じている。
本研究は、生物作用が全く無いと考えられてきた長鎖アルコールの生物作用を、さまざ
まな方法を考案して捉え、多面的に検証することでカットオフ現象の機構を明らかにし
ている。人工膜のドメイン形成に着目してアルコールと脂質膜との直接作用を示した点
も含め、独創性が高い。なお、本論文の研究は、上園幸史博士、寺島一郎博士、足立博之
博士との共同研究であるが、論文提出者が主体となって実験及び論証を行ったもので、論
文提出者の寄与は十分である。
したがって、博士(理学)の学位を授与できると認める。

2

この論文で使われている画像

参考文献

Abe F & Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and

Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol. Cell Biol. 23: 7566-7584.

Abraham MH, Lieb WR & Franks NP (1991) Role of hydrogen bonding in general anesthesia. J. Pharm.

Sci. 80: 719-724.

Akashi K, Miyata H, Itoh H & Kinoshita Jr K (1996) Preparation of giant liposomes in physiological

conditions and their characterization under an optical microscope. Biophys. J. 71: 3242-3250.

Alifimoff JK, Firestone LL & Miller KW (1989) Anaesthetic potencies of primary alkanols: implications

for the molecular dimensions of the anaesthetic site. Br. J. Pharmacol. 96: 9–16.

Allen JA, Halverson-Tamboli RA & Rasenick MM (2007) Lipid raft microdomains and neurotransmitter

signalling. Nat. Rev. Neurosci. 8: 128-140.

Ames JM & Leod GM (1985) Volatile components of a yeast extract composition. J. Food Sci. 50: 125131.

Antkowiak B (2001) How do general anaesthetics work? Naturwissenschaften 88: 201–213.

Ayer A, Gourlay CW & Dawes IW (2014) Cellular redox homeostasis, reactive oxygen species and

replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 14: 60-72.

Balouiri M, Sadiki M & Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: A

review. J. Pharm. Anal. 6: 71-79.

Baluška F, Yokawa K, Mancuso S & Baverstock K (2016) Understanding of anesthesia – Why

consciousness is essential for life and not based on genes. Commun. Integr. Biol. 9: e1238118.

Balzi E, Wang M, Leterme S, Van Dyck L & Goffeau A (1994) PDR5, a novel yeast multidrug resistance

conferring transporter controlled by the transcription regulator PDR1. J. Biol. Chem. 269: 2206–2214.

Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA, Baird BA & Webb WW (2007a) Largescale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Nat.

Acad. Sci. USA 104: 3165-3170.

Baumgart T, Hunt G, Farkas ER, Webb WW & Feigenson GW (2007b) Fluorescence probe partitioning

between Lo/Ld phases in lipid membranes. Biochim. Biophys. Acta Biomembr. 1768: 2182-2194.

Bell GH (1973) Solubilities of normal aliphatic acids, alcohols and alkanes in water. Chem. Phys. Lipids

10: 1–10.

Bernard C (1878) Leçons sur les phénomènes de la vie commun aux animaux et aux végétaux, Librairie

J-B Baillie`re et Fils.

Birnie CR, Malamud D & Schnaare RL (2000) Antimicrobial evaluation of N-alkyl betaines and N-alkylN,N-dimethylamine oxides with variations in chain length. 44: 2514-2517.

Bissinger PH & Kuchler K (1994) Molecular cloning and expression of the Saccharomyces cerevisiae

STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance. J. Biol. Chem.

269:4180–4186.

Borzani W & Vairo MLR (1958) Quantitative adsorption of methylene blue by dead yeast cells. J.

Bacteriol. 76: 251-255.

Bosc N, Atkinson F, Felix E, Gaulton A, Hersey A & Leach AR (2019) Large scale comparison of QSAR

and conformal prediction methods and their applications in drug discovery. J Cheminformatics 11: 116.

Butt HJ, Graf K & Kappl M (2013) Physics and Chemistry of Interfaces, 3rd edition. WILEY-VCH Verlag

GmbH & Co. KGaA, Weinheim, Germany.

46

Cameron DR, Cooper DG & Neufeld RJ (1988) The mannoprotein of Saccharomyces cerevisiae is an

effective bioemulsifier. Appl. Environ. Microbiol. 54: 1420-1425

Campagna JA, Miller KW & Forman SA (2003) Mechanisms of actions of inhaled anesthetics. New Engl.

J Med. 348: 2110-2124.

Cantor RS (1997) The lateral pressure profile in membrans: a physical mechanism of general anesthesia.

Biochemistry 36: 2339-2344.

Cantor RS (2001) Breaking the Meyer-Overton rule: predicted effects of varying stiffness and interfacial

activity on the intrinsic potency of anesthetics. Biophys. J. 80: 2284–2297.

Carignan D, Désy O, Ghani K, Caruso M & de Campos-Lima PO (2013) The size of the unbranched

aliphatic chain determines the immunomodulatory potency of short and long chain n-alkanols. J. Biol.

Chem. 288: 24948–24955.

Chang E, Zheng Y, Holowka D & Baird B (1995) Alteration of lipid composition modulates FcεRI

signaling in RBL-2H3 cells. Biochemistry 34: 4376-4384.

Chen M, Markham JE, Dietrich CR, Jaworski JG & Cahoon EB (2008) Sphingolipid long-chain base

hydroxylation is important for growth and regulation of sphingolipid content and composition in

Arabidopsis. Plant Cell 20: 1862-1878.

Chiou JS, Ma SM, Kamaya H & Ueda I (1990) Anesthesia cutoff phenomenon: interfacial hydrogen

bonding. Science 248: 583–585.

Cornell CE, McCarthy NLC, Levental KR, Levental I, Brooks NJ & Keller SL (2017) n-Alcohol length

governs shift in Lo-Ld mixing temperatures in synthetic and cell-derived membranes. Biophys. J. 113:

1200-1211.

Craddock TJA, Kurian P, Preto J, Sahu K, Hameroff SR, Klobukowski M & Tuszynski JA (2017)

Anesthetic alterations of collective terahertz oscillations in tubulin correlate with clinical potency:

implications for anesthetic action and post-operative cognitive dysfunction. Sci. Rep. 7: 1-12.

Curtis BM & Scurlock JE (1981) The mechanism of action of local anesthesia by tetraethylammonium

derivatives. Anesthesiology 54: 270-277.

Daicho K, Makino N, Hiraki T, Ueno M, Uritani M, Abe F & Ushimaru T (2009) Sorting defects of the

tryptophan permease Tat2 in an erg2 yeast mutant. FEMS Microbiol. Lett. 298: 218-227.

Danielli JF & Davson H (1935) A contribution to the theory of permeability of thin films. J. Cell Comp.

Physiol. 5: 495-508.

Deere D, Shen J, Vesey G, Bell P, Bissinger P & Veal D (1998) Flow cytometry and cell sorting for yeast

viability assessment and cell selection. Yeast 14: 147-160.

Delaveau T, Delahodde A, Carvajal E, Subik J & Jacq C (1994) PDR3, a new yeast regulatory gene, is

homologous to PDR1 and controls the multidrug resistance phenomenon. Mol. Gen. Genet. 244: 501–

511.

Eckenhoff RG, Tanner JW & Johansson JS (1999) Steric hindrance is not required for n-alkanol cutoff in

soluble proteins. Mol. Pharmacol. 56: 414–418.

Eger EI II, Lundgren C, Miller SL & Stevens WC (1969) Anesthetic potencies of sulfur hexafluoride,

carbon tetrafluoride, chloroform and ethrane in dogs: Correlation with the hydrate and lipid theories

of anesthetic action. Anesthesiology 30: 129-35.

Eger EI (1989) Does 1 + 1 = 2? Anesth. Analg. 68: 551-555

Enoki TA, Heberle FA & Feigenson GW (2018) FRET detects the size of nanodomains for coexisting

liquid-disordered and liquid ordered phases. Biophys. J. 114: 1921-1935.

European Brewery Convention: Yeast group (1962) Estimation of yeast viability. J. Inst. Brew. 68: 14-20.

47

Fang Z, Ionescu P, Chortkoff BS, Kandel L, Sonner J, Laster MJ & Eger EI II (1997) Anesthetic potencies

of n-alkanols: Results of additivity and solubility studies suggest a mechanism of action similar to

that for conventional inhaled anesthetics. Anesth Analg 84: 1042-1048.

Feigenson GW & Buboltz JT (2001) Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol:

nanoscopic domain formation driven by cholesterol. Biophys. J. 80: 2775-2788

Feizi A, Zhang Y, Greenbaum A, Guziak A, Luong M, Chan RYL, Berg B, Ozkan H, Luo W, Wu M, Wu

Y & Ozcan A (2016) Rapid, portable and cost-effective yeast cell viability and concentration analysis

using lensfree on-chip microscopy and machine learning. Lab Chip 16: 4350-4358.

Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc. R. Soc. Lond. B Biol. Sci.

127: 387–404.

Fink H., Kühles R. (1933) Methylene staining of yeast cells and the permeability of the yeast cell

membrane. II. An improved staining fluid for recognition of dead yeast cells. Z. Physiol. Chem. 218:

65-66.

Forzzard HA, Sheets MF & Hanck DA (2011) The sodium channel as a target for local anesthetic drugs.

Front. Pharmacol. 2: 1-6

Franks NP & Lieb WR (1984) Do general anaesthetics act by competitive binding to specific receptors?

Nature 310: 599-601.

Franks NP & Lieb WR (1985) Mapping of general anaesthetic target sites provides a molecular basis for

cutoff effects. Nature 316: 349–351.

Franks NP & Lieb WR (1986) Partitioning of long-chain alcohols into lipid bilayers: implications for

mechanisms of general anesthesia. Proc. Nat. Acad. Sci. USA 83: 5116-5120.

Franks NP & Lieb WR (1990) Mechanisms of general anesthesia. Environ. Health Perspect. 87: 199–205.

Franks NP & Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:

607-614.

Franks NP (2008) General anesthesia: from molecular targets to neuronal pathways of sleep and arousal.

Nat. Rev. Neurosci. 9: 370-386.

Franks NP (2015) Structural comparisons of ligand-gated ion channels in open, closed, and desensitized

states identify a novel propofol-binding site on mammalian γ-aminobutyric acid type A receptors.

Anesthesiology 122: 787-794.

Fujita KI, Ishikura T, Jono Y, Yamaguchi Y, Ogita A, Kubo I & Tanaka T (2017) Anethole potentiates

dodecanol’s fungicidal activity by reducing PDR5 expression in budding yeast. Biochim. Biophys.

Acta Gen Subj 1861: 477–484.

Fujita T (2013) Physicochemical background of the Hansch-Fujita QSAR. Japan. J. Pestic. Sci. 38: 2-19.

Funato K, Vallée B & Riezman H (2002) Biosynthesis and trafficking of sphingolipids in the yeast

Saccharomyces cerevisiae. Biochemistry 41: 15105-15114.

Gill CO & Ratledge C (1972) Toxicity of n-alkanes, n-alk-1-enes, n-alkan-1-ols and n-alkyl-1-bromides

towards yeasts. Microbiology 72: 165–172.

Gilliland RB (1959) Determination of yeast viability. J. Inst. Brew. 65: 424-429.

Gorter E & Grendel F (1925) On bimolecular layers of lipid on the chromacytes of the blood. J. Exp. Med.

41: 439-443.

Gray E, Karsklake J, Machta BB & Veatch SL (2013) Liquid general anesthetics lower critical

temperatures in plasma membrane vesicles. Biophys. J. 105: 2751-2759.

Grémiaux A, Yokawa K, Mancuso S & Baluška F (2014) Plant anesthesia supports similarities between

animals and plants: Claude Bernard’s forgotten studies. Plant Signal. Behav. 9: e27886.

48

Gruner SL & Shyamsunder E (1991) Is the mechanism of general anesthesia related to lipid membrane

spontaneous curvature? Ann. N. Y. Acad. Sci. 625: 685-697

Guerra-Tschuschke I, Martín I & González MT (1991) Polyethylene glycol-induced internalization of

bacteria into fungal protoplasts: electron microscopic study and optimization of experimental

conditions. Appl. Environ. Microbiol. 57: 1516-1522.

Guthrie C & Fink GR (1991) Guide to Yeast Genetics and Molecular Biology, Vol. 194. Academic

Press/Elsevier, Cambridge, MA.

Hacker U, Albrecht R & Maniak M (1997) Fluid-phase uptake by micropinocytosis in Dictyostelium. J.

Cell Sci. 110: 105-112.

Hall CW & Mah T (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in

pathogenic bacteria. FEMS Microbiol. Rev. 41: 276-301

Hammond DG & Kubo I (1999) Structure-activity relationship of alkanols as mosquito larvicides with

novel findings regarding their mode of action. Bioorg. Med. Chem. 7: 271-278.

Hansch C, Maloney PP, Fujita T & Muir RM (1962) Correlation of biological activity of phenoxyacetic

acids with Hammett substituent constants and partition coefficients. Nature 194: 178-180.

Hansch C & Fujita T (1964) ρ-σ-π analysis. A method for the correlation of biological activity and

chemical structure. J. Am. Chem. Soc. 86: 1616-1626.

Hansch C (1969) Quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res.

2: 232–239.

Hansch C & Dunn WJ III (1972) Linear relationships between lipophilic character and biological activity

of drugs. J. Pharm. Sci. 61: 1–19.

Heberle FA, Wu J, Goh SL, Petruzielo RS & Feigenson GW (2010) Comparison of three ternary lipid

bilayer mixtures: FRET and ESR reveal nanodomains. Biophys. J. 99: 3309-3318.

Heberle FA, Petruzielo RS, Pan J, Drazba P, Kučerka N, Standaert RF, Feigenson GW & Katsaras J (2013)

Bilayer thickness mismatch controls domains size in model membranes. J. Am. Chem. Soc. 135: 68536859.

Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C,

Zanzouri M, Romey G & Lazdunski M (2004) TREK-1, a K+ channel involved in neuroprotection

and general anesthetsia. EMBO J. 23: 2684-2695

Hirata D, Yano K, Miyahara K & Miyakawa T (1994) Saccharomyces cerevisiae YDR1, which encodes

a member of the ATP-binding cassette (ABC) superfamily, is required for multidrug resistance. Curr.

Genet. 26: 285–294.

Huang CN, Cornejo MJ, Bush DS & Jones RL (1986) Estimating viability of plant protoplasts using

double and single staining. Protoplasma 135: 80-87.

Ibeas JI, Yun DJ, Damsz B, Narasimhan ML, Uesono Y, Ribas JC, Lee H, Hasegawa PM, Bressan RA &

Pardo JM (2001) Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces

cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant J. 25: 271–

280.

Ingólfsson HI & Andersen OS (2011) Alcohol’s effects on lipid bilayer properties. Biophys. J. 101: 847–

855.

Jain N & Yalkowsky SH (2001) Estimation of the aqueous solubility I: application to organic

nonelectrolytes. J. Pharm. Sci. 90: 234–252.

Kamaya H, Matubayasi N & Ueda I (1984) Biphasic effect of long-chain n-alkanols on the main phase

transition of phospholipid vesicle membranes. J. Phys. Chem. 88: 797–800.

49

Kato N & Shibasaki I (1975) Comparison of antimicrobial activities of fatty acids and their esters. J.

Ferment. Technol. 53: 793-801.

Kato N & Shibasaki I (1980) The antimicrobial characteristics of 1-alkanols. J. Antibact. Antifung Agents.

8: 325–331.

Kawasaki M, Toyoda M, Teshima R, Sawada J & Saito Y (1994) Effect of α-linolenic acid on the

metabolism of ω-3 and ω-6 polyunsaturated fatty acids and histamine release in RBL-2H3 cells. Biol.

Pharm. Bull. 17: 1321-1325.

Keil RL, Wolfe D, Reiner T, Peterson CJ & Riley JL (1996) Molecular genetic analysis of volatileanesthetic action. Mol. Cell. Biol. 16: 3446–3453.

Kemmer G & Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat. Protoc. 5:

267-281.

Kilcher G, Dalneri D, Duckham C & Tirelli N (2008) Probing (macro)molecular transport through cell

walls. Faraday Discuss. 139: 199-212.

Kingsley PB & Feigenson GW (1979) The synthesis of a perdeuterated phospholipid: 1,2-dimyristoyl-snglycero-3-phosphocholine-d72. Chem. Phys. Lipids 24: 135-147.

Kinoshita M, Chitose T & Matsumori N (2019) Mechanism of local anesthetic-induced disruption of raftlike ordered membrane domains. Biochim. Biophys. Acta Gen. Subj. 1863: 1381-1389.

Kitagawa T, Matsumoto A, Terashima I & Uesono Y (2020) Antimalarial drugs lose their activity with a

slight drop in pH. BioRxiv https://doi.org/10.1101/2020.08.04.237255.

Konyakhina TM, Wu J, Mastroianni JD, Heberle FA & Feigensno GW (2013) Phase diagram of a 4component lipid mixture: DSPC/DOPC/POPC/chol. Biochim. Biophys. Acta Biomembr. 1828: 22042214

Korlach J, Schwille P, Webb WW & Feigenson GW (1999) Characterization of lipid bilayer phases by

confocal microscopy and fluorescence correlation spectroscopy. Proc. Nat. Acad. Sci. USA 96: 75637568.

Krasowski MD (2003) Contradicting a unitary theory of general anesthetic action: a history of three

compounds from 1901 to 2001. Bull. Anesth. Hist. 21: 1,4-8,21,24.

Krause FP & Lange W (1965) Aqueous solubilities of n-dodecanol, n-hexadecanol, and n-octadecanol by

a new method. J. Phys. Chem. 69: 3171–3173.

Kubinyi H (1977) Quantitative structure-activity relationships. 7. The bilinear model, a new model for

nonlinear dependence of biological activity on hydrophobic character. J. Med. Chem. 20: 625–629.

Kubo I, Muroi H & Kubo A (1995) Structural functions of antimicrobial long-chain alcohols and phenols.

Bioorg. Med. Chem. 3: 873–880.

Kubo I, Fujita T, Kubo A & Fujita K (2003) Modes of antifungal action of alkanols against Saccharomyces

cerevisiae. Bioorg. Med. Chem. 11: 1117–1122.

Kumar R, Umar A, Kumar G & Nalwa HS (2017) Antimicrobial properties of ZnO nanomaterials: A

review. Ceram. Int. 43: 3940-3961

Kwolek-Mirek M & Zadrag-Tecza R (2014) Comparison of methods used for assessing the viability and

vitality of yeast cells. FEMS Yeast Res. 14: 1068-1079.

Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Andrew JB & Robinson CV

(2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature

510: 172-175.

Leāo C & van Uden N (1982a) Effects of ethanol and other alkanols on the glucose transport system of

Saccharomyces cerevisiae. Biotechnol. Bioeng. 24: 2601-2604.

50

Leāo C & van Uden N (1982b) Effects of ethanol and other alkanols on the kinetics and the activation

parameters of thermal death in Saccharomyces cerevisiae. Biotechnol. Bioeng. 24: 1581-1590

Lee AG (1976) Interactions between anesthetics and lipid mixutures. Normal alcohols. Biochemistry 15:

2448-2454.

Lee SK & Mills A (2003) Novel photochemistry of leuco-Methylene Blue. Chem. Commun. 3: 2366-2367.

Levental I, Levental KR & Heberle FA (2020) Lipid rafts: controversies resolved, mysteries remain.

Trends Cell Biol. 30: 341-353.

Liu J, Laster MJ, Taheri S, Eger EI II, Koblin DD & Halsey MJ (1993) Is there a cutoff in anesthetic

potency for the normal alkanes? Anesth. Analg. 77: 12-18.

Malinsky J, Opekarová M, Grossmann G & Tanner W (2013) Membrane microdomains, rafts, and

detergent-resistant membranes in plants and fungi. Ann. Rev. Plant Biol. 64: 501-529.

Malinsky J & Opekarová M (2016) New insight into the roles of membrane microdomains in

physiological activities of fungal cells. Int. Rev. Cell Mol. Biol. 325: 119-180.

Martin YC (2018) How medicinal chemists learned about log P. J Comput. Aided Mol. Des. 32: 809-819.

McFarland JW (1970) On the parabolic relationship between drug potency and hydrophobicity. J. Med.

Chem. 13: 1192-1196.

Metcalfe JC, Seeman P & Burgen ASV (1968) The proton relaxation of benzyl alcohol in erythrocyte

membranes. Mol. Pharmacol. 4: 87-95.

Meyer HH (1899) Zur theorie der Alkoholnarkose. Arch. Exp. Pathol. Pharmakol. 42: 109–118.

Meyer KH & Hemmi H (1935) Beitrage zur Theorie der Narkose, III. Biochem. Z. 277: 39–71.

Meyer KH (1937) Contributions to the theory of narcosis. Trans. Faraday Soc. 33: 1062-1064.

Miller KW, Firestone LL, Alifimoff JK & Streicher P (1989) Nonanesthetic alcohols dissolve in synaptic

membranes without perturbing their lipids. Proc. Natl. Acad. Sci. USA 86: 1084-1087.

Miller PS & Aricescu AR (2014) Crystal structure of a human GABAA receptor. Nature 512: 270-275.

Miller SL (1961) A theory of gaseous anesthetics. Proc. Natl. Acad. Sci. USA 47: 1515-1524.

Mohr JT, Gribble GW, Lin SS, Eckenhoff RG & Cantor RS (2005) Anesthetic potency of two novel

synthetic polyhydric alkanols longer than the n-alkanol cutoff: evidence for a bilayer-mediated

mechanism of anesthesia? J. Med. Chem. 48: 4172–4176.

Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F & Rapoport G (1998) ClpP of Bacillus subtilis is

required for competence development, motility, degradative enzyme synthesis, growth at high

temperature and sporulation. Mol. Microbiol. 27: 899–914.

Mukherjee K, Tribedi P, Mukhopadhyay B & Sil AK (2013) Antibacterial activity of long-chain fatty

alcohols against mycobacteria. FEMS Microbiol. Lett. 338: 177–183.

Nose M, Nakatani Y & Yamanishi T (1971) Studies on the flavor of green tea. Part IX. Identification and

composition of intermediate and high boiling constituents in green tea flavor. Agric. Biol. Chem. 35:

261-271.

O’Brien JS & Rouser G (1964) The fatty acid composition of brain sphingolipids: sphingomyelin,

ceramide, cerebroside, and cerebroside sulfate. J. Lipid Res. 5: 339-42.

Oba Y, Ojika M & Inouye S (2003) Firefly luciferase is a bifunctional enzyme: ATP- dependent

monooxygenase and a long chain fatty acyl-CoA synthetase. FEBS Lett. 540:251–254.

Olsen I (2015) Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis.

34: 877-886

51

Overton CE (1895) Über die osmotischen Eigenschaften der lebenden Pflanzen und Tierzelle.

Vierteljahresschrift Naturforsch. Ges. Zürich.

Overton CE (1901) Studien über die Narkose, zugleich ein Beitrag zur allgemeiner Pharmakologie,

Verlag von Gustav Fischer, Jena, Germany. English transation: Lipnik RL (Ed.) (1991) Studies of

Narcosis, Chapman and Hall, Wood Library-Museum of Anesthesiology.

Painting K & Kirsop B (1990) A quick method for estimating the percentage of viable cells in a yeast

population, using methylene blue staining. World J. Microbiol. Biotechnol. 6: 346-347.

Palmer LK, Wolfe D, Keeley JL & Keil RL (2002) Volatile anesthetics affect nutrient availability in yeast.

Genetics 161: 563-574.

Pan JZ, Xi J, Tobias JW, Eckenhoff MF & Eckenhoff RG (2007) Halothane binding proteome in human

brain cortex. J Proteome Res. 6: 582-592.

Parker RA, Gabriel KT, Graham K & Cornelison CT (2020) Validation of methylene blue viability

staining with the emerging pathogen Candida auris. J. Microbiol. Methods 169: 105829.

Pauling L (1961) A molecular theory of general anesthesia. Science 134: 15-21.

Pavel MA, Petersen EN, Wang H, Lerner RA & Hansen SB (2020) Studies on the mechanism of general

anesthesia. Proc. Nat. Acad. Sci. USA 117: 13757-13766.

Peoples RW & Ren H (2002) Inhibition of N-methyl-D-aspartate receptors by straight-chain diols:

implications for the mechanism of the alcohol cutoff effect. Mol. Pharmacol. 61: 169–176.

Pérez-Gallardo RV, Briones LS, Díaz-Pérez AL, Gutiérrez S、Rodríguez-Zavala JS & Campos-García J

(2013) Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases

because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Res. 13:

804-819.

Perouansky M (2012) The questo for a unified model of anesthetic action: A century in Claude Bernard’s

Shadow. Anesthesiology 117: 465-474.

Pfeffer W (1877) Osmotische Untersuchungen. Studien zur Zellmechanik. W. Engelmann, Leipzig,

Germany.

Pringle MJ, Brown KB & Miller KW (1981) Can the lipid theories of anesthesia account for the cutoff in

anesthetic potency in homologous series of alcohols? Mol. Pharmacol. 19: 49–55.

Pristerà A, Baker MD & Okuse K (2012) Association between tetrodotoxin resistant channels and lipid

rafts regulates sensory neuron excitability. PLoS ONE 7: e40079.

Qin Z, Szabo G & Cafiso DS (1995) Anesthetics reduce the magnitude of the membrane dipole potential.

Measurement in lipid vesicles using voltage-sensitive spin probes. Biochemistry 34: 5536-5543.

Quasha AL, Eger EI II & Tinker JH (1980) Determination and applications of MAC. Anesthesiology 53:

315-334.

Quinlan JJ, Homanics GE & Firestone LL (1998) Anesthesia sensitivity in mice that lack the β3 subunit

of the γ-aminobutyric acid type A receptor. Anesthesiology 88: 775-780.

Raines DE & Miller KW (1994) On the importance of volatile agents devoid of anesthetic action. Anesth.

Analg. 79: 1031–1033.

Ramos J, Sychrová H & Kschischo M (Eds.) (2016) Yeast Membrane Transport Springer International

Publishing Switzerland.

Ritz C (2010) Toward a unified approach to dose-response modeling in ecotoxicology. Environ. Toxicol.

Chem. 29: 220-229.

Robertson JD (1959) The ultrastructure of cell membranes and their derivatives. Biochem. Soc. Symp. 16:

3-43.

52

Rutter CD & Rao CV (2016) Production of 1-decanol by metabolically engineered Yarrowia lipolytica.

Metab. Eng. 38: 139-147.

Sáenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O, Broda M & Simons K (2015) Hopanoids as

functional analogues of cholesterol in bacterial membranes. Proc. Nat. Acad. Sci. USA 112: 1197111976.

Sakai T, Kamogawa K, Nishiyama K, Sakai H & Abe M (2002) Molecular diffusion of oil/water

emulsions in surfactant-free conditions. Langmuir 18: 1985-1990.

Sakai T (2008) Surfactant-free emulsions. Curr. Opin. Collid Interface Sci. 13: 228-235

Sami M, Ikeda M & Yabuuchi S (1994) Evaluation of the alkaline methylene blue staining method for

yeast activity determination. J. Ferment. Bioeng. 78: 212-216.

Scherrer R, Louden L & Gerhardt P (1974) Porosity of the yeast cell wall and membrane. J. Bacteriol.

118: 534-540.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,

Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P & Cardona A (2012)

Fiji: an open-source platform for biological-image analysis. Nat. Methods 9: 676-682.

Scott R (1976) Plasma membrane vesiculation: a new technique for isolation of plasma membranes.

Science 194: 743-745.

Scurlock JE & Curtis BM (1981) Teraethylammonium derivatives: Ultralong-acting local anesthetics?

Anesthesiology 54: 265-269.

Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev. 24: 583-655.

Sezgin E, Levental I, Mayor S & Eggeling C (2017) The mystery of membrane organization: composition,

regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 17: 361-374.

Sierra-Valdez FJ, Ruiz-Suárez JC & Delint-Ramirez I (2016) Pentobarbital modifies the lipid raft-protein

interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochim.

Biophys. Acta Biomembr. 1858: 2603-2610.

Simons K & Ikonen E (1997) Functional rafts in cell membranes. Nature 387: 569-572.

Singer SJ & Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:

720-731.

Snoek T, Verstrepen KJ & Voordeckers K (2016) How do yeast cells become tolerant to high ethanol

concentrations? Curr. Genet. 62: 475-480.

Sonner JM, Antognini JF, Dutton RC, Flood P, Gray AT, Harris RA, Homanics GE, Kendig J, Orser B,

Raines DE, Trudell J, Vissel B & Eger EI II (2003) Inhaled anesthetics and immobility: mechanisms,

mysteries, and minimum alveolar anesthetic concentration. Anesth. Analg. 97: 718-740.

Sonner JM (2008) A hypothesis on the origin and evolution of the response to inhaled anesthetics. Anesth.

Analg. 107: 849-854.

Sugahara K, Shimokawa N & Takagi M (2015) Destabilization of phase-separated structures in local

anesthetic-containing model biomembranes. Chem. Lett. 44: 1604-1606.

Sussman M (1987) Cultivation and synchronous morphogenesis of Dictyostelium under controlled

experimental conditions. Methods Cell Biol. 28: 9-29.

Suzuki H, Kawarabayasi Y, Kondo J, Abe T, Nishikawa K, Kimura S, Hashimoto T & Yamamoto T (1990)

Structure and regulation of rat long-chain acyl-CoA synthetase. J. Biol. Chem. 265: 8681–8685.

Suzuki K, Shibya M, Hase Y, Hiraoki T, Kimura Y & Fujisawa T (2017) Reaction mechanism of general

and local anesthetics. Hokkaido J Dent. Sci. 37: 116-123.

53

Tardivo JP, Giglio AD, de Oliveira CS, Gabrielli DS, Junqueira HC, Tada DB, Severino D, Turchiello RF

& Baptista MS (2005) Methylene blue in photodynamic therapy: From basic mechanisms to clinical

applications. Photodiagnosis Photodyn. Ther. 2: 175-191.

Teh JS & Lee KH (1973) Utilization of n-alkanes by Cladosporium resinae. Appl. Microbiol. 25: 454–

457.

Teh JS (1974) Toxicity of short-chain fatty acids and alcohols towards Cladosporium resinae. Appl.

Microbiol. 28: 840–844.

Thomas DS, Hossack JA & Rose H (1978) Plasma-membrane lipid composition and ethanol tolerance in

Saccharomyces cerevisiae. Arch. Microbiol. 117: 239-245.

Togashi N, Shiraishi A, Nishizaka M, Matsuoka K, Endo K, Hamashima H & Inoue Y (2007) Antibacterial

activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules 12: 139–148.

Trudell JR (1977) A unitary theory of anesthesia based on lateral phase separations in nerve membranes.

Anesthesiology 46: 5-10

Tsujimoto Y, Shimizu Y, Otake K, Nakamura T, Okada R, Miyazaki T & Watanabe K (2015) Multidrug

resistance transporters Snq2p and Pdr5p mediate caffeine efflux in Saccharomyces cerevisiae. Biosci.

Biotechnol. Biochem. 79: 1103–1110.

Tulloch AP (1970) The composition of beeswax and other waxes secreted by insects. Lipids 5: 247-258

Tutulan-Cunita AC, Mikoshi M, Mizunuma M, Hirata D & Miyakawa T (2005) Mutational analysis of

the yeast multidrug resistance ABC transporter Pdr5p with altered drug specificity. Genes Cells 10:

409–420.

Ueda I (1965) Effects of diethyl ether and halothane on firefly luciferin bio- luminescence. Anesthesiology

26: 603–606.

Ueda I & Kamaya H (1974) Kinetic and thermodynamic aspects of the mechanism of general anesthesia

in a model system of firefly luminescence in vitro. Anesthesiology 38: 425-436.

Ueda I & Suzuki A (1998) Is there a specific receptor for anesthetics? Contrary effects of alcohols and

fatty acids on phase transition and bioluminescence of firefly luciferase. Biophys. J. 75:1052–1057.

Uesono Y, Araki T & Toh-e A (2008) Local anesthetics, antipsychotic phenothiazines, and cationic

surfactnts shut down intracellular reactions through membrane perturbation in yeast. Biosci.

Biotechnol. Biochem. 72: 2884-2894

Uesono Y, Toh-E A, Kikuchi Y & Terashima I (2011) Structural analysis of compounds with actions

similar to local anesthetics and antipsychotic phenothiazines in yeast. Yeast 28: 391–404.

Uesono Y, Toh-E A, Kikuchi Y, Araki T, Hachiya T, Watanabe CK, Noguchi Ko & Terashima I (2016)

Local anesthetics and antipsychotic phenothiazines interact nonspecifically with membranes and

inhibit hexose transporters in yeast. Genetics 202: 997-1012.

Umebayashi K & Nakano A (2003) Ergosterol is required for targeting of tryptophan permease to the

yeast plasma membrane. J. Cell Biol. 161: 1117-1131.

Urban BW, Bleckwenn M & Barann M (2006) Interactions of anesthetics with their targets: non-specific,

specific or both? Pharmacol. Ther. 111: 729–770.

Usery RD, Enoki TA, Wickramasinghe SP, Weiner MD, Tsai W, Kim MB, Wang S, Torng TL, Ackerman

DG, Heberle FA, Katsaras J & Feigenson GW (2017) Line tension controls liquid-disordered + liquidordered domain size transition in lipid bilayers. Biophys. J. 112: 1431-1443

Vairo MLR (1962a) A modified adsorption method for determining percentage of dead yeast cells. Biotech.

Bioeng. 4:247-254.

Vairo, MLR (1962b) Influence of several factors on the applicability of Freundlich’s law to the adsorption

of MB by dead yeast cells. Appl. Microbiol. 10: 141-145.

54

Vairo, MLR & Borzani W (1962) Precise adsorption method for measuring the percentage of dead

bacterial cells. Appl ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る