リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spectroscopic study of epsilon iron oxide nanoparticles in the millimeter- and terahertz-wave regions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spectroscopic study of epsilon iron oxide nanoparticles in the millimeter- and terahertz-wave regions

吉清, まりえ 東京大学 DOI:10.15083/0002006142

2023.03.20

概要

論文審査の結果の要旨
氏名











本論文は全 6 章より構成されており、第 1 章では研究の背景と目的、第 2 章ではイプシ
ロン酸化鉄のフォノンモード計算および遠赤外吸収特性、第 3 章ではガリウム置換型イプ
シロン酸化鉄のフォノンモード計算、磁気特性、赤外吸収およびラマン散乱特性、熱力学
的状態量計算およびその実測、第 4 章ではインジウム置換型イプシロン酸化鉄の磁気特性
およびミリ波吸収特性、第 5 章ではアルミニウム置換型イプシロン酸化鉄のミリ波領域に
おける磁気回転現象、第 6 章では研究の総括とその展望について述べられている。以下に
各章の概要を示す。
第 1 章では、本研究の背景として三酸化二鉄(Fe2O3)の四つの相、アルファ相、ベータ相、
ガンマ相、イプシロン相についての特徴が述べられており、特にイプシロン酸化鉄が大き
な保磁力や高周波ミリ波吸収特性を示すことが説明されている。また、イプシロン酸化鉄
の各種合成法に加え、電子状態計算を通じて磁気異方性の起源についても紹介されている。
第 2 章では、イプシロン酸化鉄のフォノンモード計算により、赤外活性な光学フォノン
モードから遠赤外吸収スペクトルを算出し、実測の遠赤外吸収スペクトルと一致すること
を示した上で、2.5 から 25 THz の領域に観測される各振動モードと結晶軸に対する原子の
動きの関係について明らかにしている。
第 3 章では、ガリウム置換型イプシロン酸化鉄のフォノンモード計算により、遠赤外吸
収および中赤外吸収スペクトルを構築し、合成試料の遠赤外、中赤外、ラマン散乱スペク
トルの実験結果と一致することを確認している。その上で、鉄とガリウムの重原子を主と
したフォノンモードが低周波領域に、軽元素である酸素のフォノンモードが高周波領域に
存在することを明らかにしている。また、フォノンモード計算から内部エネルギー、エン
トロピー、ヘルムホルツ自由エネルギーなどの熱力学的状態量を予測し、実測の熱容量の
温度依存性から導かれる各種熱力学的状態量との整合性を確認した上で、熱力学的状態量
の理論予測が可能であることを示している。
第 4 章では、インジウム置換型イプシロン酸化鉄の合成について述べ、粉末 X 線回折パ
ターンから結晶構造を決定した。磁化測定の結果から、インジウム置換量の増加に伴い保
磁力が 22 から 6 kOe へと減少することを確認したとともに、テラヘルツ時間領域分光法
により、ゼロ磁場強磁性共鳴周波数が 182 GHz から 110 GHz へと低周波シフトすること
を示した。また、保磁力およびミリ波共鳴周波数の変化の起源が、非磁性のインジウムイ
オンの置換効果による磁気異方性の減少であることを明らかにしている。
第 5 章ではアルミニウム置換型イプシロン酸化鉄の合成、結晶構造、磁気特性について
述べ、テラヘルツ時間領域分光法によるミリ波領域における偏光測定において、回転角ス
ペクトルおよび楕円率スペクトルが試料の磁極方向に応じて反転することを示し、このミ
リ波領域における回転特性が電磁波の磁場成分によるものであることを明らかにしている。
第 6 章では、研究を総括するとともに、イプシロン酸化鉄および金属置換型イプシロン
1

酸化鉄についてのミリ波吸収材料および磁気記録材料としての展望について述べており、
次世代の新しい磁気記録方式への展開についても記されている。
本論文では、イプシロン酸化鉄および金属置換型イプシロン酸化鉄を研究対象として、
フォノンモード計算およびミリ波からテラヘルツ波領域(30 GHz から 30 THz)にわたる各
種分光測定から、格子振動、熱力学的状態量、および磁化の歳差運動を明らかにした。実
用化が進んでいるイプシロン酸化鉄とその金属置換体をベースとした新規ミリ波吸収材料
および磁気記録材料の開発につながる結果であり、当該研究分野を発展させるものである
と評価できる。
なお、本論文第2章は、大越慎一氏、生井飛鳥氏、山岡武博氏、井元健太氏、奈須義総
氏、阿南静佳氏、梅田喜一氏、中川幸祐氏、所裕子氏との共同研究、本論文第3章は、大
越慎一氏、梅田喜一氏、小峯誠也氏、藤原礼衣氏、所裕子氏、千葉貢治氏、副島武夫氏、生
井飛鳥氏、宮本靖人氏、奈須義総氏、井元健太氏との共同研究、本論文第4章は、生井飛
鳥氏、中嶋誠氏、山口啓太氏、末元徹氏、大越慎一氏との共同研究、本論文第5章は、生
井飛鳥氏、大越慎一氏、中川幸祐氏との共同研究であるが、論文提出者が主体となって実
験及び解析を行ったもので、論文提出者の寄与が十分であると判断する。
以上の理由から、博士(理学)の学位を授与できると認める。

2

この論文で使われている画像

参考文献

[5.1]

J. Federici, L. Moeller, J. Appl. Phys. 107, 111101 (2010).

[5.2]

M. J. W. Rodwell, High speed integrated circuit technology, towards 100 GHz

logic, World Scientific, Singapore (2001).

[5.3]

R. D. Paolis, M. Kaynak, IEEE Microwave and Wireless Components Lett. 26,

225 (2016).

[5.4]

K. S. Lee, Y. S. Kim, Y. K. Hong, Y. H. Jeong, IEEE Electron Device Lett. 28,

672 (2007).

[5.5]

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, S. Sasaki, Angew.

Chem. Int. Ed. 46, 8392 (2007).

[5.6]

A. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T.

Miyazaki, M. Nakajima, T. Suemoto, H. Tokoro, S Ohkoshi, Nat. Commun. 3,

1035 (2012).

[5.7]

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S.

Sasaki, S. Ohkoshi, J. Am. Chem. Soc. 131, 1170 (2009).

[5.8]

M. N. Afsar, Z. Li, K. A. Korolev, A. Namai, S. Ohkoshi, J. Appl. Phys. 109,

07E316 (2011).

[5.9]

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, M. Hangyo,

J. Appl. Phys. 100, 033105 (2006).

[5.10] M. Nakajima, A. Namai, S. Ohkoshi, T. Suemoto, Opt. Express 18, 18260 (2010).

101

Figures and Tables

Figure 5.1 (a) PXRD pattern and Rietveld analysis of ε-Al0.47Fe1.53O3. Red marks, black

line, and gray line are the observed pattern, calculated pattern, and their difference,

respectively. Green tick marks are the calculated positions of the Bragg peaks. Inset is the

crystal structure viewed from the a-axis direction. (b) Magnetic hysteresis loop of

ε-Al0.47Fe1.53O3 at 300 K. [© 2016 IEEE. Adapted with permission from IEEE Magn. Lett.,

7, 5506704 (2016).]

102

Figure 5.2 Diagram of the terahertz-time domain spectroscopy (THz-TDS)

measurement system. [© 2016 IEEE. Adapted with permission from IEEE Magn. Lett.,

7, 5506704 (2016).]

103

THz-field (a.u.)

reference

(without pellet sample)

d = 1.130 mm

d = 2.339 mm

d = 3.549 mm

20

40

60

80

100

120

Time (ps)

Figure 5.3 Temporal waveforms of the input THz pulse light and the transmitted THz

light from the ε-Al0.47Fe1.53O3 pellet samples. [© 2016 IEEE. Adapted with permission

from IEEE Magn. Lett., 7, 5506704 (2016).]

104

30

Absorption (dB)

25

20

15

10

60

80

100

120

140

160

Frequency (GHz)

Figure 5.4 Absorption spectra of ε-Al0.47Fe1.53O3 pellet samples for d = 1.130 mm

(purple), 2.339 mm (blue), and 3.549 mm (green). [© 2016 IEEE. Adapted with

permission from IEEE Magn. Lett., 7, 5506704 (2016).]

105

(a)

30

d = 1.130 mm

Absorption (dB)

25

20

15

10

(b)

60

80

100

120

Frequency (GHz)

140

160

30

d = 2.339 mm

Absorption (dB)

25

20

15

10

(c)

60

80

100

120

Frequency (GHz)

140

160

30

d = 3.549 mm

Absorption (dB)

25

20

15

10

60

80

100

120

Frequency (GHz)

140

160

Figure 5.5 Spectral fitting of the absorption of ε-Al0.47Fe1.53O3 pellet samples for (a) d

= 1.130 mm, (b) 2.339 mm, and (c) 3.549 mm. Red open circles and solid lines indicate

the observed spectra and fitted spectra, respectively.

106

25

Absorption (dB)

25

Absorption (dB)

20

20

15

10

15

at 100 GHz

0.0 0.5 1.0 1.5 2.0 2.5

d100 % (mm)

10

60

80

100

120

140

160

Frequency (GHz)

Figure 5.6 Analyzed absorption spectra of ε-Al0.47Fe1.53O3 pellet samples for d = 1.130

mm (purple), 2.339 mm (blue), and 3.549 mm (green). Inset figure shows the absorption

intensity at 100 GHz versus sample thickness converted to 100% filling ratio. [© 2016

IEEE. Adapted with permission from IEEE Magn. Lett., 7, 5506704 (2016).]

107

(a)

Ellipticity

-1

(b)

60

80

100

120

Frequency (GHz)

140

60

80

100

120

Frequency (GHz)

140

Rotation angle (deg.)

40

20

-20

-40

Figure 5.7 Frequency dependence of the (a) ellipticity and (b) rotation angle of the

magnetized ε-Al0.47Fe1.53O3 pellet-form samples (d = 2.339 mm). Blue and red lines

denote the results measured by irradiating from the N-pole direction and the S-pole

direction, respectively. [© 2016 IEEE. Adapted with permission from IEEE Magn. Lett.,

7, 5506704 (2016).]

108

Figure 5.8 (a) Overview of ε-Fe2O3/SiO2 film fabrication and photograph of the film

sample. (b) Observed (gray crosses), calculated (black line), and difference (gray line)

patterns of the XRD pattern with Rietveld analysis of the ε-Fe2O3/SiO2 film. Additionally,

the calculated positions of the Bragg reflections (black bars) and crystal structure (inset)

are shown. [Reproduced from AIP Adv., 7, 056218 (2017), with the permission of AIP

Publishing.]

109

Figure 5.9 (a) Cross section SEM image, (inset) illustration, and (b) TEM image of εFe2O3/SiO2 film on a quartz substrate. [Reproduced from AIP Adv., 7, 056218 (2017),

with the permission of AIP Publishing.]

110

(a)

100

Transmittance (%)

80

60

40

20

400

500

600

700

800

700

800

Wavelength (nm)

(b)

0.30

0.25

Absorbance

0.20

0.15

0.10

0.05

400

500

600

Wavelength (nm)

Figure 5.10 UV-vis spectra of the ε-Fe2O3/SiO2 film. (a) Transmittance and (b)

absorbance plotted as functions of wavelength. [Reproduced from AIP Adv., 7, 056218

(2017), with the permission of AIP Publishing.]

111

(a)

Faraday rotation (degree)

0.010

0.005

0.000

-0.005

-0.010

400

500

600

700

800

Wavelength (nm)

(b)

0.03

Faraday ellipticity (degree)

0.02

0.01

-0.01

-0.02

-0.03

-15

-10

-5

10

15

External field (kOe)

Figure 5.11 (a) Faraday rotation angle spectra for the ε-Fe2O3/SiO2 film. (b) Faraday

ellipticity of the ε-Fe2O3/SiO2 film as a function of external field at 390 nm. Black line is

to highlight the shape. [Reproduced from AIP Adv., 7, 056218 (2017), with the permission

of AIP Publishing.]

112

Chapter 6

Summary and perspective

The present doctoral thesis focuses on the spectroscopic study of ε-Fe2O3 and εMxFe2−xO3 in the range from millimeter-waves to terahertz-waves. Chapter 1 shows the

background knowledge concerning ε-Fe2O3, which exhibits a huge coercive field at room

temperature. This is an exceptionally large value among metal oxide based magnets, and

this huge coercivity also enables millimeter-wave absorption at a very high frequency due

to zero-field ferromagnetic resonance, so-called natural resonance. Furthermore, several

metal-substituted series, ε-MxFe2−xO3 (M = In, Ga, Al), have been reported, and the

magnetic properties and millimeter-wave absorption properties can be widely controlled

by metal-substitution. Therefore, this material is expected to be used in future magnetic

recordings and electromagnetic wave absorbers. In order to optimize the performance to

meet the needs, it is important to understand the fundamental properties of the material

from both experimental and theoretical approaches, which had still be underway.

Chapter 2 reports a mesoscopic single crystal bar magnet composed of ε-Fe2O3. The

atomic movements of ε-Fe2O3 were calculated by phonon mode calculations. The lowest

frequency phonon mode of 2.51 THz in ε-Fe2O3 shows a movement of the Fe atoms

oscillating along the crystallographic a-axis, which is the growth direction of the bar

magnet. The simulated IR spectrum from the phonon mode calculations showed good

correspondence with the experimentally obtained far-IR spectrum. The lowest frequency

absorption peak was observed at 2.62 THz, corresponding to the A1 symmetry phonon

mode at 2.51 THz.

113

In chapter 3, first-principles phonon mode calculations of ε-Ga0.5Fe1.5O3 were

carried out, which showed 117 optical phonon modes (fundamental vibrations) with

symmetries of A1, A2, B1, and B2, ranging from 2.63 THz to 21.76 THz. The movements

of Fe and Ga contribute to the phonon modes in the lower energy region, while the

movements of O contribute to the phonon modes in the higher energy region. Far- and

mid-IR and Raman spectroscopic measurements confirmed that the calculated spectra

agree well with the observed spectra. Additionally, a crystallographically oriented

magnetic film was prepared, which showed a rectangular magnetic hysteresis loop with

a coercive field of 9.7 kOe.

In chapter 4, the influences of indium substitution on the crystal structure, magnetic

properties, and millimeter-wave absorption for spherical ε-InxFe2−xO3 nanoparticles are

described. For nanoparticles prepared by a reverse-micelle and sol-gel combination

technique, In3+ selectively occupies Fe3+ at the largely distorted B site. As the Insubstitution increased, the coercive field was found to decrease from 21.9 kOe (x = 0) to

5.9 kOe (x = 0.18). In high-frequency millimeter-wave absorption, the resonance

frequency decreased with In-substitution because the nonmagnetic In3+ substitutes for

Fe3+ at B sites, which is considered to be an important site contributing to the magnetic

anisotropy of the material. In the field of electromagnetic wave absorbing material, εInxFe2−xO3 has potential in future millimeter-wave wireless communications. The

resonance frequency of the sample for x = 0.09 is particularly interesting because it

corresponds to the 140-GHz window of air in wireless communications.

In chapter 5, ε-Al0.47Fe1.53O3 was prepared and millimeter-wave absorption property

was measured using THz-TDS. An absorption peak due to natural resonance was

observed at 100 GHz with an intensity of 10 dB (90%) per 1 mm. In addition, millimeter-

114

wave polarization plane measurement of the magnetized ε-Al0.47Fe1.53O3 pellet was

carried out to obtain the rotation data of the transmitted millimeter-wave. Since εAl0.47Fe1.53O3 is eco-friendly and has high durability, a series of Al-substituted ε-Fe2O3 is

expected to be used as millimeter-wave absorbers or isolators.

As a perspective of the present thesis, spectroscopic study of ε-Fe2O3 in the

frequency region between terahertz-waves and millimeter-waves is an interesting

research direction. Since the millimeter-wave absorption of ε-Fe2O3 due to k = 0 magnon

(0.18 THz) and the optical phonon due to lattice vibration (2.54 THz) are energetically

close, ε-Fe2O3 is a suitable material for future investigation of the phonon-magnon

coupling effect. I would like to plan measurements to observe such coupling effects.

Another direction of future research is the investigation of ε-Fe2O3 for a new methodology

of optomagnetic recording. Considering the fact that ε-Fe2O3 is commercialized as a

material for magnetic recording and also for high-frequency millimeter-wave absorbers,

research development could be further extended by adding the characteristic of

millimeter-wave absorption to the magnetic recording technology. Currently, magnetic

recording tapes and hard disc drives are facing the “trilemma of magnetic recording,” a

common issue in the magnetic recording industry. In order to increase the recording

density to store the increasing amount of information, there are three important aspects:

signal to noise (S/N) ratio, thermal stability, and writability. To increase the S/N ratio, the

magnetic particle size must be downsized, but small magnetic particles lose thermal

stability. To maintain thermal stability while downsizing, the magnetic anisotropy of the

material must be increased. Then, however, the writing head cannot record with the

current magnetic field. This trade-off between the three aspects is the “trilemma of

magnetic recording.” To overcome this challenge, several approaches have been proposed,

115

e.g., heat-assisted magnetic recording (HAMR). The idea of HAMR is to heat the

magnetic media close to Curie temperature so that the magnetization could be flipped by

a small magnetic field. In the case of ε-Fe2O3, precession or tilting of the magnetization

can be triggered by irradiating millimeter-waves. This phenomenon indicates that there is

a possibility to inverse the magnetic pole direction by irradiating intense millimeter-wave.

Ohkoshi, et al. has recently proposed a new recording method of “focused millimeterwave assisted magnetic recording (F-MIMR)”. To test this methodology, Ohkoshi and his

colleagues prepared magnetic films using epsilon iron oxide and irradiated an intense

millimeter-wave focused by a metal ring, under an external magnetic field slightly weaker

than the coercive field. Magnetic force microscopy (MFM) measurement indicated a

magnetic pole flip of the epsilon iron oxide film, proving the concept of this new

recording method that could contribute to raising the magnetic recording density in the

big data era. Further investigations will be done to introduce this concept to actual

applications.

116

List of publications related to the thesis

1.

“Mesoscopic bar magnet based on ε-Fe2O3 hard ferrite”

S. Ohkoshi, A. Namai, T. Yamaoka, M. Yoshikiyo, K. Imoto, T. Nasu, S. Anan, Y.

Umeta, K. Nakagawa, and H. Tokoro

Scientific Reports, 6, 27212/1–10 (2016).

2.

“Phonon-mode calculation, far- and mid-infrared, and Raman spectra of an εGa0.5Fe1.5O3 magnet”

S. Ohkoshi, M. Yoshikiyo, Y. Umeta, M. Komine, R. Fujiwara, H. Tokoro, K. Chiba,

T. Soejima, A. Namai, Y. Miyamoto, and T. Nasu

J. Phys. Chem. C, 121, 5812–5819 (2017).

3.

“Highly oriented magnetic film composed of Ga-substituted ε-iron oxide and the

angular dependence of the magnetic hysteresis loops”

M. Yoshikiyo, A. Namai, K. Imoto, H. Tokoro, and S. Ohkoshi

Eur. J. Inorg. Chem., 847–851 (2018).

4.

“High-frequency millimeter wave absorption of indium-substituted ε-Fe2O3

spherical nanoparticles”

M. Yoshikiyo, A. Namai, M. Nakajima, K. Yamaguchi, T. Suemoto, and S. Ohkoshi

J. Appl. Phys., 115, 172613/1–5 (2014).

5. “Millimeter wave rotation in ε-Al0.47Fe1.53O3 at one hundred gigahertz”

A. Namai, M. Yoshikiyo, and S. Ohkoshi

IEEE Magn. Lett., 7, 5506704/1–4 (2016).

6. “Magnetic glass-film based on single-nanosize ε-Fe2O3 nanoparticles”

M. Yoshikiyo, A. Namai, K. Nakagawa, and S. Ohkoshi

AIP Adv., 7, 056218/1–6 (2017).

117

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Shin-ichi

Ohkoshi for leading my way into this research on ε-Fe2O3. He has looked after my work

with tender care and has given me so many advices and suggestions. It is greatly owing

to his heartfelt guidance that I am here right now, continuing my career as a researcher in

this laboratory. He has given me an invaluable chance and a constant sense of security to

take on the challenge in this field. I am always stimulated by Prof. Ohkoshi’s pure

curiosity and inquisitive mind toward science, and doing research under his supervision

is continuing to teach me the great pleasure of doing research. The more I dig into the

research, the deeper I understand the significance of our work on ε-Fe2O3 and other novel

functional materials developed in the group. Especially, ε-Fe2O3 is an amazing material

with extraordinary physical properties, and I am very grateful to be able to take part in

this research. In addition to the fundamental aspect of research on ε-Fe2O3, I learned from

Prof. Ohkoshi the great joy of working on the development toward industrial applications.

Thanks to the chance of participating in the collaboration research, my network of

researchers have greatly expanded, and I am stimulated by each member working in

different fields. I cannot thank Prof. Ohkoshi enough for this opportunity.

I would also like to give my great thanks to Dr. Asuka Namai for all of the guidance

in the research. From the very beginning, when I first started research in Ohkoshi lab for

bachelor thesis, she has taught me the basic techniques and the attitude toward research.

She has cared for not only my research work but also for my daily life in the group. Even

when I am feeling down, she would encourage me and support me to bring myself up.

Her presence and working with her has encouraged me many times, and she has always

118

given me great comfort. This work could not have been done without her support.

I am also thankful to Dr. Koji Nakabayashi, Dr. Kosuke Nakagawa, and Dr. Kenta

Imoto of Ohkoshi lab, and Prof. Hiroko Tokoro of Tsukuba University for their scientific

guidance and numerous support for this research. They have also greatly supported me as

a staff member of the research group.

I would like to give my thanks to Dr. Kouji Chiba of Molsis Inc. for the attentive

guidance in the first-principles calculations. I would also like to thank Prof. Tohru

Suemoto, Prof. Makoto Nakajima, and Dr. Keita Yamaguchi for their support with

terahertz time-domain spectroscopy measurements. I would like to thank Mr. Takeo

Soejima for the support with Raman measurements. I am grateful to Mr. Yoshida, and Mr.

Miyazaki of DOWA Electronics Materials Co,. Ltd. for the support with sample

preparation and for valuable discussions. I am also thankful to all of the Ohkoshi lab

members and graduates for their kind support and cooperation.

Last but not least, I would like to thank my family for their heartfelt support.

Marie Yoshikiyo

November 2020

119

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る