リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nonlinear terahertz spectroscopy of multiband superconductors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nonlinear terahertz spectroscopy of multiband superconductors

富田, 圭祐 東京大学 DOI:10.15083/0002001860

2021.10.04

概要

The spontaneous symmetry breaking is one of the central concepts in physics. Generally, with the continuous symmetry breaking, two collective modes of an order parameter appear: the massless phase mode called Nambu-Goldstone mode and the massive amplitude mode called Higgs mode. In charged particle systems the phase mode becomes massive and its energy is elevated to higher energy region due to the coupling with the gauge field. This process is called as the Anderson-Higgs mechanism (A- H) mechanism. Superconductor is a typical example that shows the A-H mechanism associated with the U(1) symmetry of the phase of wavefunction.

 The Higgs mode in superconductors has long been studied theoretically over decades but its observation has been difficult, because it does not couple directly to the electromagnetic field in the linear response regime. Recently owing to the progress of the intense terahertz (THz) pulse generation technique, it has become possible to unveil the properties of Higgs mode in superconductors.

 A remarkable example is the Higgs mode resonance which was found through the observation of third harmonic generation (THG) in an s-wave superconductor NbN in the THz frequency range.

 So far, the study of collective modes in superconductors through the THz nonlinear response has been limited to the single band superconductor where only one order parameter exists. When there exist two order parameters, two Higgs mode and one massive phase mode called Leggett mode is expected to exist as a low energy collective excitation in charged particle system. The Leggett mode corresponds to the oscillation of the relative phase in which the mass of the mode depends on strength of the interband interaction. The Higgs modes should also interact with each other through the interband coupling. Accordingly, the observation of Higgs modes is expected to provide deeper insights into the multiband superconductors.

 While the Leggett mode has been observed in a typical multiband superconductor MgB2, there is no experimental observation of Higgs mode in multiband superconductors, and the interband coupling effect on the Higgs mode remains unclear. Moreover it has been pointed theoretically that in addition to the Higgs mode, the single particle excitation also contributes to THG, called as change density fluctuation (CDF). It was demonstrated that the contribution of CDF to THG is dominant in clean limit superconductors within the BCS mean field approximation, while it is now revealed that Higgs contribution dominates the THG in the dirty limit superconductor, which was the case of NbN. Then it is also an interesting problem as to whether the Higgs modes dominate THG, or CDF does in other superconductors.

 In order to elucidate the lower-energy collective excitations in multiband superconductors, we investigate the nonlinear response of the MgB2 thin film on MgO substrate, and FeSe0.5Te0.5 thin film on CaF2. Both of which are known as multi band superconductors, while MgB2 is a relatively weak interband coupling system and FeSe0.5Te0.5 is in the opposite strong interband coupling system.

 For MgB2 we first performed the transmission measurement with intense narrow-band THz pulses. We observed a clear third-harmonic generation (THG) associated with superconductivity. Figure 1 (a) indicates the power spectra of the transmitted THz wave, with the center frequency 0.6 THz (2.5 meV) and the peak electric field 7 kV/cm, above (35 K) and below (27 K) the superconducting critical temperature Tc=34 K. The inset shows the electric field (E-field) strength dependence of the integrated spectral weight around 1.8 THz. The data are proportional to six power of the E-field, which indicates the peak originates from the THG induced by third-order nonlinear process.

 We measured the temperature dependence of the THG intensities and extracted the magnitude square of the third-order susceptibility |χ(3)|2. Figure 1 (b) indicates the calculated temperature dependence of the superconducting gap 2Δ; the black and gray solid lines indicate the temperature dependence of larger gap (2∆σ) and the smaller gap (2∆π). The orange, green and blue dashed line show the twice of the incident frequency 2ω for each incident frequency. Figure 1 (b)-(e) plot |χ(3)|2 normalized by its maximum value. Based on the two band BCS theory, all the CDFs Higgs mode, and Leggett mode are expected to contribute to THG. The resonance condition is given by 2ω = 2Δ for CDFs and Higgs mode and 2ω = ωL for Leggett mode where ωL is the energy of Leggett mode located between 2Δπ and 2Δσ in the case of MgB2. The temperature of |χ(3)|2 clearly exhibits a resonant peak at 2ω = 2∆π, which indicates that the THG originates from CDF or Higgs mode associated with the π band. We then considered the band structure of MgB2 and found that the existence of the Dirac point in π band divergently enhances the THG, whereas this enhancement does not occur for the Higgs mode. Therefore we conclude that the origin of THG is most likely dominated by the CDF of π band.

 Next we performed the transient optical conductivity measurement by using THz pump-THz probe spectroscopy with the center pump photon energy ω = 0.8 THz (=3.3 meV) to confirm the origin of THG. We observed a clear spectral weight oscillation of both real and imaginary part of optical conductivity σ1(ω) and σ2(ω) with the frequency twice of the incident center frequency 2ω. From this measurement we identified the spectral weight oscillation of σ band, which is plausibly attributed to the σ-band Higgs mode. At low temperature we observed a prominent spectral weight oscillation of π band, which is attributed to CDF.

 For FeSe 0.5Te0.5 we also performed the THz pump-THz probe spectroscopy with the center photon energy ω = 2.5 meV. We observed a spectral weight oscillation of σ1(ω) and σ2(ω) with the frequency twice of the incident center frequency 2ω at 4 K. The pump photon energy ω is between the smaller gap 2∆ Γ and larger gap 2∆M. Figure 2 (a) and (b) shows the pump THz induced change of the real and imaginary part of the optical conductivity δσ1(ω) and δσ2(ω), respectively. The oscillations are clearly identified.

 We evaluate the oscillation of the superfluid density to δσ2(ω)/σ2eq(ω) where σ2eq(ω) is the σ2 in the equilibrium state. Figure 2 (c) shows the photon energy dependence of the oscillatory component of δσ2(ω)/σ2eq(ω). The oscillation in the low energy region below 2 meV is attributed to that of 2∆Γ, while the oscillation above 6 meV is attributed to that of 2∆M. This result indicate that the strong interband coupling plays a key role, since in spite of the strong THz excitation with the photon energy larger than 2∆Γ the smaller gap coherently oscillates without suppressing its magnitude. We also found a π- phase shift of the oscillation between low energy region and high energy region as shown by Fig. 2 (d) which shows the typical dynamics of oscillatory part of δσ2(ω)/σ eq(ω) at 1.9 and 8,6 meV. Namely the 2ω-forced oscillation of Higgs mode is induced in the larger gap, and then it induces the oscillation of the smaller gap through the strong interband coupling. To interpret the π-phase shift, we considered the two components Ginzburg-Landau (GL) theory, and obtain the result that qualitatively explain the experimental results in strong coupling limit.

 In summary we have investigated the Higgs modes in two-band superconductors in two limiting cases: a relatively weak interband coupling system of MgB2 and the strong interband coupling system of FeSe0.5Te0.5. We revealed the hybridized motion of two Higgs mode in FeSe0.5Te0.5 which is qualitatively described by GL theory. The result also suggests that two components can reasonably describes the order parameter dynamics of FeSe0.5Te0.5. In MgB2 on the contrary to the initial expectation THG resonance at π-band is observed due to the existence of Dirac cone in the π-band. The result indicates that the consideration of the band structure is crucial for THG from CDF.

 The elucidation of the energy and life time of Higgs modes are important remaining subject. Since they are modulated by the interband interaction, the information of signs or magnitude of it may be resolved by measuring them and comparing microscopic theory. Such a Higgs mode spectroscopy would be promising to gain the insight into interband interaction and order parameter symmetries.

この論文で使われている画像

参考文献

[1] Yoichiro Nambu “Quasi-Particles and Gauge Invariance in the Theory of Supercon- ductivity,” Phys. Rev. 117, 648-663 (1960).

[2] P. W. Anderson “Plasmons, Gauge Invariance, and Mass,” Phys. Rev. 130, 439–442 (1963).

[3] R. Sooryakumar and M. V. Klein “Raman Scattering by Superconducting-Gap Exci- tations and Their Coupling to Charge-Density Waves,” Phys. Rev. Lett. 45, 660–662 (1980).

[4] P. B. Littlewood and C. M. Varma “Gauge-Invariant Theory of the Dynamical Inter- action of Charge Density Waves and Superconductivity,” Phys. Rev. Lett. 47, 811–814 (1981).

[5] P. B. Littlewood and C. M. Varma “Amplitude collective modes in superconductors and their coupling to charge-density waves,” Phys. Rev. B 26, 4883–4893 (1982).

[6] M. A. Méasson, Y. Gallais, M. Cazayous, B. Clair, P. Rodière, L. Cario, and A. Sacuto “Amplitude Higgs mode in the 2H NbSe2 superconductor,” Physical Review B 89, 060503 (2014).

[7] A. F. Volkov and Sh. M. Kogan “Collisionless relaxation of the energy gap in super- conductors,” Journal of Experimental and Theoretical Physics 38, 1018–1021 (1974).

[8] R. A. Barankov, L. S. Levitov, and B. Z. Spivak “Collective Rabi Oscillations and Solitons in a Time-Dependent BCS Pairing Problem,” Phys. Rev. Lett. 93, 160401 (2004).

[9] R. A. Barankov and L. S. Levitov “Synchronization in the BCS Pairing Dynamics as a Critical Phenomenon,” Phys. Rev. Lett. 96, 230403 (2006).

[10] Emil A. Yuzbashyan and Maxim Dzero “Dynamical Vanishing of the Order Parameter in a Fermionic Condensate,” Phys. Rev. Lett. 96, 230404 (2006).

[11] T. Papenkort, V. M. Axt, and T. Kuhn “Coherent dynamics and pump-probe spectra of BCS superconductors,” Phys. Rev. B 76, 224522 (2007).

[12] T. Papenkort, T. Kuhn, and V. M. Axt “Coherent control of the gap dynamics of BCS superconductors in the nonadiabatic regime,” Phys. Rev. B 78, 132505 (2008).

[13] M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107, 177007 (2011).

[14] Ryusuke Matsunaga and Ryo Shimano “Nonequilibrium BCS State Dynamics Induced by Intense Terahertz Pulses in a Superconducting NbN Film,” Phys. Rev. Lett. 109, 187002 (2012).

[15] Ryusuke Matsunaga, Yuki I. Hamada, Kazumasa Makise, Yoshinori Uzawa, Hirotaka Terai, Zhen Wang, and Ryo Shimano “Higgs Amplitude Mode in the BCS Super- conductors Nb1-xTixN Induced by Terahertz Pulse Excitation,” Phys. Rev. Lett. 111, 057002 (2013).

[16] P. W. Anderson “Random-Phase Approximation in the Theory of Superconductivity,” Phys. Rev. 112, 1900–1916 (1958).

[17] Ryusuke Matsunaga, Naoto Tsuji, Hiroyuki Fujita, Arata Sugioka, Kazumasa Makise, Yoshinori Uzawa, Hirotaka Terai, Zhen Wang, Hideo Aoki, and Ryo Shimano “Light- induced collective pseudospin precession resonating with Higgs mode in a supercon- ductor,” Science 345, 1145-1149 (2014).

[18] Naoto Tsuji, Yuta Murakami, and Hideo Aoki “Nonlinear light-Higgs coupling in superconductors beyond BCS: Effects of the retarded phonon-mediated interaction,” Phys. Rev. B 94, 224519 (2016).

[19] Ryusuke Matsunaga, Naoto Tsuji, Kazumasa Makise, Hirotaka Terai, Hideo Aoki, and Ryo Shimano “Polarization-resolved terahertz third-harmonic generation in a single- crystal superconductor NbN: Dominance of the Higgs mode beyond the BCS approxi- mation,” Phys. Rev. B 96, 020505 (2017).

[20] T. Cea, C. Castellani, and L. Benfatto “Nonlinear optical effects and third-harmonic generation in superconductors: Cooper pairs versus Higgs mode contribution,” Phys. Rev. B 93, 180507 (2016).

[21] A. J. Leggett “Number-Phase Fluctuations in Two-Band Superconductors,” Progress of Theoretical Physics 36, 901-930 (1966).

[22] A. Brinkman, S. H. W. van der Ploeg, A. A. Golubov, H. Rogalla, T. H. Kim, and J. S. Moodera “Charge transport in normal metal–magnesiumdiboride junctions,” Journal of Physics and Chemistry of Solids 67, 407-411 (2006).

[23] G. Blumberg, A. Mialitsin, B. S. Dennis, M. V. Klein, N. D. Zhigadlo, and J. Karpinski “Observation of Leggett’s Collective Mode in a Multiband MgB2 Superconductor,” Phys. Rev. Lett. 99, 227002 (2007).

[24] G. Blumberg, A. Mialitsin, B. S. Dennis, N. D. Zhigadlo, and J. Karpinski “Multi-gap superconductivity in MgB2: Magneto-Raman spectroscopy,” Physica C: Supercon- ductivity 456, 75-82 (2007).

[25] M. V. Klein “Theory of Raman scattering from Leggett’s collective mode in a multiband superconductor: Application to MgB2,” Phys. Rev. B 82, 014507 (2010).

[26] Daixiang Mou, Rui Jiang, Valentin Taufour, Rebecca Flint, S. L. Bud’ko, P. C. Canfield, J. S. Wen, Z. J. Xu, Genda Gu, and Adam Kaminski “Strong interaction between electrons and collective excitations in the multiband superconductor MgB2,” Phys. Rev. B 91, 140502 (2015).

[27] Yuta Murotani, Naoto Tsuji, and Hideo Aoki “Theory of light-induced resonances with collective Higgs and Leggett modes in multiband superconductors,” Phys. Rev. B 95, 104503 (2017).

[28] Morton E. Jones and Richard E. Marsh “The Preparation and Structure of Magnesium Boride, MgB2,” Journal of the American Chemical Society 76, 1434-1436 (1954).

[29] Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani, and Jun Akimitsu “Superconductivity at 39K in magnesium diboride,” Nature 410, 63-64 (2001).

[30] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield “Boron Isotope Effect in Superconducting MgB2,” Phys. Rev. Lett. 86, 1877– 1880 (2001).

[31] D. G. Hinks, H. Claus, and J. D. Jorgensen “The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect,” Nature 411, 457-460 (2001).

[32] S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S. C. Wang, H. Ding, A. Kaminski, J. C. Campuzano, S. Sasaki, and K. Kadowaki “The origin of multiple superconducting gaps in MgB2,” Nature 423, 65-67 (2003).

[33] S. Tsuda, T. Yokoya, Y. Takano, H. Kito, A. Matsushita, F. Yin, J. Itoh, H. Harima, and S. Shin “Definitive Experimental Evidence for Two-Band Superconductivity in MgB2,” Phys. Rev. Lett. 91, 127001 (2003).

[34] X. X. Xi “Two-band superconductor magnesium diboride,” Reports on Progress in Physics 71, 116501 (2008).

[35] Hyoung Joon Choi, David Roundy, Hong Sun, Marvin L. Cohen, and Steven G. Louie “The origin of the anomalous superconducting properties of MgB2,” Nature 418, 758- 760 (2002).

[36] Yu. Eltsev, K. Nakao, S. Lee, T. Masui, N. Chikumoto, S. Tajima, N. Koshizuka, and M. Murakami “Anisotropic resistivity and Hall effect in MgB2 single crystals,” Phys. Rev. B 66, 180504 (2002).

[37] Yu. Eltsev, S. Lee, K. Nakao, N. Chikumoto, S. Tajima, N. Koshizuka, and M. Murakami “Anisotropic superconducting properties of MgB2 single crystals probed by in-plane electrical transport measurements,” Phys. Rev. B 65, 140501 (2002).

[38] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer “Supercon- ductivity of Metallic Boron in MgB2,” Phys. Rev. Lett. 86, 4656-4659 (2001).

[39] H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu “Evidence for Strong-Coupling s-Wave Superconductivity in MgB2: 11B NMR Study,” Phys. Rev. Lett. 87, 127001 (2001).

[40] D.G Hinks and J.D Jorgensen “The isotope effect and phonons in MgB2,” Physica C: Superconductivity 385, 98 - 104 (2003).

[41] T. Yildirim, O. Gülseren, J. W. Lynn, C. M. Brown, T. J. Udovic, Q. Huang, N. Rogado, K. A. Regan, M. A. Hayward, J. S. Slusky, T. He, M. K. Haas, P. Khalifah, K. Inumaru, and R. J. Cava “Giant Anharmonicity and Nonlinear Electron-Phonon Coupling in MgB2: A Combined First-Principles Calculation and Neutron Scattering Study,” Phys. Rev. Lett. 87, 037001 (2001).

[42] Amy Y. Liu, I. I. Mazin, and Jens Kortus “Beyond Eliashberg Superconductivity in MgB2: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps,” Phys. Rev. Lett. 87, 087005 (2001).

[43] Hyoung Joon Choi, David Roundy, Hong Sun, Marvin L. Cohen, and Steven G. Louie “First-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism,” Phys. Rev. B 66, 020513 (2002).

[44] F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D. Jorgensen “Specific Heat of Mg11B2: Evidence for a Second Energy Gap,” Phys. Rev. Lett. 87, 047001 (2001).

[45] X. K. Chen, M. J. Konstantinović, J. C. Irwin, D. D. Lawrie, and J. P. Franck “Evidence for Two Superconducting Gaps in MgB2,” Phys. Rev. Lett. 87, 157002 (2001).

[46] S. Tsuda, T. Yokoya, T. Kiss, Y. Takano, K. Togano, H. Kito, H. Ihara, and S. Shin “Evidence for a Multiple Superconducting Gap in MgB2 from High-Resolution Pho- toemission Spectroscopy,” Phys. Rev. Lett. 87, 177006 (2001).

[47] P. Szabó, P. Samuely, J. Kačmarčík, T. Klein, J. Marcus, D. Fruchart, S. Miraglia, C. Marcenat, and A. G. M. Jansen “Evidence for Two Superconducting Energy Gaps in MgB2 by Point-Contact Spectroscopy,” Phys. Rev. Lett. 87, 137005 (2001).

[48] F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D. X. Thanh, J. Klein, S. Miraglia, D. Fruchart, J. Marcus, and Ph. Monod “Two-Gap State Density in MgB2: A True Bulk Property Or A Proximity Effect?,” Phys. Rev. Lett. 87, 177008 (2001).

[49] M. Iavarone, G. Karapetrov, A. E. Koshelev, W. K. Kwok, G. W. Crabtree, D. G. Hinks, W. N. Kang, Eun-Mi Choi, Hyun Jung Kim, Hyeong-Jin Kim, and S. I. Lee “Two-Band Superconductivity in MgB2,” Phys. Rev. Lett. 89, 187002 (2002).

[50] Daixiang Mou, Rui Jiang, Valentin Taufour, S. L. Bud’ko, P. C. Canfield, and Adam Kaminski “Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor,” Phys. Rev. B 91, 214519 (2015).

[51] A. B. Kuzmenko “Multiband and impurity effects in infrared and optical spectra of MgB2,” Physica C: Superconductivity 456, 63-74 (2007).

[52] A. Pimenov, A. Loidl, and S. Krasnosvobodtsev “Superconducting energy gap in a MgB2 film observed by infrared reflectance,” Phys. Rev. B 65 (2002).

[53] Robert Kaindl, Marc Carnahan, Joseph Orenstein, Daniel Chemla, Hans Christen, Hong-Ying Zhai, Mariappan Paranthaman, and Doug Lowndes “Far-Infrared Optical Conductivity Gap in Superconducting MgB2 Films,” Phys. Rev. Lett. 88 (2001).

[54] M. Ortolani, P. Dore, D. Di Castro, A. Perucchi, S. Lupi, V. Ferrando, M. Putti, I. Pallecchi, C. Ferdeghini, and X. X. Xi “Two-band parallel conductivity at terahertz frequencies in the superconducting state of MgB2,” Phys. Rev. B 77, 100507 (2008).

[55] J. W. Quilty, S. Lee, A. Yamamoto, and S. Tajima “Superconducting Gap in MgB2: Electronic Raman Scattering Measurements of Single Crystals,” Phys. Rev. Lett. 88, 087001 (2002).

[56] M. V. Klein and S. B. Dierker “Theory of Raman scattering in superconductors,” Phys. Rev. B 29, 4976–4991 (1984).

[57] A. Brinkman, A. A. Golubov, H. Rogalla, O. V. Dolgov, J. Kortus, Y. Kong, O. Jepsen, and O. K. Andersen “Multiband model for tunneling in MgB2 junctions,” Phys. Rev. B 65, 180517 (2002).

[58] Yoichi Kamihara, Hidenori Hiramatsu, Masahiro Hirano, Ryuto Kawamura, Hiroshi Yanagi, Toshio Kamiya, and Hideo Hosono “Iron-Based Layered Superconductor: LaOFeP,” Journal of the American Chemical Society 128, 10012-10013 (2006).

[59] Fong-Chi Hsu, Jiu-Yong Luo, Kuo-Wei Yeh, Ta-Kun Chen, Tzu-Wen Huang, Phillip M. Wu, Yong-Chi Lee, Yi-Lin Huang, Yan-Yi Chu, Der-Chung Yan, and Maw-Kuen Wu “Superconductivity in the PbO-type structure α-FeSe,” Proceedings of the National Academy of Sciences 105, 14262 (2008).

[60] Dennis Huang and Jennifer E. Hoffman “Monolayer FeSe on SrTiO3,” Annual Review of Condensed Matter Physics 8, 311-336 (2017).

[61] J. P. Sun, K. Matsuura, G. Z. Ye, Y. Mizukami, M. Shimozawa, K. Matsubayashi, M. Ya- mashita, T. Watashige, S. Kasahara, Y. Matsuda, J. Q. Yan, B. C. Sales, Y. Uwatoko, J. G. Cheng, and T. Shibauchi “Dome-shaped magnetic order competing with high- temperature superconductivity at high pressures in FeSe,” Nature Communications 7, 12146 (2016).

[62] B. Lei, J. H. Cui, Z. J. Xiang, C. Shang, N. Z. Wang, G. J. Ye, X. G. Luo, T. Wu, Z. Sun, and X. H. Chen “Evolution of High-Temperature Superconductivity from a Low-Tc Phase Tuned by Carrier Concentration in FeSe Thin Flakes,” Phys. Rev. Lett. 116, 077002 (2016).

[63] D. Phelan, J. N. Millican, E. L. Thomas, J. B. Leão, Y. Qiu, and R. Paul “Neutron scattering measurements of the phonon density of states of FeSe1 x superconductors,” Phys. Rev. B 79, 014519 (2009).

[64] T. M. McQueen, A. J. Williams, P. W. Stephens, J. Tao, Y. Zhu, V. Ksenofontov, F. Casper, C. Felser, and R. J. Cava “Tetragonal-to-Orthorhombic Structural Phase Transition at 90 K in the Superconductor Fe1.01Se,” Phys. Rev. Lett. 103, 057002 (2009).

[65] A. E. Böhmer and A. Kreisel “Nematicity, magnetism and superconductivity in FeSe,” J Phys Condens Matter 30, 023001 (2018).

[66] R. M. Fernandes, A. V. Chubukov, and J. Schmalian “What drives nematic order in iron-based superconductors?,” Nat Phys 10, 97-104 (2014).

[67] Zhijun Wang, P. Zhang, Gang Xu, L. K. Zeng, H. Miao, Xiaoyan Xu, T. Qian, Hongming Weng, P. Richard, A. V. Fedorov, H. Ding, Xi Dai, and Zhong Fang “Topological nature of the FeSe0.5Te0.5 superconductor,” Phys. Rev. B 92, 115119 (2015).

[68] Peng Zhang, Koichiro Yaji, Takahiro Hashimoto, Yuichi Ota, Takeshi Kondo, Kozo Okazaki, Zhijun Wang, Jinsheng Wen, G. D. Gu, Hong Ding, and Shik Shin “Observa- tion of topological superconductivity on the surface of an iron-based superconductor,” Science 360, 182-186 (2018).

[69] Xianhui Chen, Pengcheng Dai, Donglai Feng, Tao Xiang, and Fu-Chun Zhang “Iron- based high transition temperature superconductors,” National Science Review 1, 371- 395 (2014).

[70] Y. Suzuki, T. Shimojima, T. Sonobe, A. Nakamura, M. Sakano, H. Tsuji, J. Omachi, K. Yoshioka, M. Kuwata-Gonokami, T. Watashige, R. Kobayashi, S. Kasahara, T. Shibauchi, Y. Matsuda, Y. Yamakawa, H. Kontani, and K. Ishizaka “Momentum- dependent sign inversion of orbital order in superconducting FeSe,” Phys. Rev. B 92, 205117 (2015).

[71] Can-Li Song, Yi-Lin Wang, Peng Cheng, Ye-Ping Jiang, Wei Li, Tong Zhang, Zhi Li, Ke He, Lili Wang, Jin-Feng Jia, Hsiang-Hsuan Hung, Congjun Wu, Xucun Ma, Xi Chen, and Qi-Kun Xue “Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor,” Science 332, 1410-1413 (2011).

[72] Takahiro Hashimoto, Yuichi Ota, Haruyoshi Q. Yamamoto, Yuya Suzuki, Takahiro Shimojima, Shuntaro Watanabe, Chuangtian Chen, Shigeru Kasahara, Yuji Matsuda, Takasada Shibauchi, Kozo Okazaki, and Shik Shin “Superconducting gap anisotropy sensitive to nematic domains in FeSe,” Nature Communications 9, 282 (2018).

[73] H. Miao, P. Richard, Y. Tanaka, K. Nakayama, T. Qian, K. Umezawa, T. Sato, Y. M. Xu, Y. B. Shi, N. Xu, X. P. Wang, P. Zhang, H. B. Yang, Z. J. Xu, J. S. Wen, G. D. Gu, X. Dai, J. P. Hu, T. Takahashi, and H. Ding “Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in FeTe0.55Se0.45,” Phys. Rev. B 85, 094506 (2012).

[74] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du “Unconventional Supercon- ductivity with a Sign Reversal in the Order Parameter of LaFeAsO1 xFx,” Physical Review Letters 101, 057003 (2008).

[75] Kazuhiko Kuroki, Seiichiro Onari, Ryotaro Arita, Hidetomo Usui, Yukio Tanaka, Hi- roshi Kontani, and Hideo Aoki “Unconventional Pairing Originating from the Discon- nected Fermi Surfaces of Superconducting LaFeAsO1 xFx,” Physical Review Letters 101, 087004 (2008).

[76] Hiroshi Kontani and Seiichiro Onari “Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model,” Phys. Rev. Lett. 104, 157001 (2010).

[77] Lisa Takeuchi, Youichi Yamakawa, and Hiroshi Kontani “Self-energy driven resonance- like inelastic neutron spectrum in the s++-wave state in Fe-based superconductors,” Physical Review B 98, 165143 (2018).

[78] T. Hanaguri, S. Niitaka, K. Kuroki, and H. Takagi “Unconventional s Wave Super- conductivity in Fe(Se,Te),” Science 328, 474-476 (2010).

[79] P. O. Sprau, A. Kostin, A. Kreisel, A. E. BÖhmer, V. Taufour, P. C. Canfield, S. Mukher- jee, P. J. Hirschfeld, B. M. Andersen, and J. C. Séamus Davis “Discovery of orbital- selective Cooper pairing in FeSe,” Science 357, 75-80 (2017).

[80] Mingyang Chen, Qingkun Tang, Xiaoyu Chen, Qiangqiang Gu, Huan Yang, Zengyi Du, Xiyu Zhu, Enyu Wang, Qiang-Hua Wang, and Hai-Hu Wen “Direct visualization of sign reversal s+− superconducting gaps in FeTe0.55Se0.45,” arXiv:1810.06414 (2018).

[81] Qisi Wang, Yao Shen, Bingying Pan, Yiqing Hao, Mingwei Ma, Fang Zhou, P. Steffens, K. Schmalzl, T. R. Forrest, M. Abdel-Hafiez, Xiaojia Chen, D. A. Chareev, A. N. Vasiliev, P. Bourges, Y. Sidis, Huibo Cao, and Jun Zhao “Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe,” Nature Materials 15, 159 (2015).

[82] M. C. Rahn, R. A. Ewings, S. J. Sedlmaier, S. J. Clarke, and A. T. Boothroyd “Strong π, 0 spin fluctuations in β FeSe observed by neutron spectroscopy,” Phys. Rev. B 91, 180501 (2015).

[83] S. H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, Jeroen van den Brink, and B. Büchner “Orbital-driven nematicity in FeSe,” Nature Materials 14, 210 (2014).

[84] A. E. Böhmer, T. Arai, F. Hardy, T. Hattori, T. Iye, T. Wolf, H. v. Löhneysen, K. Ishida, and C. Meingast “Origin of the Tetragonal-to-Orthorhombic Phase Transition in FeSe: A Combined Thermodynamic and NMR Study of Nematicity,” Phys. Rev. Lett. 114, 027001 (2015).

[85] T. Urata, Y. Tanabe, K. K. Huynh, Y. Yamakawa, H. Kontani, and K. Tanigaki “Su- perconductivity pairing mechanism from cobalt impurity doping in FeSe: Spin (s ) or orbital (s++) fluctuation,” Physical Review B 93, 014507 (2016).

[86] R. Khasanov, M. Bendele, K. Conder, H. Keller, E. Pomjakushina, and V. Pomjakushin “Iron isotope effect on the superconducting transition temperature and the crystal structure of FeSe1−x,” New Journal of Physics 12, 073024 (2010).

[87] Y. Lubashevsky, E. Lahoud, K. Chashka, D. Podolsky, and A. Kanigel “Shallow pockets and very strong coupling superconductivity in FeSexTe1 x,” Nature Physics 8, 309 (2012).

[88] K. Okazaki, Y. Ito, Y. Ota, Y. Kotani, T. Shimojima, T. Kiss, S. Watanabe, C. T. Chen, S. Niitaka, T. Hanaguri, H. Takagi, A. Chainani, and S. Shin “Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductiv- ity,” Scientific Reports 4, 4109 (2014).

[89] Mohit Randeria “Pre-pairing for condensation,” Nature Physics 6, 561 (2010).

[90] Shigeru Kasahara, Tatsuya Watashige, Tetsuo Hanaguri, Yuhki Kohsaka, Takuya Ya- mashita, Yusuke Shimoyama, Yuta Mizukami, Ryota Endo, Hiroaki Ikeda, Kazushi Aoyama, Taichi Terashima, Shinya Uji, Thomas Wolf, Hilbert von Löhneysen, Takasada Shibauchi, and Yuji Matsuda “Field-induced superconducting phase of FeSe in the BCS-BEC cross-over,” Proceedings of the National Academy of Sciences 111, 16309- 16313 (2014).

[91] S. Kasahara, T. Yamashita, A. Shi, R. Kobayashi, Y. Shimoyama, T. Watashige, K. Ishida, T. Terashima, T. Wolf, F. Hardy, C. Meingast, H. v Löhneysen, A. Levchenko, T. Shibauchi, and Y. Matsuda “Giant superconducting fluctuations in the compensated semimetal FeSe at the BCS-BEC crossover,” Nature Communications 7, 12843 (2016).

[92] Huan Yang, Guanyu Chen, Xiyu Zhu, Jie Xing, and Hai-Hu Wen “BCS-like critical fluctuations with limited overlap of Cooper pairs in FeSe,” Phys. Rev. B 96, 064501 (2017).

[93] Anlu Shi, Shunsaku Kitagawa, Kenji Ishida, Anna E. Böhmer, Christoph Meingast, and Thomas Wolf “High-Field Superconductivity on Iron Chalcogenide FeSe,” J. Phys. Soc. Jpn. 87, 065002 (2018).

[94] Fuyuki Nabeshima, Kosuke Nagasawa, Atsutaka Maeda, and Yoshinori Imai “Super- conducting fluctuations in FeSe0.5Te0.5 thin films probed via microwave spectroscopy,” Phys. Rev. B 97, 024504 (2018).

[95] Hideyuki Takahashi, Fuyuki Nabeshima, Ryo Ogawa, Eiji Ohmichi, Hitoshi Ohta, and Atsutaka Maeda “Superconducting fluctuation in FeSe investigated by precise torque magnetometry,” arXiv:1811.12778 (2018).

[96] M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao “Superconductivity close to magnetic instability in Fe Se1 xTex 0.82,” Phys. Rev. B 78, 224503 (2008).

[97] Yoshinori Imai, Yuichi Sawada, Fuyuki Nabeshima, and Atsutaka Maeda “Suppression of phase separation and giant enhancement of superconducting transition temperature in FeSe1 xTex thin films,” Proceedings of the National Academy of Sciences 112, 1937-1940 (2015).

[98] Yoshinori Imai, Yuichi Sawada, Fuyuki Nabeshima, Daisuke Asami, Masataka Kawai, and Atsutaka Maeda “Control of structural transition in FeSe1 xTex thin films by changing substrate materials,” Scientific Reports 7, 46653 (2017).

[99] G. N. Phan, K. Nakayama, K. Sugawara, T. Sato, T. Urata, Y. Tanabe, K. Tanigaki, F. Nabeshima, Y. Imai, A. Maeda, and T. Takahashi “Effects of strain on the elec- tronic structure, superconductivity, and nematicity in FeSe studied by angle-resolved photoemission spectroscopy,” Phys. Rev. B 95, 224507 (2017).

[100] C. C. Homes, A. Akrap, J. S. Wen, Z. J. Xu, Z. W. Lin, Q. Li, and G. D. Gu “Electronic correlations and unusual superconducting response in the optical properties of the iron chalcogenide FeTe0.55Se0.45,” Phys. Rev. B 81, 180508 (2010).

[101] A. Pimenov, S. Engelbrecht, A. M. Shuvaev, B. B. Jin, P. H. Wu, B. Xu, L. X. Cao, and E. Schachinger “Terahertz conductivity in FeSe0.5Te0.5 superconducting films,” New Journal of Physics 15, 013032 (2013).

[102] A. V. Chubukov, M. G. Vavilov, and A. B. Vorontsov “Momentum dependence and nodes of the superconducting gap in the iron pnictides,” Phys. Rev. B 80, 140515 (2009).

[103] M. Nakajima, K. Yanase, F. Nabeshima, Y. Imai, A. Maeda, and S. Tajima “Grad- ual Fermi-surface modification in orbitally ordered state of FeSe revealed by optical spectroscopy,” Phys. Rev. B 95, 184502 (2017).

[104] Ping Gu, Masahiko Tani, Shunsuke Kono, Kiyomi Sakai, and X.-C. Zhang “Study of terahertz radiation from InAs and InSb,” Journal of Applied Physics 91, 5533-5537 (2002).

[105] Robert W. Boyd Nonlinear Optics, Third Edition: Academic Press (2008).

[106] Janos Hebling, Gabor Almasi, Ida Kozma, and Jurgen Kuhl “Velocity matching by pulse front tilting for large area THz-pulse generation,” Optics Express 10, 1161-1166 (2002).

[107] Janos Hebling, Ka-Lo Yeh, Matthias C. Hoffmann, Balázs Bartal, and Keith A. Nelson “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6-B19 (2008).

[108] H. Shibata, H. Takesue, T. Honjo, T. Akazaki, and Y. Tokura “Single-photon detection using magnesium diboride superconducting nanowires,” Applied Physics Letters 97, 212504 (2010).

[109] S. Bevilacqua, S. Cherednichenko, V. Drakinskiy, J. Stake, H. Shibata, and Y. Tokura “Low noise MgB2 terahertz hot-electron bolometer mixers,” Applied Physics Letters 100, 033504 (2012).

[110] Shibata Hiroyuki, Akazaki Tatsushi, and Tokura Yasuhiro “Ultrathin MgB2 films fab- ricated by molecular beam epitaxy and rapid annealing,” Superconductor Science and Technology 26, 035005 (2013).

[111] Shibata Hiroyuki, Akazaki Tatsushi, and Tokura Yasuhiro “Fabrication of MgB 2 Nanowire Single-Photon Detector with Meander Structure,” Applied Physics Express 6, 023101 (2013).

[112] N. Zen, H. Shibata, Y. Mawatari, M. Koike, and M. Ohkubo “Biomolecular ion detection using high-temperature superconducting MgB2 strips,” Applied Physics Letters 106, 222601 (2015).

[113] D. C. Mattis and J. Bardeen “Theory of the Anomalous Skin Effect in Normal and Superconducting Metals,” Phys. Rev. 111, 412–417 (1958).

[114] W. Zimmermann, E. H. Brandt, M. Bauer, E. Seider, and L. Genzel “Optical conductiv- ity of BCS superconductors with arbitrary purity,” Physica C: Superconductivity 183, 99-104 (1991).

[115] V. Ferrando, M. Affronte, D. Daghero, R. Di Capua, C. Tarantini, and M. Putti “Neutron irradiation effects on two gaps in MgB2,” Physica C: Superconductivity 456, 144-152 (2007).

[116] Y. Sassa, M. Månsson, M. Kobayashi, O. Götberg, V. N. Strocov, T. Schmitt, N. D. Zhigadlo, O. Tjernberg, and B. Batlogg “Probing two- and three-dimensional electrons in MgB2 with soft x-ray angle-resolved photoemission,” Phys. Rev. B 91, 045114 (2015).

[117] Xiaoqing Zhou, Kyle N. Gordon, Kyung-Hwan Jin, Haoxiang Li, Dushyant Narayan, Hengdi Zhao, Hao Zheng, Huaqing Huang, Gang Cao, Nikolai D. Zhigadlo, Feng Liu, and Daniel S. Dessau “Observation of Topological Surface State in High Temperature Superconductor MgB2,” arXiv:1805.09240 (2018).

[118] Cătălin Pa şcu Moca, Eugene Demler, Boldizsár Jankó, and Gergely Zaránd “Spin- resolved spectra of Shiba multiplets from Mn impurities in MgB2,” Phys. Rev. B 77, 174516 (2008).

[119] Takanobu Jujo “Quasiclassical Theory on Third-Harmonic Generation in Conventional Superconductors with Paramagnetic Impurities,” J. Phys. Soc. Jpn. 87, 024704 (2017).

[120] J. M. An and W. E. Pickett “Superconductivity of MgB2: Covalent Bonds Driven Metallic,” Phys. Rev. Lett. 86, 4366–4369 (2001).

[121] Imai Yoshinori, Tanaka Ryo, Akiike Takanori, Hanawa Masafumi, Tsukada Ichiro, and Maeda Atsutaka “Superconductivity of FeSe0.5Te0.5 Thin Films Grown by Pulsed Laser Deposition,” Japanese Journal of Applied Physics 49, 023101 (2010).

[122] Imai Yoshinori, Akiike Takanori, Hanawa Masafumi, Tsukada Ichiro, Ichinose Ataru, Maeda Atsutaka, Hikage Tatsuo, Kawaguchi Takahiko, and Ikuta Hiroshi “Systematic Comparison of Eight Substrates in the Growth of FeSe0.5Te0.5 0.5 Superconducting Thin Films,” Appl. Phys. Exp. 3, 043102 (2010).

[123] T. E. Kuzmicheva, S. A. Kuzmichev, A. V. Sadakov, A. V. Muratov, A. S. Usoltsev, V. P. Martovitsky, A. R. Shipilov, D. A. Chareev, E. S. Mitrofanova, and V. M. Pudalov “Di- rect evidence of two superconducting gaps in FeSe0.5Te0.5: SnS-Andreev spectroscopy and the lower critical field,” JETP Letters 104, 852-858 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る