リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Generation of Field-Aligned Currents During Substorm Expansion: An Update」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Generation of Field-Aligned Currents During Substorm Expansion: An Update

Ebihara, Yusuke Tanaka, Takashi 京都大学 DOI:10.1029/2022JA031011

2023.02

概要

We investigated generation processes of field-aligned currents (FACs) that are abruptly intensified at the beginning of the substorm expansion phase by tracing a packet of the Alfvén wave backward in time from the onset position in the ionosphere in the global magnetohydrodynamics (MHD) simulation. The generation region is found in the near-Earth plasma sheet, in which (a) azimuthally moving plasma pulls the magnetic field line, and performs negative work against the magnetic tension force to excite the Alfvén waves, (b) FACs are generated from the requirement of Ampère and Faraday laws, and (c) field-perpendicular current is converted to FACs. We call this near-Earth FAC dynamo. The plasma involved originates in the tail lobe region. When near-Earth reconnection occurs in the plasma sheet, the plasma is accelerated earthward by the Lorentz force, and decelerated by the plasma pressure gradient force, followed by the Lorentz force. The flow is deflected to the west and east directions by the plasma pressure gradient force and the Lorentz force, resulting in the excitation of Alfvén waves and FACs. The Alfvén waves propagate along the magnetic field in the rest frame of the moving plasma. When it arrives at the ionosphere, the auroral electrojet starts developing and the substorm expansion phase begins. The near-Earth FAC dynamo can be distinguished from the near-Earth dynamo (J · E < 0, where J is the current density and E is the electric field). We suggest that the evolution of the substorm can be understood in terms of the development of FACs.

この論文で使われている画像

参考文献

Ahn, B. H., Akasofu, S. I., & Kamide, Y. (1983). The Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL. Journal of Geophysical Research, 88(A8), 6275. https://doi.org/10.1029/JA088iA08p06275

Akasofu, S. I. (1964). The development of the auroral substorm. Planetary and Space Science, 12(4), 273–282. https://doi.org/10.1016/00320633(64)90151-5

Akasofu, S.-I. (2013). Where is the magnetic energy for the expansion phase of auroral substorms accumulated? Journal of Geophysical Research:

Space Physics, 118(11), 7219–7225. https://doi.org/10.1002/2013JA019042

Anderson, B. J., Korth, H., Waters, C. L., Green, D. L., Merkin, V. G., Barnes, R. J., & Dyrud, L. P. (2014). Development of large-scale Birkeland

currents determined from the active magnetosphere and planetary electrodynamics Response Experiment. Geophysical Research Letters,

41(9), 3017–3025. https://doi.org/10.1002/2014GL059941

Angelopoulos, V., Coroniti, F. V., Kennel, C. F., Kivelson, M. G., Walker, R. J., Russell, C. T., et al. (1996). Multipoint analysis of a bursty bulk

flow event on April 11, 1985. Journal of Geophysical Research, 101(A3), 4967–4989. https://doi.org/10.1029/95ja02722

Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., et al. (2008). Tail reconnection triggering substorm onset.

Science, 321(5891), 931–935. https://doi.org/10.1126/science.1160495

Baker, D. N., Peterson, W. K., Eriksson, S., Li, X., Blake, J. B., Burch, J. L., et al. (2002). Timing of magnetic reconnection initiation during a

global magnetospheric substorm onset. Geophysical Research Letters, 29(24), 4341–4344. https://doi.org/10.1029/2002gl015539

13 of 17

21699402, 2023, 2, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031011 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA031011

Baker, D. N., Pulkkinen, T. I., McPherron, R. L., Craven, J. D., Frank, L. A., Elphinstone, R. D., et al. (1993). CDAW 9 analysis of magnetospheric events on May 3, 1986: Event C. Journal of Geophysical Research, 98(A3), 3815–3834. https://doi.org/10.1029/92JA02475

Birn, J., & Hesse, M. (1991). The substorm current wedge and field-aligned currents in MHD simulations of magnetotail reconnection. Journal

of Geophysical Research, 96(A2), 1611–1618. https://doi.org/10.1029/90JA01762

Birn, J., & Hesse, M. (1996). Details of current disruption and diversion in simulations of magnetotail dynamics. Journal of Geophysical

Research, 101(A7), 15345–15358. https://doi.org/10.1029/96JA00887

Birn, J., & Hesse, M. (2005). Energy release and conversion by reconnection in the magnetotail. Annales Geophysicae, 23(10), 3365–3373.

https://doi.org/10.5194/angeo-23-3365-2005

Birn, J., & Hesse, M. (2013). The substorm current wedge in MHD simulations. Journal of Geophysical Research: Space Physics, 118(6),

3364–3376. https://doi.org/10.1002/jgra.50187

Birn, J., Hesse, M., Haerendel, G., Baumjohann, W., & Shiokawa, K. (1999). Flow braking and the substorm current wedge. Journal of Geophysical Research, 104(A9), 19895–19903. https://doi.org/10.1029/1999ja900173

Birn, J., Hesse, M., & Zenitani, S. (2011). Reconnection in compressible plasmas: Extended conversion region. Physics of Plasmas, 18(11),

111202. https://doi.org/10.1063/1.3626836

Birn, J., Raeder, J., Wang, Y. L., Wolf, R. A., & Hesse, M. (2004). On the propagation of bubbles in the geomagnetic tail. Annales Geophysicae,

22(5), 1773–1786. https://doi.org/10.5194/angeo-22-1773-2004

Boström, R. (1964). A model of the auroral electrojets. Journal of Geophysical Research, 69(23), 4983–4999. https://doi.org/10.1029/JZ069i0

23p04983

Chen, C. X., & Wolf, R. A. (1993). Interpretation of high-speed flows in the plasma sheet. Journal of Geophysical Research, 98(A12), 21409–

21419. https://doi.org/10.1029/93JA02080

Cheng, C. Z., & Lui, A. T. Y. (1998). Kinetic ballooning instability for substorm onset and current disruption observed by AMPTE/CCE.

Geophysical Research Letters, 25(21), 4091–4094. https://doi.org/10.1029/1998GL900093

Connors, M., McPherron, R. L., Anderson, B. J., Korth, H., Russell, C. T., & Chu, X. (2014). Electric currents of a substorm current wedge on

24 February 2010. Geophysical Research Letters, 41(13), 4449–4455. https://doi.org/10.1002/2014GL060604

Coxon, J. C., Milan, S. E., Clausen, L. B. N., Anderson, B. J., & Korth, H. (2014a). The magnitudes of the regions 1 and 2 Birkeland currents

observed by AMPERE and their role in solar wind-magnetosphere-ionosphere coupling. Journal of Geophysical Research: Space Physics,

119(12), 9804–9815. https://doi.org/10.1002/2014JA020138

Coxon, J. C., Milan, S. E., Clausen, L. B. N., Anderson, B. J., & Korth, H. (2014b). A superposed epoch analysis of the regions 1 and 2

Birkeland currents observed by AMPERE during substorms. Journal of Geophysical Research: Space Physics, 119(12), 9834–9846. https://

doi.org/10.1002/2014ja020500

Coxon, J. C., Rae, I. J., Forsyth, C., Jackman, C. M., Fear, R. C., & Anderson, B. J. (2017). Birkeland currents during substorms: Statistical

evidence for intensification of Regions 1 and 2 currents after onset and a localized signature of auroral dimming. Journal of Geophysical

Research: Space Physics, 122(6), 6455–6468. https://doi.org/10.1002/2017JA023967

Cravens, T. E. (1997). Physics of solar system plasmas. Cambridge University Press. https://doi.org/10.1017/CBO9780511529467

Crooker, N. U., & McPherron, R. L. (1972). On the distinction between the auroral electrojet and partial ring current systems. Journal of Geophysical Research, 77(34), 6886–6889. https://doi.org/10.1029/JA077i034p06886

Cummings, W. D., Barfield, J. N., & Coleman, P. J. (1968). Magnetospheric substorms observed at the synchronous orbit. Journal of Geophysical

Research, 73(21), 6687–6698. https://doi.org/10.1029/JA073i021p06687

Davis, T. N., & Sugiura, M. (1966). Auroral electrojet activity index AE and its universal time variations. Journal of Geophysical Research, 71(3),

785–801. https://doi.org/10.1029/JZ071i003p00785

Donovan, E. F., Mende, S., Jackel, B., Syrjäsuo, M., Meurant, M., Voronkov, I., et al. (2006). The azimuthal evolution of the substorm expansive

phase onset aurora. Proceedings of ICS-8, 55–60.

Ebihara, Y., & Tanaka, T. (2015a). Substorm simulation: Formation of westward traveling surge. Journal of Geophysical Research: Space Physics, 120(12), 10466–10484. https://doi.org/10.1002/2015JA021697

Ebihara, Y., & Tanaka, T. (2015b). Substorm simulation: Insight into the mechanisms of initial brightening. Journal of Geophysical Research A:

Space Physics, 120(9), 7270–7288. https://doi.org/10.1002/2015JA021516

Ebihara, Y., & Tanaka, T. (2022). Where is region 1 field-aligned current generated? Journal of Geophysical Research: Space Physics, 127(3).

https://doi.org/10.1029/2021ja029991

Ebihara, Y., Tanaka, T., & Kikuchi, T. (2014). Counter equatorial electrojet and overshielding after substorm onset: Global MHD simulation

study. Journal of Geophysical Research: Space Physics, 119(9), 7281–7296. https://doi.org/10.1002/2014JA020065

Fairfield, D. H., Mukai, T., Lui, A. T. Y., Cattell, C. A., Reeves, G. D., Nagai, T., et al. (1998). Geotail observations of substorm onset in the inner

magnetotail. Journal of Geophysical Research, 103(A1), 103–117. https://doi.org/10.1029/97ja02043

Gjerloev, J. W., & Hoffman, R. A. (2014). The large-scale current system during auroral substorms. Journal of Geophysical Research: Space

Physics, 119(6), 4591–4606. https://doi.org/10.1002/2013JA019176

Haerendel, G. (1992). Disruption, ballooning or auroral avalanche-on the cause of substorms (pp. 417–420). ESA Publications Division.

Hamrin, M., Marghitu, O., Norqvist, P., Buchert, S., André, M., Klecker, B., et al. (2011). Energy conversion regions as observed by cluster in the

plasma sheet. Journal of Geophysical Research, 116(A1), A00K08. https://doi.org/10.1029/2010JA016383

Hamrin, M., Marghitu, O., Rönnmark, K., Klecker, B., André, M., Buchert, S., et al. (2006). Observations of concentrated generator regions in the

nightside magnetosphere by Cluster/FAST conjunctions. Annales Geophysicae, 24(2), 637–649. https://doi.org/10.5194/angeo-24-637-2006

Hasegawa, A., & Sato, T. (1979). Generation of field aligned current during substorm. In S. I. Akasofu (Ed.), Dynamics of the magnetosphere.

Astrophysics and space science library (pp. 529–542). Springer. https://doi.org/10.1007/978-94-009-9519-2_28

Hesse, M., & Birn, J. (1991). On dipolarization and its relation to the substorm current wedge. Journal of Geophysical Research, 96(A11), 19417.

https://doi.org/10.1029/91JA01953

Hones, E. W. (1979). Transient phenomena in the magnetotail and their relation to substorms. Space Science Reviews, 23(3), 393–410. https://

doi.org/10.1007/BF00172247

Hones, E. W., Asbridge, J. R., Bame, S. J., & Singer, S. (1973). Substorm variations of the magnetotail plasma sheet from X SM ≈ −6 R E to X

SM ≈ −60 R E. Journal of Geophysical Research, 78(1), 109–132. https://doi.org/10.1029/JA078i001p00109

Hughes, T. J., & Rostoker, G. (1979). A comprehensive model current system for high-latitude magnetic activity - I. The steady state system.

Geophysical Journal International, 58(3), 525–569. https://doi.org/10.1111/j.1365-246X.1979.tb04793.x

Ieda, A., Fairfield, D. H., Slavin, J. A., Liou, K., Meng, C.-I., Machida, S., et al. (2008). Longitudinal association between magnetotail reconnection and auroral breakup based on Geotail and Polar observations. Journal of Geophysical Research, 113(8), A08207. https://doi.org/

10.1029/2008JA013127

EBIHARA AND TANAKA

14 of 17

21699402, 2023, 2, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031011 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA031011

Iijima, T., & Potemra, T. A. (1976). The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. Journal of

Geophysical Research, 81(13), 2165–2174. https://doi.org/10.1029/JA081i013p02165

Iijima, T., & Potemra, T. A. (1978). Large-scale characteristics of field-aligned currents associated with substorms. Journal of Geophysical

Research, 83(A2), 599. https://doi.org/10.1029/JA083iA02p00599

Itonaga, M., Yoshikawa, A., & Fujita, S. (2000). A wave equation describing the generation of field-aligned current in the magnetosphere. Earth

Planets and Space, 52(7), 503–507. https://doi.org/10.1186/BF03351654

Kamide, Y., & Akasofu, S. I. (1976). The location of the field-aligned currents with respect to discrete auroral arcs. Journal of Geophysical

Research, 81(22), 3999–4003. https://doi.org/10.1029/JA081i022p03999

Kamide, Y., & Baumjohann, W. (1985). Estimation of electric fields and currents from international magnetospheric study magnetometer data

for the CDAW 6 intervals: Implications for substorm dynamics. Journal of Geophysical Research, 90(A2), 1305. https://doi.org/10.1029/

JA090iA02p01305

Kamide, Y., & Brekke, A. (1975). Auroral electrojet current density deduced from the Chatanika Radar and from the Alaska Meridian Chain of

magnetic observatories. Journal of Geophysical Research, 80(4), 587–594. https://doi.org/10.1029/JA080i004p00587

Kamide, Y., Craven, J. D., Frank, L. A., Ahn, B. h., & Akasofu, S. I. (1986). Modeling substorm current systems using conductivity distributions

inferred from DE auroral images. Journal of Geophysical Research, 91(A10), 11235. https://doi.org/10.1029/JA091iA10p11235

Kamide, Y., & Fukushima, N. (1972). Positive geomagnetic bays in evening high-latitudes and their possible connection with partial ring current.

Report of Ionosphere and Space Research in Japan, 26(1–2), 79–101.

Kamide, Y., Ishihara, Y., Killeen, T. L., Craven, J. D., Frank, L. A., & Heelis, R. A. (1989). Combining electric field and aurora observations from

DE 1 and 2 with ground magnetometer records to estimate ionospheric electromagnetic quantities. Journal of Geophysical Research, 94(A6),

6723–6738. https://doi.org/10.1029/JA094iA06p06723

Kamide, Y., Yasuhara, F., & Akasofu, S. I. (1976). A model current system for the magnetospheric substorm. Planetary and Space Science, 24(3),

215–222. https://doi.org/10.1016/0032-0633(76)90018-0

Keiling, A., Angelopoulos, V., Runov, A., Weygand, J., Apatenkov, S. V., Mende, S., et al. (2009). Substorm current wedge driven by plasma flow

vortices: THEMIS observations. Journal of Geophysical Research, 114(5), A00C22. https://doi.org/10.1029/2009JA014114

Kivelson, M. G. (2004). Moon–magnetosphere interactions: A tutorial. Advances in Space Research, 33(11), 2061–2077. https://doi.org/10.1016/

j.asr.2003.08.042

Korth, H., Zhang, Y., Anderson, B. J., Sotirelis, T., & Waters, C. L. (2014). Statistical relationship between large-scale upward field-aligned

currents and electron precipitation. Journal of Geophysical Research: Space Physics, 119(8), 6715–6731. https://doi.org/10.1002/2014ja019961

Lui, A. T. Y. (1991). A synthesis of magnetospheric substorm models. Journal of Geophysical Research, 96(A2), 1849–1856. https://doi.

org/10.1029/90ja02430

Lui, A. T. Y. (1996). Current disruption in the Earth's magnetosphere: Observations and models. Journal of Geophysical Research, 101(A6),

13067–13088. https://doi.org/10.1029/96JA00079

Lui, A. T. Y. (2011). Reduction of the cross-tail current during near-Earth dipolarization with multisatellite observations. Journal of Geophysical

Research, 116(A12), A12239. https://doi.org/10.1029/2011JA017107

Lui, A. T. Y. (2015). Magnetospheric substorm onset by current disruption processes (pp. 163–176). https://doi.org/10.1002/9781118978719.ch12

Lui, A. T. Y., Chang, C. L., Mankofsky, A., Wong, H. K., & Winske, D. (1991). A cross-field current instability for substorm expansions. Journal

of Geophysical Research, 96(A7), 11389. https://doi.org/10.1029/91JA00892

Lui, A. T. Y., & Kamide, Y. (2003). A fresh perspective of the substorm current system and its dynamo. Geophysical Research Letters, 30(18),

1958. https://doi.org/10.1029/2003GL017835

Lyons, L. R., Nishimura, Y., Shi, Y., Zou, S., Kim, H. J., Angelopoulos, V., et al. (2010). Substorm triggering by new plasma intrusion: Incoherent-scatter radar observations. Journal of Geophysical Research, 115(A7), A07223. https://doi.org/10.1029/2009JA015168

Machida, S., Miyashita, Y., Ieda, A., Nosé, M., Nagata, D., Liou, K., et al. (2009). Statistical visualization of the Earth's magnetotail based on

Geotail data and the implied substorm model. Annales Geophysicae, 27(3), 1035–1046. https://doi.org/10.5194/angeo-27-1035-2009

Mallinckrodt, A. J., & Carlson, C. W. (1978). Relations between transverse electric fields and field-aligned currents. Journal of Geophysical

Research, 83(A4), 1426. https://doi.org/10.1029/JA083iA04p01426

Maltsev, Y. P., Lyatsky, W. B., & Lyatskaya, A. M. (1977). Currents over the auroral arc. Planetary and Space Science, 25(1), 53–57. https://

doi.org/10.1016/0032-0633(77)90117-9

Marghitu, O., Hamrin, M., Klecker, B., Vaivads, A., McFadden, J., Buchert, S., et al. (2006). Experimental investigation of auroral generator

regions with conjugate cluster and FAST data. Annales Geophysicae, 24(2), 619–635. https://doi.org/10.5194/angeo-24-619-2006

McPherron, R. L., Russell, C. T., & Aubry, M. P. (1973). Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological

model for substorms. Journal of Geophysical Research, 78(16), 3131–3149. https://doi.org/10.1029/ja078i016p03131

Meng, C. I., & Akasofu, S. I. (1969). A study of polar magnetic substorms: 2. Three-Dimensional current system. Journal of Geophysical

Research, 74(16), 4035–4053. https://doi.org/10.1029/JA074i016p04035

Miyashita, Y., Machida, S., Kamide, Y., Nagata, D., Liou, K., Fujimoto, M., et al. (2009). A state-of-the-art picture of substorm-associated

evolution of the near-Earth magnetotail obtained from superposed epoch analysis. Journal of Geophysical Research, 114(A1), A01211. https://

doi.org/10.1029/2008JA013225

Motoba, T., Hosokawa, K., Kadokura, A., & Sato, N. (2012). Magnetic conjugacy of northern and southern auroral beads. Geophysical Research

Letters, 39(8). https://doi.org/10.1029/2012gl051599

Murphy, K. R., Mann, I. R., Rae, I. J., Waters, C. L., Frey, H. U., Kale, A., et al. (2013). The detailed spatial structure of field-aligned

currents comprising the substorm current wedge. Journal of Geophysical Research: Space Physics, 118(12), 7714–7727. https://doi.org/

10.1002/2013JA018979

Nagai, T., & Shinohara, I. (2021). Dawn-dusk confinement of magnetic reconnection site in the near-Earth magnetotail and its implication for

dipolarization and substorm current system. Journal of Geophysical Research: Space Physics, 126(11). https://doi.org/10.1029/2021ja029691

Nagai, T., Singer, H. J., Mukai, T., Yamamoto, T., & Kokubun, S. (2000). Development of substorms in the near-Earth tail. Advances in Space

Research, 25(7–8), 1651–1662. https://doi.org/10.1016/s0273-1177(99)00680-8

Nakamura, R., Oguti, T., Yamamoto, T., & Kokubun, S. (1993). Equatorward and poleward expansion of the auroras during auroral substorms.

Journal of Geophysical Research, 98(A4), 5743–5759. https://doi.org/10.1029/92ja02230

Neubauer, F. M. (1980). Nonlinear standing Alfvén wave current system at Io: Theory. Journal of Geophysical Research, 85(A3), 1171–1178.

https://doi.org/10.1029/JA085iA03p01171

Newell, P. T., & Gjerloev, J. W. (2011). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal

of Geophysical Research, 116(12), A12211. https://doi.org/10.1029/2011JA016779

EBIHARA AND TANAKA

15 of 17

21699402, 2023, 2, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031011 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA031011

Nishida, A., & Nagayama, N. (1973). Synoptic survey for the neutral line in the magnetotail during the substorm expansion phase. Journal of

Geophysical Research, 78(19), 3782–3798. https://doi.org/10.1029/JA078i019p03782

Nishimura, Y., Lyons, L., Zou, S., Angelopoulos, V., & Mende, S. (2010). Substorm triggering by new plasma intrusion: THEMIS all-sky imager

observations. Journal of Geophysical Research, 115(A7), A07222. https://doi.org/10.1029/2009JA015166

Palmroth, M., Janhunen, P., Pulkkinen, T. I., Aksnes, A., Lu, G., Østgaard, N., et al. (2005). Assessment of ionospheric joule heating by GUMICS-4

MHD simulation, AMIE, and satellite-based statistics: Towards a synthesis. Annales Geophysicae, 23(6), 2051–2068. https://doi.org/10.519

4/angeo-23-2051-2005

Pritchett, P. L., & Coroniti, F. V. (2004). Three-dimensional collisionless magnetic reconnection in the presence of a guide field. Journal of

Geophysical Research, 109(A1), A01220. https://doi.org/10.1029/2003JA009999

Pu, Z. Y., Korth, A., & Kremser, G. (1992). Plasma and magnetic field parameters at substorm onsets derived from GEOS 2 observations. Journal

of Geophysical Research, 97(A12), 19341. https://doi.org/10.1029/92JA01732

Richmond, A. D., Kamide, Y., Akasofu, S.-I., Alcaydé, D., Blanc, M., De la Beaujardière, O., et al. (1990). Global measures of ionospheric

electrodynamic activity inferred from combined incoherent scatter radar and ground magnetometer observations. Journal of Geophysical

Research, 95(A2), 1061. https://doi.org/10.1029/JA095iA02p01061

Rostoker, G., Armstrong, J. C., & Zmuda, A. J. (1975). Field-aligned current flow associated with intrusion of the substorm-intensified westward

electrojet into the evening sector. Journal of Geophysical Research, 80(25), 3571–3579. https://doi.org/10.1029/JA080i025p03571

Rostoker, G., & Boström, R. (1976). A mechanism for driving the gross Birkeland current configuration in the auroral oval. Journal of Geophysical Research, 81(1), 235–244. https://doi.org/10.1029/JA081i001p00235

Roux, A., Perraut, S., Robert, P., Morane, A., Pedersen, A., Korth, A., et al. (1991). Plasma sheet instability related to the westward traveling

surge. Journal of Geophysical Research, 96(A10), 17697. https://doi.org/10.1029/91JA01106

Runov, A., Angelopoulos, V., Zhou, X.-Z., Voronkov, I. O., Kubyshkina, M. V., Nakamura, R., et al. (2008). Multipoint in situ and groundbased observations during auroral intensifications. Journal of Geophysical Research, 113(A1), A00C07. https://doi.org/10.1029/2008ja013493

Sakaguchi, K., Shiokawa, K., Ieda, A., Nomura, R., Nakajima, A., Greffen, M., et al. (2009). Fine structures and dynamics in auroral initial

brightening at substorm onsets. Annales Geophysicae, 27(2), 623–630. https://doi.org/10.5194/angeo-27-623-2009

Sato, T., & Iijima, T. (1979). Primary sources of large-scale Birkeland currents. Space Science Reviews, 24(3), 347–366. https://doi.org/10.

1007/bf00212423

Sergeev, V. A., Angelopoulos, V., Mitchell, D. G., & Russell, C. T. (1995). In situ observations of magnetotail reconnection prior to the onset of

a small substorm. Journal of Geophysical Research, 100(A10), 19121. https://doi.org/10.1029/95ja01471

Shay, M. A., Drake, J. F., Eastwood, J. P., & Phan, T. D. (2011). Super-Alfvénic propagation of substorm reconnection signatures and Poynting

flux. Physical Review Letters, 107(6), 065001. https://doi.org/10.1103/PhysRevLett.107.065001

Shiokawa, K., Baumjohann, W., & Haerendel, G. (1997). Braking of high-speed flows in the near-Earth tail. Geophysical Research Letters,

24(10), 1179–1182. https://doi.org/10.1029/97GL01062

Shiokawa, K., Haerendel, G., & Baumjohann, W. (1998). Azimuthal pressure gradient as driving force of substorm currents. Geophysical

Research Letters, 25(7), 959–962. https://doi.org/10.1029/98gl00540

Song, Y., & Lysak, R. L. (2001a). The physics in the auroral dynamo regions and auroral particle acceleration. Physics and Chemistry of the Earth

- Part C: Solar, Terrestrial & Planetary Science, 26(1–3), 33–42. https://doi.org/10.1016/S1464-1917(00)00087-8

Song, Y., & Lysak, R. L. (2001b). Towards a new paradigm: From a quasi-steady description to a dynamical description of the magnetosphere.

Space Science Reviews, 95(1–2), 273–292. https://doi.org/10.1023/A:1005288420253

Sorathia, K. A., Merkin, V. G., Panov, E. V., Zhang, B., Lyon, J. G., Garretson, J., et al. (2020). Ballooning-interchange instability in the nearEarth plasma sheet and auroral beads: Global magnetospheric modeling at the limit of the MHD approximation. Geophysical Research Letters,

47(14), e2020GL088227. https://doi.org/10.1029/2020GL088227

Sun, W., Ahn, B. H., & Akasofu, S. I. (1985). The global joule heat production rate and the AE index. Planetary and Space Science, 33(3),

279–281. https://doi.org/10.1016/0032-0633(85)90059-5

Takahashi, K., Zanetti, L. J., Lopez, R. E., McEntire, R. W., Potemra, T. A., & Yumoto, K. (1987). Disruption of the magnetotail current sheet

observed by AMPTE/CCE. Geophysical Research Letters, 14(10), 1019–1022. https://doi.org/10.1029/GL014i010p01019

Tanaka, T. (2015). Substorm auroral dynamics reproduced by advanced global magnetosphere−ionosphere (M–I) coupling simulation (pp.

177–190). https://doi.org/10.1002/9781118978719.ch13

Tanaka, T., Ebihara, Y., Watanabe, M., Den, M., Fujita, S., Kikuchi, T., et al. (2017). Global simulation study for the time sequence of events

leading to the substorm onset. Journal of Geophysical Research: Space Physics, 122(6), 6210–6239. https://doi.org/10.1002/2017JA024102

Tanaka, T., Ebihara, Y., Watanabe, M., Den, M., Fujita, S., Kikuchi, T., et al. (2021). Development of the substorm as a manifestation of convection transient. Journal of Geophysical Research: Space Physics, 126(10). https://doi.org/10.1029/2020ja028942

Tanaka, T., Nakamizo, A., Yoshikawa, A., Fujita, S., Shinagawa, H., Shimazu, H., et al. (2010). Substorm convection and current system deduced

from the global simulation. Journal of Geophysical Research, 115(A5), A05220. https://doi.org/10.1029/2009JA014676

Tanaka, T., Watanabe, M., Den, M., Fujita, S., Ebihara, Y., Kikuchi, T., et al. (2016). Generation of field-aligned current (FAC) and convection

through the formation of pressure regimes: Correction for the concept of Dungey's convection. Journal of Geophysical Research: Space Physics, 121(9), 8695–8711. https://doi.org/10.1002/2016JA022822

Vasyliunas, V. (1970). Mathematical models of magnetospheric convection and its coupling to the ionosphere. In B. M. McCormac (Ed.), Mathematical models of magnetospheric convection and its coupling to the ionosphere (pp. 60–71). https://doi.org/10.1007/978-94-010-3284-1_6

Vasyliunas, V. M. (1984). Fundamentals of current description. Magnetospheric Currents, 28, 63–66. https://doi.org/10.1029/GM028p0063

Walker, A. D. M. (2008). Ray tracing of magnetohydrodynamic waves in geospace. URSI Radio Science Bulletin, 2008(325). https://doi.org/

10.23919/URSIRSB.2008.7909583

Wright, A. N., & Southwood, D. J. (1987). Stationary Alfvénic structures. Journal of Geophysical Research, 92(A2), 1167. https://doi.org/

10.1029/JA092iA02p01167

Xing, X., Liang, J., Spanswick, E., Lyons, L., & Angelopoulos, V. (2013). Auroral wave structures and ballooning instabilities in the plasma sheet.

Journal of Geophysical Research: Space Physics, 118(10), 6319–6326. https://doi.org/10.1002/2013JA019068

Yang, J., Toffoletto, F. R., Wolf, R. A., Sazykin, S., Ontiveros, P. A., & Weygand, J. M. (2012). Large-scale current systems and ground magnetic

disturbance during deep substorm injections. Journal of Geophysical Research, 117(4), A04223. https://doi.org/10.1029/2011JA017415

Yao, Y., Ebihara, Y., & Tanaka, T. (2015a). Formation and evolution of high-plasma-pressure region in the near-Earth plasma sheet: Precursor

and postcursor of substorm expansion onset. Journal of Geophysical Research: Space Physics, 120(8), 6427–6435. https://doi.org/10.1002/

2015JA021187

Yao, Y., Ebihara, Y., & Tanaka, T. (2015b). Sudden pressure enhancement and tailward retreat in the near-earth plasma sheet: THEMIS observation and MHD simulation. Journal of Geophysical Research: Space Physics, 120(1), 201–211. https://doi.org/10.1002/2014JA020482

EBIHARA AND TANAKA

16 of 17

21699402, 2023, 2, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031011 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA031011

Yao, Z. H., Pu, Z. Y., Fu, S. Y., Angelopoulos, V., Kubyshkina, M., Xing, X., et al. (2012). Mechanism of substorm current wedge formation:

THEMIS observations. Geophysical Research Letters, 39(13), L13102. https://doi.org/10.1029/2012GL052055

Zenitani, S., & Nagai, T. (2016). Particle dynamics in the electron current layer in collisionless magnetic reconnection. Physics of Plasmas,

23(10), 102102. https://doi.org/10.1063/1.4963008

Zmuda, A. J., & Armstrong, J. C. (1974). The diurnal flow pattern of field-aligned currents. Journal of Geophysical Research, 79(31), 4611–

4619. https://doi.org/10.1029/JA079i031p04611

EBIHARA AND TANAKA

17 of 17

21699402, 2023, 2, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031011 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る