リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Global Simulation of the Jovian Magnetosphere: Transitional Structure From the Io Plasma Disk to the Plasma Sheet」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Global Simulation of the Jovian Magnetosphere: Transitional Structure From the Io Plasma Disk to the Plasma Sheet

Tanaka, T. Ebihara, Y. Watanabe, M. Fujita, S. Kataoka, R. 京都大学 DOI:10.1029/2021ja029232

2021.06

概要

Jupiter has a strong magnetic field, and a huge magnetosphere is formed through the solar wind-Jupiter interaction. The generated magnetosphere–ionosphere system is reproduced based on the 9-component Magnetohydrodynamics (MHD) and the current conservation in the ionosphere. Assuming Io plasma emission rate 1.4 t/sec, this paper reproduces self-consistently global magnetic configuration, generations of the field-aligned current (FAC) and aurora, formation of the Io plasma disk at 8–20 RJ, plasma corotation, instability in the plasma disk, transition from the Io plasma disk to the plasma sheet at 20–150 RJ, and the plasmoid ejection. The rotating Io plasma in the disk forms instabilities that promotes radial diffusion. H+ is supplied from the ionosphere along high-latitude magnetic field lines and mixed with heavy ions around 15–20 RJ. Beyond 20 RJ, mixed plasma diffuses further outward by the centrifugal force that can exceed magnetic tension. In the ionosphere, the main oval occurs at 13.7°–15.5° colatitude. The Io disk is inner side of magnetic field lines traced from the low-latitude edge of the main oval. Along magnetic field lines, the main oval is mapped from the outer edge of the Io disk to the entire plasma sheet accompanying rotation delay. Due to the corotation limit, convection is accompanied by plasmoid ejection. Back reaction of plasmoid ejection affects even transport process in the Io disk. The downward FAC occurs in the polar cap showing variability. The region of externally driven Dungey convection seems quite narrow.

この論文で使われている画像

参考文献

Achilleos, N., Dougherty, M. K., Young, D. T., & Crary, F. (2004). Magnetic signatures of Jupiter’s bow shock during the Cassini flyby.

Journal of Geophysical Research, 109, A09S04. https://doi.org/10.1029/2003JA010258

Bagenal, F., & Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 116, A05209. https://doi.org/10.1029/2010JA016294

Bodisch, K. M., Dougherty, L. P., & Bagenal, F. (2017). Survey of voyager plasma science ions at Jupiter: 3. Protons and minor ions. Journal

of Geophysical Research: Space Physics, 122, 8277–8294. https://doi.org/10.1002/2017JA024148

Bunce, E. J., Cowley, S. W. H., & Yeoman, T. K. (2004). Jovian cusp processes: Implications for the polar aurora. Journal of Geophysical

Research, 109, A09S13. https://doi.org/10.1029/2003JA010280

Chané, E., Saur, J., Keppens, R., & Poedts, S. (2017). How is the Jovian main auroral emission affected by the solar wind? Journal of Geophysical Research: Space Physics, 122, 1960–1978. https://doi.org/10.1002/2016JA023318

Chané, E., Saur, J., & Poedts, S. (2013). Modeling Jupiter’s magnetosphere: Influence of the internal sources. Journal of Geophysical Research: Space Physics, 118, 2157–2172. https://doi.org/10.1002/jgra.50258

Cohen, C. M. S., Stone, E. C., & Selesnick, R. S. (2001). Energetic ion observations in the middle Jovian magnetosphere. Journal of Geophysical Research, 29, 871–881. https://doi.org/10.1029/2001JA000008

Cowley, S. W. H., Alexeev, I. I., Belenkaya, E. S., Bunce, E. J., Cottis, C. E., Kalegaev, V. V., et al. (2005). A simple axisymmetric model of

magnetosphere-ionosphere coupling currents in Jupiter’s polar ionosphere. Journal of Geophysical Research, 110, A11209. https://doi.

org/10.1029/2005JA011237

Cowley, S. W. H., Bunce, E. J., & Nichols, J. D. (2003). Origins of Jupiter’s main oval auroral emissions. Journal of Geophysical Research,

108(A4), 8002. https://doi.org/10.1029/2002JA009329

Cowley, S. W. H., Bunce, E. J., Stallard, T. S., & Miller, S. (2003). Jupiter’s polar ionospheric flows: Theoretical interpretation. Geophysical

Research Letters, 30(5), 1220. https://doi.org/10.1029/2002GL016030

Delamere, P. A., & Bagenal, F. (2003). Modeling variability of plasma conditions in the Io torus. Journal of Geophysical Research, 108(A7),

1276. https://doi.org/10.1029/2002JA009706

Delamere, P. A., Otto, A., Ma, X., Bagenal, F., & Wilson, R. J. (2015). Magnetic flux circulation in the rotationally driven giant magnetospheres. Journal of Geophysical Research: Space Physics, 120, 4229–4245. https://doi.org/10.1002/2015JA021036

Dunn, W. R., Gray, R., Wibisono, A. D., Lamy, L., Louis, C., Badman, S. V., et al. (2020). Comparisons between Jupiter’s X-ray, UV and

radio emissions and in-situ solar wind measurements during 2007. Journal of Geophysical Research: Space Physics, 125, e2019JA027222.

https://doi.org/10.1029/2019JA027222

Frank, L. A., Paterson, W. R., & Khurana, K. K. (2002). Observations of thermal plasmas in Jupiter’s magnetotail. Journal of Geophysical

Research, 107, 1003. https://doi.org/10.1029/2001JA000077

Fukazawa, K., Ogino, T., & Walker, R. J. (2006). Configuration and dynamics of the Jovian magnetosphere. Journal of Geophysical Research,

111, A10207. https://doi.org/10.1029/2006JA011874

Grodent, D., Clarke, J. T., Kim, J., Waite, J. H., Jr, & Cowley, S. W. H. (2003). Jupiter’s main auroral oval observed with HST-STIS. Journal

of Geophysical Research, 108(A11), 1389. https://doi.org/10.1029/2003JA009921

Grodent, D., Clarke, J. T., Waite, J. H., Jr, Cowley, S. W. H., Gérard, J.-C., & Kim, J. (2003). Jupiter’s polar auroral emissions. Journal of

Geophysical Research, 108(A10), 1366. https://doi.org/10.1029/2003JA010017

Hanlon, P. G., Dougherty, M. K., Forsyth, R. J., Owens, M. J., Hansen, K. C., To´th, G., et al. (2004). On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: Multispacecraft observations of interplanetary coronal mass ejections including the formation of a merged interaction region. Journal of Geophysical Research, 109, A09S03. https://doi.org/10.1029/2003JA010112

Hess, S. L. G., Bonfond, B., Zarka, P., & Grodent, D. (2011). Model of the Jovian magnetic field topology constrained by the Io auroral

emissions. Journal of Geophysical Research, 116, A05217. https://doi.org/10.1029/2010JA016262

Hill, T. W. (2001). The Jovian auroral oval. Journal of Geophysical Research, 106, 8101–8107. https://doi.org/10.1029/2000JA000302

Khurana, K. K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., et al. (2004). The configuration of Jupiter’s magnetosphere. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. The planet, satellites and magnetosphere (pp. 593–616). Cambridge, U.K: Cambridge University Press.

Kidder, A., Winglee, R. M., & Harnett, E. M. (2009). Regulation of the centrifugal interchange cycle in Saturn’s inner magnetosphere.

Journal of Geophysical Research, 114, A02205. https://doi.org/10.1029/2008JA013100

16 of 17

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of Geophysical Research: Space Physics

10.1029/2021JA029232

Kim, T. K., Ebert, R. W., Valek, P. W., Allegrini, F., McComas, D. J., Bagenal, F., et al. (2020). Survey of ion properties in Jupiter’s plasma sheet:

Juno JADE-I observations. Journal of Geophysical Research: Space Physics, 125, e2019JA027696. https://doi.org/10.1029/2019JA027696

Kimura, T., Hiraki, Y., Tao, C., Tsuchiya, F., Delamere, P. A., Yoshioka, K., et al. (2018). Response of Jupiter’s aurora to plasma mass loading

rate monitored by the Hisaki satellite during volcanic eruptions at Io. Journal of Geophysical Research: Space Physics, 123, 1885–1899.

https://doi.org/10.1002/2017JA025029

Kivelson, M. G., & Southwood, D. J. (2005). Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. Journal of Geophysical Research, 110, A12209. https://doi.org/10.1029/2005JA011176

Ma, X., Delamere, P. A., & Otto, A. (2016). Plasma transport driven by the Rayleigh-Taylor instability. Journal of Geophysical Research:

Space Physics, 121, 5260–5271. https://doi.org/10.1002/2015JA022122

McComas, D. J., Allegrini, F., Bagenal, F., Ebert, R. W., Elliott, H. A., Nicolaou, G., et al. (2017). Jovian deep magnetotail composition and

structure. Journal of Geophysical Research: Space Physics, 122, 1763–1777. https://doi.org/10.1002/2016JA023039

Miyoshi, T., & Kusano, K. (2001). A Global MHD simulation of the Jovian magnetosphere interacting with/without the interplanetary

magnetic field. Journal of Geophysical Research, 106, 10723–10742. https://doi.org/10.1029/2000ja900153

Moriguchi, T., Nakamizo, A., Tanaka, T., Obara, T., & Shimazu, H. (2008). Current systems in the Jovian magnetosphere. Journal of Geophysical Research, 113, A05204. https://doi.org/10.1029/2007JA012751

Nichols, J. D., & Cowley, S. W. H. (2003). Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: Dependence

on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate. Annales Geophysicae, 21, 1419–1441. https://

doi.org/10.5194/angeo-21-1419-2003

Nichols, J. D., & Cowley, S. W. H. (2004). Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: Effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Annales Geophysicae, 22, 1799–1827. https://doi.org/10.5194/

angeo-22-1799-2004

Paranicas, C., Mauk, B. H., Haggerty, D. K., Clark, G., Kollmann, P., Rymer, A. M., et al. (2018). Intervals of intense energetic electron

beams over Jupiter’s poles. Journal of Geophysical Research: Space Physics, 123, 1989–1999. https://doi.org/10.1002/2017JA025106

Pu, Z.-Y., & Kivelson, M. G. (1983). Kelvin-helmholtz instability at the magnetopause: Energy flux into the magnetosphere. Journal of

Geophysical Research, 88, 853–861. https://doi.org/10.1029/JA088iA02p00853

Radioti, A., Krupp, N., Woch, J., Lagg, A., Glassmeier, K.-H., & Waldrop, L. S. (2005). Ion abundance ratios in the Jovian magnetosphere.

Journal of Geophysical Research, 110, A07225. https://doi.org/10.1029/2004JA010775

Sarkango, Y., Jia, X., & Toth, G. (2019). Global MHD simulations of the response of Jupiter’s magnetosphere and ionosphere to changes in

the solar wind and IMF. Journal of Geophysical Research: Space Physics, 124, 5317–5341. https://doi.org/10.1029/2019JA026787

Smyth, W. H., Peterson, C. A., & Marconi, M. L. (2011). A consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 ground-based, and Galileo J0 epochs. Journal of Geophysical Research, 116, A07205. https://doi.org/10.1029/2010JA016094

Southwood, D. J., & Kivelson, M. G. (1987). Magnetospheric interchange instability. Journal of Geophysical Research, 92, 109–116. https://

doi.org/10.1029/JA092iA01p00109

Tanaka, T. (1994). Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. Journal of Computational Physics, 111(2), 381–389. https://doi.org/10.1006/

jcph.1994.1071

Tanaka, T., Ebihara, Y., Watanabe, M., Den, M., Fujita, S., Kikuchi, T., et al. (2017). Global simulation study for the time sequence of events

leading to the substorm onset. Journal of Geophysical Research: Space Physics, 122, 6210–6239. https://doi.org/10.1002/2017JA024102

Tanaka, T., Ebihara, Y., Watanabe, M., Den, M., Fujita, S., Kikuchi, T., et al. (2020). Reproduction of ground magnetic variations during the SC and the substorm from the global simulation and biot-savart’s law. Journal of Geophysical Research: Space Physics, 125,

e2019JA027172. https://doi.org/10.1029/2019JA027172

Tanaka, T., & Murawski, K. (1997). Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results

of two-component reacting plasma simulation. Journal of Geophysical Research, 102, 19805–19821. https://doi.org/10.1029/97ja01474

Tanaka, T., Watanabe, M., Den, M., Fujita, S., Ebihara, Y., Kikuchi, T., et al. (2016). Generation of field-aligned current (FAC) and convection through the formation of pressure regimes: Correction for the concept of Dungey’s convection. Journal of Geophysical Research:

Space Physics, 121, 8695–8711. https://doi.org/10.1002/2016JA022822

Vasyliunas, V. M. (1983). Plasma distribution and flowPhysics of the Jovian magnetosphere, chap. Plasma distribution and flow

(pp. 395–453). Cambridge, New York: Cambridge Planetary Science Series. https://doi.org/10.1017/cbo9780511564574.013

Vogt, M. F., Bunce, E. J., Nichols, J. D., Clarke, J. T., & Kurth, W. S. (2017). Long-term variability of Jupiter’s magnetodisk and implications

for the aurora. Journal of Geophysical Research: Space Physics, 122, 12090–12110. https://doi.org/10.1002/2017JA024066

Vogt, M. F., Kivelson, M. G., Khurana, K. K., Walker, R. J., Bonfond, B., Grodent, D., & Radioti, A. (2011). Improved mapping of Jupiter’s

auroral features to magnetospheric sources. Journal of Geophysical Research, 116, A03220. https://doi.org/10.1029/2010JA016148

Walker, R. J., & Ogino, T. (2003). A simulation study of currents in the Jovian magnetosphere. Planetary and Space Science, 51, 295–307.

https://doi.org/10.1016/s0032-0633(03)00018-7

Winglee, R. M., Kidder, A., Harnett, E., Ifland, N., Paty, C., & Snowden, D. (2013). Generation of periodic signatures at Saturn through

Titan’s interaction with the centrifugal interchange instability. Journal of Geophysical Research: Space Physics, 118, 4253–4269. https://

doi.org/10.1002/jgra.50397

Wu, H., Hill, T. W., Wolf, R. A., & Spiro, R. W. (2007). Numerical simulation of fine structure in the Io plasma torus produced by the centrifugal interchange instability. Journal of Geophysical Research, 112, A02206. https://doi.org/10.1029/2006JA012032

Zhang, B., Delamere, P. A., Yao, Z., Bonfond, B., Lin, D., Sorathia, K. A., et al. (2021). How Jupiter’s unusual magnetospheric topology

structures its aurora. Science Advances, 7(15), eabd1204. https://doi.org/10.1126/sciadv.abd1204

TANAKA ET AL.

17 of 17

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る