リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Triggering of Whistler‐Mode Rising and Falling Tone Emissions in a Homogeneous Magnetic Field」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Triggering of Whistler‐Mode Rising and Falling Tone Emissions in a Homogeneous Magnetic Field

Fujiwara, Yuya Omura, Yoshiharu Nogi, Takeshi 京都大学 DOI:10.1029/2022JA030967

2023.02

概要

We perform a self-consistent one-dimensional electromagnetic particle simulation with a uniform magnetic field and open boundaries. The plasma environment consists of cold isotropic electrons, energetic electrons, and immobile ions. The energetic electrons are initialized with a subtracted-Maxwellian distribution with temperature anisotropy. By oscillating external currents with a constant frequency 0.2 fce, where fce is the electron cyclotron frequency, a whistler-mode wave is injected as a triggering wave from the center of the simulation system, and we investigated the process of interactions between the triggering wave and energetic electrons. We find that both rising-tone and falling-tone emissions are triggered through the formation of an electron hole and an electron hill in the velocity phase space consisting of a parallel velocity and the gyro-phase angle of the perpendicular velocities. The rising-tone emission varies from 0.2 fce to 0.4 fce, while the falling-tone varies from 0.2 fce to 0.15 fce. The generation region of the rising-tone triggered emission starts near the injection point of the triggering wave and moves upstream generating new subpackets. The generation region of the falling-tone triggered emission also moves upstream generating new subpackets. The simultaneous formation of the electron hole and hill is identified by separating small and large wavenumber components corresponding to lower and higher frequencies, respectively, by applying the discrete Fourier transformation to the waveforms in space. Based on the simulation results of the whistler-mode triggered emissions, we conclude that the mechanism of frequency variation of whistler-mode chorus emissions works even in a uniform magnetic field.

この論文で使われている画像

参考文献

Chen, H., Lu, Q., Wang, X., Fan, K., Chen, R., & Gao, X. (2022). One-dimensional gcPIC-df simulation of hooked chorus waves in the earth’s

inner magnetosphere. Geophysical Research Letters, 49(4), e2022GL097989. https://doi.org/10.1029/2022GL097989

Dysthe, K. B. (1971). Some studies of triggered whistler emissions. Journal of Geophysical Research, 76(28), 6915–6931. https://doi.org/10.1

029/JA076i028p06915

Fujiwara, Y., Nogi, T., & Omura, Y. (2022). Nonlinear triggering process of whistler-mode emissions in a homogeneous magnetic field. Earth

Planets and Space, 74(95), 95. https://doi.org/10.1186/s40623-022-01646-x

12 of 13

21699402, 2023, 2, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA030967 by Cochrane Japan, Wiley Online Library on [21/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA030967

Gołkowski, M., Harid, V., & Hosseini, P. (2019). Review of controlled excitation of non-linear wave-particle interactions in the magnetosphere.

Frontiers in Astronomy and Space Sciences, 6, 1-20. https://doi.org/10.3389/fspas.2019.00002

Gołkowski, M., Inan, U. S., Cohen, M. B., & Gibby, A. R. (2010). Amplitude and phase of nonlinear magnetospheric wave growth excited by the

HAARP HF heater. Journal of Geophysical Research, 115(A2), A00F04. https://doi.org/10.1029/2009JA014610

Helliwell, R. (1988). VLF wave-injection experiments from siple station, Antarctica. Advances in Space Research, 8(1), 279–289. https://doi.

org/10.1016/0273-1177(88)90373-0

Helliwell, R. A., Carpenter, D. L., Inan, U. S., & Katsufrakis, J. P. (1986). Generation of band-limited VLF noise using the siple transmitter: A

model for magnetospheric hiss. Journal of Geophysical Research, 91(A4), 4381–4392. https://doi.org/10.1029/JA091iA04p04381

Helliwell, R. A., Katsufrakis, J., Trimpi, M., & Brice, N. (1964). Artificially stimulated very-low-frequency radiation from the ionosphere. Journal of Geophysical Research, 69(11), 2391–2394. https://doi.org/10.1029/jz069i011p02391

Helliwell, R. A., & Katsufrakis, J. P. (1974). VLF wave injection into the magnetosphere from siple station, Antarctica. Journal of Geophysical

Research, 79(16), 2511–2518. https://doi.org/10.1029/JA079i016p02511

Hikishima, M., & Omura, Y. (2012). Particle simulations of whistler-mode rising-tone emissions triggered by waves with different amplitudes.

Journal of Geophysical Research, 117(A4), A04226. https://doi.org/10.1029/2011JA017428

Hikishima, M., Omura, Y., & Summers, D. (2010). Self-consistent particle simulation of whistler mode triggered emissions. Journal of Geophysical Research, 115(A12), A12246. https://doi.org/10.1029/2010JA015860

Katoh, Y., & Omura, Y. (2006). A study of generation mechanism of VLF triggered emission by self-consistent particle code. Journal of Geophysical Research, 111(A12), A12207. https://doi.org/10.1029/2006JA011704

Kennel, C. F., & Petschek, H. E. (1966). Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71(1), 1–28. https://doi.

org/10.1029/JZ071i001p00001

Kitahara, M., & Katoh, Y. (2019). Anomalous trapping of low pitch angle electrons by coherent whistler mode waves. Journal of Geophysical

Research: Space Physics, 124(7), 5568–5583. https://doi.org/10.1029/2019JA026493

Nogi, T., Nakamura, S., & Omura, Y. (2020). Full particle simulation of whistler-mode triggered falling-tone emissions in the magnetosphere.

Journal of Geophysical Research: Space Physics, 125(10), e2020JA027953. https://doi.org/10.1029/2020JA027953

Nogi, T., & Omura, Y. (2022). Nonlinear signatures of VLF-triggered emissions: A simulation study. Journal of Geophysical Research: Space

Physics, 127(1), e2021JA029826. https://doi.org/10.1029/2021JA029826

Nunn, D. (1984). The quasistatic theory of triggered VLF emissions. Planetary and Space Science, 32(3), 325–350.

Nunn, D., & Omura, Y. (2012). A computational and theoretical analysis of falling frequency VLF emissions. Journal of Geophysical Research,

117(A8), A08228. https://doi.org/10.1029/2012JA017557

Nunn, D., Rycroft, M., & Trakhtengerts, V. (2005). A parametric study of the numerical simulations of triggered VLF emissions. Annales

Geophysicae, 23(12), 3655–3666. https://doi.org/10.5194/angeo-23-3655-2005

Omura, Y. (2007). One-dimensional electromagnetic particle code KEMPO1: A tutorial on microphysics in space plasmas. In H. Usui & Y.

Omura (Eds.), Advanced methods for space simulations (Terra Sci., 2007, pp. 1–21).

Omura, Y. (2021). Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the magnetosphere. Earth Planets and Space,

73(1), 1–28. https://doi.org/10.1186/s40623-021-01380-w

Omura, Y., Hikishima, M., Katoh, Y., Summers, D., & Yagitani, S. (2009). Nonlinear mechanisms of lower-band and upper-band VLF chorus

emissions in the magnetosphere. Journal of Geophysical Research, 114(A7), A07217. https://doi.org/10.1029/2009JA014206

Omura, Y., Katoh, Y., & Summers, D. (2008). Theory and simulation of the generation of whistler-mode chorus. Journal of Geophysical

Research, 113(A4), A04223. https://doi.org/10.1029/2007JA012622

Omura, Y., & Matsumoto, H. (1993). KEMPO1: Technical guide to one-dimensional electromagnetic particle code. In H. Matsumoto & Y. Omura

(Eds.),Computer space plasma physics: Simulation Techniques and Softwares (Terra Sci., 1993, pp. 21–65).

Omura, Y., Nunn, D., Matsumoto, H., & Rycroft, M. (1991). A review of observational, theoretical and numerical studies of VLF triggered emissions. Journal of Atmospheric and Terrestrial Physics, 53(5), 351–368.

Sugiyama, H., Singh, S., Omura, Y., Shoji, M., Nunn, D., & Summers, D. (2015). Electromagnetic ion cyclotron waves in the earth’s magnetosphere with a kappa-Maxwellian particle distribution. Journal of Geophysical Research: Space Physics, 120(10), 8426–8439. https://doi.

org/10.1002/2015JA021346

Tao, X., Zonca, F., & Chen, L. (2017). Identify the nonlinear wave-particle interaction regime in rising tone chorus generation. Geophysical

Research Letters, 44(8), 3441–3446. https://doi.org/10.1002/2017GL072624

Tao, X., Zonca, F., & Chen, L. (2021). A “trap-release-amplify” model of chorus waves. Journal of Geophysical Research: Space Physics, 126(9),

e2021JA029585. https://doi.org/10.1029/2021JA029585

Umeda, T., Omura, Y., & Matsumoto, H. (2001). An improved masking method for absorbing boundaries in electromagnetic particle simulations.

Computer Physics Communications, 137(2), 286–299. https://doi.org/10.1016/S0010-4655(01)00182-5

Wu, Y., Tao, X., Zonca, F., Chen, L., & Wang, S. (2020). Controlling the chirping of chorus waves via magnetic field inhomogeneity. Geophysical

Research Letters, 47(10), e2020GL087791. https://doi.org/10.1029/2020GL087791

FUJIWARA ET AL.

13 of 13

21699402, 2023, 2, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA030967 by Cochrane Japan, Wiley Online Library on [21/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る