リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Formation of Electron Zebra Stripes Observed on 8 September 2017」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Formation of Electron Zebra Stripes Observed on 8 September 2017

Pandya, Megha Ebihara, Yusuke Tanaka, Takashi Manweiler, Jerry W. 京都大学 DOI:10.1029/2022ja030950

2023.04

概要

Zebra stripes are the characteristic structures having repeated hills and valleys in the electron flux intensities observed below L = 3. We delineate the fundamental properties and evolution of electron zebra stripes by modeling advection using time-dependent electric fields provided by a global magnetohydrodynamics simulation. At the beginning of the simulation, the electrons were uniformly distributed in longitude. Some electrons moved inward due to enhanced westward electric field transients in the premidnight-postdawn region. The inwardly displaced electrons were confined in a narrow longitudinal range and underwent grad-B and curvature drifts. For any specific fixed position, the electrons periodically passed through the point with an energy dependent period, giving rise to the hills and valleys in the electron differential flux also known as zebra stripes. The valleys of the zebra stripes are composed of the electrons that underwent outward displacement, or no significant radial displacement. On the nightside, the duskside convection cell is skewed toward dawn in the equatorward of the auroral oval, and the westward electric field becomes dominant in the postdawn region, which results in the inward motion of the electrons. The spatial distribution of the westward electric field is consistent with observation. Zebra stripes are a mixture of the electrons that have and have not experienced inward transport due to solar wind-inner magnetosphere coupling by way of the ionosphere.

この論文で使われている画像

関連論文

参考文献

Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., & Belian, R. D. (1997). Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit. Journal of Geophysical Research, 102(A2), 2309–2324. https://doi.org/10.1029/96ja02870

Breneman, A. W., Wygant, J. R., Tian, S., Cattell, C. A., Thaller, S. A., Goetz, K., et al. (2022). The Van Allen probes electric field and waves

instrument: Science results, measurements, and access to data. Space Science Reviews, 218(8), 69. https://doi.org/10.1007/s11214-022-00934-y

Bythrow, P. F., Heelis, R. A., Hanson, W. B., Power, R. A., & Hoffman, R. A. (1981). Observational evidence for a boundary layer source of

dayside region 1 field-aligned currents. Journal of Geophysical Research, 86(A7), 5577. https://doi.org/10.1029/ja086ia07p05577

Christon, S. P., Williams, D. J., Mitchell, D. G., Huang, C. Y., & Frank, L. A. (1991). Spectral characteristics of plasma sheet ion and electron

populations during disturbed geomagnetic conditions. Journal of Geophysical Research, 96(A1), 1–22. https://doi.org/10.1029/90ja01633

Cladis, J. B. (1966). Resonance acceleration of particles in the inner radiation belt. In Radiation trapped in the Earth's magnetic field (pp. 112–115).

Springer. https://doi.org/10.1007/978-94-010-3553-8_9

Cowley, S. W. H. (1982). The causes of convection in the Earths magnetosphere: A review of developments during the IMS. Reviews of Geophysics, 20(3), 531. https://doi.org/10.1029/rg020i003p00531

Dai, L., Wang, C., Duan, S., He, Z., Wygant, J. R., Cattell, C. A., et al. (2015). Near-Earth injection of MeV electrons associated with

intense dipolarization electric fields: Van Allen Probes observations. Geophysical Research Letters, 42(15), 6170–6179. https://doi.

org/10.1002/2015GL064955

Datlowe, D. W., Imhof, W. L., Gaines, E. E., & Voss, H. D. (1985). Multiple peaks in the spectrum of inner belt electrons. Journal of Geophysical

Research, 90(A9), 8333. https://doi.org/10.1029/ja090ia09p08333

De Keyser, J., & Echim, M. (2013). Electric potential differences across auroral generator interfaces. Annales Geophysicae, 31(2), 251–261.

https://doi.org/10.5194/angeo-31-251-2013

Eastman, T. E., Hones, E. W., Bame, S. J., & Asbridge, J. R. (1976). The magnetospheric boundary layer: Site of plasma, momentum and

energy transfer from the magnetosheath into the magnetosphere. Geophysical Research Letters, 3(11), 685–688. https://doi.org/10.1029/

gl003i011p00685

14 of 16

21699402, 2023, 4, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA030950 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA030950

Ebihara, Y., Ejiri, M., Nilsson, H., Sandahl, I., Grande, M., Fennell, J. F., et al. (2004). Multiple discrete-energy ion features in the inner magnetosphere: 9 February 1998, event. Annales Geophysicae, 22(4), 1297–1304. https://doi.org/10.5194/angeo-22-1297-2004

Ebihara, Y., & Tanaka, T. (2013). Fundamental properties of substorm time energetic electrons in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 118(4), 1589–1603. https://doi.org/10.1002/jgra.50115

Ebihara, Y., & Tanaka, T. (2022). Where is region 1 field-aligned current generated? Journal of Geophysical Research: Space Physics, 127(3),

e2021JA029991. https://doi.org/10.1029/2021ja029991

Ebihara, Y., Tanaka, T., & Kikuchi, T. (2014). Counter equatorial electrojet and overshielding after substorm onset: Global MHD simulation

study. Journal of Geophysical Research: Space Physics, 119(9), 7281–7296. https://doi.org/10.1002/2014ja020065

Echim, M. M., Roth, M., & De Keyser, J. (2008). Ionospheric feedback effects on the quasi-stationary coupling between LLBL and postnoon/

evening discrete auroral arcs. Annales Geophysicae, 26(4), 913–928. https://doi.org/10.5194/angeo-26-913-2008

Fennell, J. F., Chen, M. W., Roeder, J. L., Peterson, W. K., & Trattner, K. J. (1998). Multiple discrete-energy ion features in the inner magnetosphere: Polar observations. Physics of Plasmas, 14.

Hao, Y.-X., Sun, Y.-X., Roussos, E., Liu, Y., Kollmann, P., Yuan, C.-J., et al. (2020). The formation of Saturn's and Jupiter's electron radiation

belts by magnetospheric electric fields. The Astrophysical Journal, 905(1), L10. https://doi.org/10.3847/2041-8213/abca3f

Iijima, T. (2000). Field-aligned currents in geospace: Substance and significance. In Magnetospheric current systems (pp. 107–129). American

Geophysical Union. https://doi.org/10.1029/gm118p0107

Imhof, W. L., Gaines, E. E., & Reagan, J. B. (1973). Dynamic variations in intensity and energy spectra of electrons in the inner radiation belt.

Journal of Geophysical Research, 78(22), 4568–4577. https://doi.org/10.1029/ja078i022p04568

Imhof, W. L., Gaines, E. E., & Reagan, J. B. (1981). High-resolution spectral features observed in the inner radiation belt trapped electron population. Journal of Geophysical Research, 86(A4), 2341. https://doi.org/10.1029/ja086ia04p02341

Imhof, W. L., & Smith, R. V. (1965). Observation of nearly monoenergetic high-energy electrons in the inner radiation belt. Physical Review

Letters, 14(22), 885–887. https://doi.org/10.1103/physrevlett.14.885

Imhof, W. L., & Smith, R. V. (1966). Low altitude measurements of trapped electrons. In Radiation trapped in the Earth's magnetic field

(pp. 100–111). Springer.

Johnson, J. R., & Wing, S. (2015). The dependence of the strength and thickness of field-aligned currents on solar wind and ionospheric parameters. Journal of Geophysical Research: Space Physics, 120(5), 3987–4008. https://doi.org/10.1002/2014ja020312

Jordanova, V. K., Thorne, R. M., Li, W., & Miyoshi, Y. (2010). Excitation of whistler mode chorus from global ring current simulations. Journal

of Geophysical Research, 115(A5), A00F10. https://doi.org/10.1029/2009ja014810

Kikuchi, T. (2005). Transmission line model for driving plasma convection in the inner magnetosphere. The Inner Magnetosphere: Physics and

Modeling, 155, 173–179. https://doi.org/10.1029/155gm20

Kikuchi, T., Lühr, H., Kitamura, T., Saka, O., & Schlegel, K. (1996). Direct penetration of the polar electric field to the equator during DP 2

event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. Journal of Geophysical Research, 101(A8),

17161–17173. https://doi.org/10.1029/96ja01299

King, J. H., & Papitashvili, N. E. (2005). Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data.

Journal of Geophysical Research, 110(A2), 1–9. https://doi.org/10.1029/2004JA010649

King, J. H., & Papitashvili, N. E. (2020). OMNI 1-min data set. NASA Space Physics Data Facility. https://doi.org/10.48322/45BB-8792

Lax, P., & Wendroff, B. (1960). Systems of conservation laws. Communications on Pure and Applied Mathematics, 13(2), 217–237. https://doi.

org/10.1002/cpa.3160130205

Lejosne, S., Fejer, B. G., Maruyama, N., & Scherliess, L. (2022). Radial transport of energetic electrons as determined from the zebra stripes measured in the Earth's inner belt and slot region. Frontiers in Astronomy and Space Sciences, 9, 823695. https://doi.org/10.3389/fspas.2022.823695

Lejosne, S., & Mozer, F. S. (2020). Experimental determination of the conditions associated with zebra stripe pattern generation in the Earths inner

radiation belt and slot region. Journal of Geophysical Research: Space Physics, 125(7), e2020JA027889. https://doi.org/10.1029/2020ja027889

Lejosne, S., & Roederer, J. G. (2016). The “zebra stripes”: An effect of F region zonal plasma drifts on the longitudinal distribution of radiation

belt particles. Journal of Geophysical Research: Space Physics, 121(1), 507–518. https://doi.org/10.1002/2015ja021925

Liu, Y., Zong, Q., Zhou, X., Foster, J. C., & Rankin, R. (2016). Structure and evolution of electron zebra stripes in the inner radiation belt. Journal

of Geophysical Research: Space Physics, 121(5), 4145–4157. https://doi.org/10.1002/2015ja022077

Lotko, W., Sonnerup, B. U. Ö., & Lysak, R. L. (1987). Nonsteady boundary layer flow including ionospheric drag and parallel electric fields.

Journal of Geophysical Research, 92(A8), 8635. https://doi.org/10.1029/ja092ia08p08635

Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. (2012). Science objectives and rationale for the radiation

belt storm probes mission. Space Science Reviews, 179(1–4), 3–27. https://doi.org/10.1007/s11214-012-9908-y

Mitchell, D. G., Lanzerotti, L. J., Kim, C. K., Stokes, M., Ho, G., Cooper, S., et al. (2013). Radiation belt storm probes ion composition experiment (RBSPICE). Space Science Reviews, 179(1–4), 263–308. https://doi.org/10.1007/s11214-013-9965-x

Nishida, A. (1968). Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations. Journal of Geophysical Research,

73(17), 5549–5559. https://doi.org/10.1029/ja073i017p05549

Northrop, T. G. (1963). Adiabatic charged-particle motion. Reviews of Geophysics, 1(3), 283. https://doi.org/10.1029/rg001i003p00283

Roe, P. L. (1985). Some contributions to the modelling of discontinuous flows. In Large-Scale Computations in Fluid Mechanics (pp. 163–193).

Springer.

Roederer, J. G. (1970). Dynamics of geomagnetically trapped radiation. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-49300-3

Sauvaud, J.-A., Walt, M., Delcourt, D., Benoist, C., Penou, E., Chen, Y., & Russell, C. T. (2013). Inner radiation belt particle acceleration and

energy structuring by drift resonance with ULF waves during geomagnetic storms. Journal of Geophysical Research: Space Physics, 118(4),

1723–1736. https://doi.org/10.1002/jgra.50125

Senior, C., & Blanc, M. (1984). On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities. Journal of

Geophysical Research, 89(A1), 261–284. https://doi.org/10.1029/JA089iA01p00261

Siscoe, G. L., Lotko, W., & Sonnerup, B. U. Ö. (1991). A high-latitude, low-latitude boundary layer model of the convection current system.

Journal of Geophysical Research, 96(A3), 3487. https://doi.org/10.1029/90ja02362

Siscoe, G. L., & Sanchez, E. (1987). An MHD model for the complete open magnetotail boundary. Journal of Geophysical Research, 92(A7),

7405. https://doi.org/10.1029/ja092ia07p07405

Sonnerup, B. U. (1980). Theory of the low-latitude boundary layer. Journal of Geophysical Research, 85(A5), 2017. https://doi.org/10.1029/

ja085ia05p02017

Sun, Y. X., Hao, Y. X., Roussos, E., Zong, Q. G., Liu, Y., Zhou, X. Z., et al. (2022). Zebra stripe patterns in energetic ion spectra at Saturn.

Geophysical Research Letters, 49(4), e2021GL097691. https://doi.org/10.1029/2021GL097691

PANDYA ET AL.

15 of 16

21699402, 2023, 4, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA030950 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA030950

Sun, Y. X., Roussos, E., Hao, Y. X., Zong, Q. G., Liu, Y., Lejosne, S., et al. (2021). Saturn's inner magnetospheric convection in the view

of zebra stripe patterns in energetic electron spectra. Journal of Geophysical Research: Space Physics, 126(10), 1–13. https://doi.

org/10.1029/2021JA029600

Tanaka, T. (1994). Finite volume TVD scheme on an unstructured grid system for three dimensional MHD simulation of inhomogeneous systems

including strong background magnetic fields. Journal of Computational Physics, 111(2), 381–389. https://doi.org/10.1006/jcph.1994.1071

Tanaka, T. (2007). Magnetosphere ionosphere convection as a compound system. Space Science Reviews, 133(1–4), 1–72. https://doi.org/10.1007/

s11214-007-9168-4

Tanaka, T. (2015). Substorm auroral dynamics reproduced by advanced global magnetosphere-ionosphere (MI) coupling simulation

(pp. 177–190). Wiley. https://doi.org/10.1002/9781118978719.ch13

Tsunomura, S. (1999). Numerical analysis of global ionospheric current system including the effect of equatorial enhancement. Annales Geophysicae, 17(5), 692–706. https://doi.org/10.1007/s00585-999-0692-2

Turner, D. L., O'Brien, T. P., Fennell, J. F., Claudepierre, S. G., Blake, J. B., Jaynes, A. N., et al. (2017). Investigating the source of near-relativistic

and relativistic electrons in Earth's inner radiation belt. Journal of Geophysical Research: Space Physics, 122(1), 695–710. https://doi.

org/10.1002/2016JA023600

Ukhorskiy, A. Y., Sitnov, M. I., Mitchell, D. G., Takahashi, K., Lanzerotti, L. J., & Mauk, B. H. (2014). Rotationally driven ‘zebra stripes’ in

Earth's inner radiation belt. Nature, 507(7492), 338–340. https://doi.org/10.1038/nature13046

Wang, Y., Zong, Q., & Zhou, X. (2017). Test particle simulation on the ion and electron zebra stripes and their time evolution in inner radiation

belt. Science China Technological Sciences, 61(4), 623–632. https://doi.org/10.1007/s11431-016-9087-x

Williams, D. J., & Frank, L. A. (1984). Intense low-energy ion populations at low equatorial altitudes. Journal of Geophysical Research, 89(A6),

3903. https://doi.org/10.1029/ja089ia06p03903

Wolf, R. A. (1970). Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. Journal of Geophysical Research,

75(25), 4677–4698. https://doi.org/10.1029/ja075i025p04677

Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Moer, F. S., Bale, S. D., et al. (2013). The electric field and waves instruments on the

radiation belt storm probes mission. Space Science Reviews, 179(1), 183–220. https://doi.org/10.1007/s11214-013-0013-7

Xiao, F., Thorne, R. M., & Summers, D. (1998). Instability of electromagnetic R-mode waves in a relativistic plasma. Physics of Plasmas, 5(7),

2489–2497. https://doi.org/10.1063/1.872932

PANDYA ET AL.

16 of 16

21699402, 2023, 4, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA030950 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る