リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mineralogical and geochemical study of brachinite clan meteorites : Implications for early differentiation of planetesimals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mineralogical and geochemical study of brachinite clan meteorites : Implications for early differentiation of planetesimals

長谷川, 輝 東京大学 DOI:10.15083/0002002080

2021.10.04

概要

The study of primitive achondrites is expected to lead to an understanding of the variations of planetary differentiation processes and valuable information about the earliest stages of igneous evolution of planetesimals in our solar system. Previously, primitive achondrites are suggested to have come from the asteroids which was partially differentiated (e.g., Prinz et al., 1983; Nehru et al., 1992; Mittlefehldt et al., 1998). Some researchers recently proposed the inner structures of the parent bodies of primitive achondrites (ureilites, acapulcoites/lodranites and winonaites) and their ages have also been determined (e.g., Wilson et al., 2008; Hunt et al., 2018; Li et al., 2018; Toubol et al., 2008, 2009; Theis et al., 2013; Budde et al., 2015; Worsham et al., 2017). Compared to other primitive achondrites, however, brachinites have been poorly understood and their origin and formation processes have been controversial (e.g., Mittlefehldt et al., 2003; Day et al., 2012; Goodrich et al., 2017). This is because the number of brachinites has rapidly increased in the last fifteen years (10 specimens in 2000, but 44 specimens in 2019), but the study on newly found brachinites has been far from sufficient (Meteoritical Bulletin Database, 2019). Another aspect includes that brachinites are mainly composed of olivine and are hard to apply regular mineralogical and isotopic approaches (e.g., geological thermometers, U-Pb absolute age). Furthermore, the rapid increase of the number of brachinites resulted in the complexities of the grouping of brachinites (e.g., the existence of “brachinite-like meteorites”, “ungrouped achondrite related to brachinites” and “brachinite clan”). Therefore, we comprehensively studied twelve olivine-rich achondrites (“brachinite clan meteorites”): Allan Hills (ALH) 84025, Divnoe, Elephant Moraine (EET) 99402, EET 99407, Miller Range (MIL) 090206, MIL 090340, MIL 090405, Northwest Africa (NWA) 4969, NWA 6112, NWA 6308, NWA 10932 and Reid 013, to understand the formation processes and the origin of brachinite clan meteorites. We performed not only conventional petrological and mineralogical study but also chromium isotopic and olivine petrofabric study. Characteristically, we focused on CPO (crystallographic preferred orientation) of olivine. Studying olivine fabrics in rocks is extremely important to obtain the information of the physical environment during and after crystallization. In recent years a lot of observations and experiments of olivine deformation in terrestrial mantle rocks have been performed (e.g., Karato et al., 2008; Ohuchi, 2013). Thus, variation of formation mechanism to produce olivine CPO patterns has been well understood and the olivine CPO patterns observed in natural rocks can be used to estimate the formation condition of the rocks (e.g., Jung et al., 2007; Karato et al., 2008). Brachinite clan meteorites are olivine-rich rocks similar to terrestrial mantle rocks and are expected to exhibit olivine CPO patterns because of the presence of apparent linear structures on the thin sections of some samples. Measuring olivine CPO in brachinite clan meteorites can lead to the better understanding of their formation conditions. However, there are only two olivine fabric studies for four brachinite clan meteorites (Ando et al., 2003; Mittlefehldt et al., 2003), and quantitative evaluation of olivine CPO patterns for brachinite clan meteorites has not been reported. Therefore, a major goal of this study is to obtain the information of formation conditions of brachinite clan meteorites revealed by olivine CPO analysis combining mineralogy and geochemistry for the first time.

参考文献

Agee, C. B., Wilson, N. V., McCubbin, F. M., Ziegler, K., Polyak, V. J., Sharp, Z. D., and Steele, A. (2013). Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science, 339, 780-785.

Amelin, Y., Krot, A.N., Hutcheon, I.D., Ulyanov, A.A., 2002. Lead isotopic ages of chondrules and calcium–aluminum-rich inclusions. Science 297, 1678-1683.

Anderson, J. L., and Smith, D. R. (1995). The effects of temperature and fO₂ on the Al-inhornblende barometer. American Mineralogist 80, 5-6, 549-559.

Ando J., Tomioka N., Petaev M., Kanagawa K., Honda K., Shibata Y. and Yamanaka S. (2003) Microstructures of Olivine in the Weakly Shocked Divnoe Meteorite. AGU Fall Meeting Abstracts.

Barrat, J. A., Jambon, A., Yamaguchi, A., Bischoff, A., Rouget, M. L., and Liorzou, C. (2016). Partial melting of a C-rich asteroid: Lithophile trace elements in ureilites. Geochimica et Cosmochimica Acta, 194, 163-178.

Bascou, J., Delpech, G., Vauchez, A., Moine, B.N., Cottin, J.Y. and Barruol, G. (2008) An integrated study of microstructural, geochemical, and seismic properties of the lithospheric mantle above the Kerguelen plume (Indian Ocean). Geochem. Geophys. Geosys., 9, Q04036.

Benedix G. K., McCoy T. J., Keil K., Bogard D. D. and Garrison D. H. (1998) A petrologic and isotopic study of winonaites: evidence for early partial melting, brecciation, and metamorphism. Geochimica et Cosmochimica Acta 62, 2535–2553.

Benedix G. K., McCoy T. J., Keil K. and Love S. G. (2000) A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB‐Winonaite parent body. Meteoritics & Planetary Science 35, 1127–1141.

Ben Ismaïl, W. and Mainprice, D. (1998) An olivine fabric data- base: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 296, 145-157.

Berkley J. L. and Keil K. (1981) Olivine orientation in the ALHA77005 achondrite. American Mineralogist 66, 1233–1236.

Berkley J., Taylor G., Keil K. and Acta H. G. (1980) The nature and origin of ureilites. Geochimica et Cosmochimica Acta 44, 1579-1579.

Bogard D. D., Nyquist L. E., Johnson P., Wooden J. and Bansal B. (1983) Chronology of Brachina (abstract). Meteoritics 18, 269–270.

Boudier F. (1991) Olivine xenocrysts in picritic magmas. Contributions to Mineralogy and Petrology 109, 114–123.

Brothers R. N. (1964) Petrofabric analyses of Rhum and Skaergaard layered rocks. Journal of Petrology 5, 255–274.

Budde, G., Kruijer, T. S., Fischer-Gödde, M., Irving, A. J., & Kleine, T. (2015). Planetesimal differentiation revealed by the Hf–W systematics of ureilites. Earth and Planetary Science Letters, 430, 316-325.

Burroni A. and Folco L. (2008) Frontier Mountain meteorite specimens of the acapulcoitelodranite clan: Petrography, pairing, and parent-rock lithology of an unusual intrusive rock. Meteoritics & Planetary Science 43, 731–744.

Chapman C. R. (1996) S‐type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s fly‐bys of Gaspra and Ida. Meteoritics & Planetary Science 31, 699–725.

Chikami J., Miyamoto M. and Takeda H. (1999) The variation of Zn content in spinel group minerals and daubreelites of primitive achondrites. Antarct. Meteorite Res. 12, 139–150.

Clayton R. N. and Mayeda T. K. (1988) Formation of ureilites by nebular processes. Geochimica et Cosmochimica Acta 52, 1313–1318.

Clayton R. N. and Mayeda T. K. (1996) Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta 60, 4253–4263.

Colson R. O. (1992) Mineralization on the moon? Theoretical considerations of Apollo 16’rusty rocks’, sulfide replacement in 67016, and surface-correlated volatiles on lunar …. Proceedings of Lunar and Planetary Science 22, 427–436.

Corder C. A., Day J. M. D., Rumble III D., Assayag N., Cartigny P. and Taylor L. A. (2014) Petrology and Geochemistry of Achondrites LEW 88763, MIL 090206 and MIL 090405: Comparisons with Acapulcoite-Lodranites, Brachinites and Chondrites (abstract). In 45th Lunar and Planetary Science Conference #2752.

Crozaz G. and Pellas P. (1984) The formation age of the Brachina meteorite. Earth and planetary science letters 71, 195–199.

Crozaz G. and Pellas P. (1983) Where does Brachina come from? (abstract). Lunar and Planetary Science 14, 142–143.

Day J. M. D., Ash R. D., Liu Y., Bellucci J. J., Rumble III D., McDonough W. F., Walker R. J. and Taylor L. A. (2009) Early formation of evolved asteroidal crust. Nature 457, 179–182.

Day J., Walker R. J., Ash R. D., Liu Y., Rumble D., Irving A. J., Goodrich C. A., Tait K., nough W. F. and Taylor L. A. (2012) Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatilerich primitive parent bodies. Geochim Cosmochim Acta 81, 94–128.

Dunlap D. R., Romaniello S. J. and Wadhwa M. (2016a) 53Mn-53Cr systematics of the brachinite NWA 4882. (abstract). 79th Annual Meeting of the Meteoritical Society, 6217.

Dunlap D. R., Wadhwa M. and Romaniello S. J. (2016b) 53Mn-53Cr systematics of Brachina revised in high precision. (abstract). 47th Lunar and Planetary Science Conference, #3055.

Ebel D. S. (2006) Condensation of Rocky Material in Astrophysical Environments. In Meteorites and the Early Solar System II pp. 253–277.

Ernst W.G. Liu J. (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB—a semiquantitative thermobarometer. American Mineralogist 83, 952–969.

Fish R. A., Goles G. G., and Anders E. (1960) The record in meteorites III. On the development of meteorites in asteroidal bodies. Astrophys. J. 132, 243–258.

Gardner-Vandy K. G., Lauretta D. S. and McCoy T. J. (2013) A petrologic, thermodynamic and experimental study of brachinites: Partial melt residues of an R chondrite-like precursor.

Geochim Cosmochim Acta 122, 36–57.

Goodrich C. A. (1992) Ureilites: A critical review. Meteoritics 27, 327–352.

Goodrich C. A. and Delaney J. S. (2000) Fe/Mg–Fe/Mn relations of meteorites and primary heterogeneity of primitive achondrite parent bodies. Geochimica et Cosmochimica Acta 64, 149–160.

Goodrich C. A., Kita N. T., Warren P. H. and Rubin A. E. (2012) MIL 090340 and MIL 090206: Two more brachinite-like achondrites mis-identified as ureilites. (abstract). In 75th Annual Meteoritical Society Meeting #5272.

Goodrich C. A., Scott E. and Fioretti A. M. (2004) Ureilitic breccias: clues to the petrologic structure and impact disruption of the ureilite parent asteroid. Chemie der Erde-Geochemistry 64, 283–327.

Goodrich C., Kita N. T., Spicuzza M. J., Valley J. W., Zipfel J., Mikouchi T. and Miyamoto M. (2010) The Northwest Africa 1500 meteorite: Not a ureilite, maybe a brachinite. MAPS 45,1906–1928.

Goodrich C., Kita N. T., Sutton S. R., Wirick S. and Gross J. (2017) The Miller Range 090340 and 090206 meteorites: Identification of new brachinite‐like achondrites with implications for the diversity and petrogenesis of the brachinite clan. Meteoritics & Planetary Science 52, 949–978.

Goodrich C., Wlotzka F., Ross K. D. and Bartoschewitz R. (2006) Northwest Africa 1500: Plagioclase‐bearing monomict ureilite or ungrouped achondrite? Meteoritics & Planetary Science 41, 925–952.

Greenwood R. C., Barrat J.-A., Scott E., Haack H., Buchanan P. C., Franchi I. A., Yamaguchi A., Johnson D., Bevan A. and Burbine T. H. (2015) Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the “Great Dunite Shortage” and HED-mesosiderite connection. Geochim Cosmochim Acta 169, 115–136.

Greenwood R. C., Burbine T. H., Miller M. F. and Franchi I. A. (2017) Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies. Chemie Der Erde - Geochemistry 77, 1–43.

Greenwood R. C., Franchi I. A., Gibson J. M. and Benedix G. K. (2012) Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochim Cosmochim Acta 94, 146–163.

Greenwood R. C., Franchi I. A., Jambon A. and Barrat J. A. (2006) Oxygen isotope variation in stony-iron meteorites. Science 313, 1763–1765.

Greenwood R., Franchi I., Jambon A. and Nature B. P. (2005) Widespread magma oceans on asteroidal bodies in the early solar system. Nature, 435, 916-918.

Hasegawa H., Mikouchi T. and Yamaguchi A. (2016) Mineralogical and Petrofabric Study of Brachinite-Like Meteorites Miller Range 090206, 090340 and 090405. Lunar and Planetary Science Conference 47.

Hasegawa H., Mikouchi T., Yamaguchi A., Yasutake M., Greenwood R. C. and Franchi I. A. (2019) Petrological, petrofabric, and oxygen isotopic study of five ungrouped meteorites related to brachinites. Meteoritics & Planetary Science, 1–16, doi: 10.1111/maps.13249.

Higgins M. (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press.

Hiyagon, H., Sugiura, N., Kita, N. T., Kimura, M., Morishita, Y., & Takehana, Y. (2016) Origin of the eclogitic clasts with graphite-bearing and graphite-free lithologies in the Northwest Africa 801 (CR2) chondrite: Possible origin from a Moon-sized planetary body inferred from chemistry, oxygen isotopes and REE abundances. Geochimica et Cosmochimica Acta, 186, 32-48.

Hunt, A. C., Cook, D. L., Lichtenberg, T., Reger, P. M., Ek, M., Golabek, G. J., & Schönbächler, M. (2018). Late metal–silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling. Earth and Planetary Science Letters, 482,490-500.

Huss G. R., Rubin A. E., and Grossman J. N. (2006) Thermal metamorphism in chondrites. In Meteorites and the Early Solar System II (D. S. Lauretta and H. Y. McSween Jr., eds.), pp. 567–586. Univ. of Arizona, Tucson.

Hutchison R. (2004) Meteorites: A petrologic, chemical and isotopic synthesis. Cambridge University Press, Cambridge.

Ismaıl W. and Mainprice D. (1998) An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296.

Jenniskens, P. A., Shaddad, M. H., Numan, D., Elsir, S., Kudoda, A. M., Zolensky, M. E., ... & Steele, A. (2009). The impact and recovery of asteroid 2008 TC 3. Nature, 458(7237), 485.

Jung, H., Katayama, I., Jiang, Z., Hiraga, T. and Karato, S. (2006): Effect of water an stress o the lattice-preferred orientation of olivine. Tectonophys., 421, 1-22.

Karato, S., Jung, H., Katayama, I. and Skemer, P. (2008): Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu. Rev. Earth Planet. Sci., 36, 59-95.

Keil K. (2014) Brachinite meteorites: Partial melt residues from an FeO-rich asteroid. Chemie der Erde - Geochemistry 74, 311–329.

Kimura M., Tsuchiyama A., Fukuoka T. and Iimura Y. (1992) Antarctic primitive achondrites Yamato-74025,-75300, and-75305: Their mineralogy, thermal history and the relevance to winonaite. NIPR Symp. Antarct. Meteorites 5, 165–190.

Kita N. T., Ikeda Y., Togashi S., Liu Y. and Morishita Y. (2004) Origin of ureilites inferred from a SIMS oxygen isotopic and trace element study of clasts in the Dar al Gani 319 polymict ureilite. GCA 68, 4213–4235.

Krot, A.N., Keil, K., Goodrich, C.A., Scott, E.R.D., Weisberg, M.K. (2014) Classification of meteorites and their genetic relationships. In: Davis, A.M., Holland, H.D. Turekian, K.K. (Eds.), Meteorites and Cosmochemical Processes: Treatise on Geochemistry, vol. 1, second edition. Elsevier, pp. 1–63.

Larsen K. K., Wielandt D., Schiller M. and Bizzarro M. (2016) Chromatographic speciation of Cr (III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis. Journal of Chromatography A 1443, 162–174.

LaTourrette T. and Wasserburg G. J. (1998) Mg diffusion in anorthite: Implications for the formation of early solar system planetesimals. Earth Planet. Sci. Lett. 158, 91–108.

Lee T., Papanastassiou D. A., and Wasserburg G. J. (1976) Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett. 3, 41–44.

Le Roux, V., Bodinier, J.L., Tommasi, A., Alard, O., Dautria, J.M., Vauchez, A. and Riches, A. (2007) The Lherz spinel-lherzolite: refertilized rather than pristine mantle. Earth Planetary Science Letters, 259, 599-612.

Li S., Yin Q.-Z., Bao H., Sanborn M. E., Irving A., Ziegler K., Agee C., Marti K., Miao B., Li X., Li Y. and Wang S. (2018) Evidence for a multilayered internal structure of the chondritic acapulcoite-lodranite parent asteroid. Geochimica et Cosmochimica Acta 242, 82–101.

Lofgren G. E. and Donaldson C. H. (1975) Curved branching crystals and differentiation in comb-layered rocks. Contrib Mineral Petr 49, 309–319.

Macpherson G. (1985) ALH 84025 thin section description. Antarctic Meteorite Newsletter 8,8.

Mainprice D. (2015) Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective. . In Treatise on Geophysics pp. 487–538.

McCoy T. J., Keil K., Clayton R. N., Mayeda T. K., Bogard D. D., Garrison D. H., Huss G. R., Hutcheon I. D. and Wieler R. (1996) A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting. Geochimica et Cosmochimica Acta 60, 2681–2708.

Mittlefehldt D. W. (2015) Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chemie der Erde-Geochemistry 75, 155–183.

Mittlefehldt D., McCoy T., Goodrich C. and Kracher A. (1998) Non-chondritic meteorites from asteroidal bodies. J.J. Papike (Ed.), Planetary Materials, Reviews in Mineralogy, vol. 36, pp.4-1–4-195

Mittlefehldt D. W., Bogard D. D., Berkley J. L. and Garrison D. H. (2003) Brachinites: Igneous rocks from a differentiated asteroid. Meteorit Planet Sci 38, 1601–1625.

Mittlefehldt D. W. and Lindstrom M. M. (1998) Petrology and geochemistry of lodranite GRA 95209. Meteoritics and Planetary Science Supplement 33.

Mittlefehldt D. W., Lindstrom M. M., Bogard D. D., Garrison D. H. and Field S. W. (1996) Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin. Geochimica et Cosmochimica Acta 60, 867–882.

Mittlefehldt D. W. and McCoy T. J. (2014) 35 Seasons of U.S. Antarctic Meteorites (1976- 2010): A Pictorial Guide to the Collection, 79–99.

Nagahara H. (1992) Yamato-8002: Partial melting residue on the" unique" chondrite parent body. Antarctic Meteorite Research 5, 191-223.

Nagahara H. and Ozawa K. (1986) Petrology of Yamato-791493, lodranite: Melting, crystallization, cooling history, and relationship to other meteorites. Mem. NIPR Spec. Issue, 41, 181– 205.

Nakamura T., Noguchi T., Tanaka M., Zolensky M. E., Kimura M., Tsuchiyama A., Nakato A., Ogami T., Ishida H., Uesugi M., Yada T., Shirai K., Fujimura A., Okazaki R., Sandford A. A., Ishibashi Y., Abe M., Okada T., Ueno M., Mukai T., Yoshikawa M. and Kawaguchi J. (2011) Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116.

Nakamuta Y., Urata K., Shibata Y. and Kuwahara Y. (2017) Effect of NaCrSi2O6 component on Lindsley’s pyroxene thermometer: An evaluation based on strongly metamorphosed LL chondrites. Meteoritics & Planetary Science 52, 511–521.

Nehru C. E., Prinz M. and Delaney J. S. (1983) Brachina: a new type of meteorite, not a chassignite. Journal of Geophysical Research 88, B237–B244.

Nehru C., Prinz M., Delaney J., Dreibus G., Palme H., Spettel B. and Wänke H. (1983) Brachina: A new type of meteorite, not a chassignite. J Geophys Res Solid Earth 88, B237–B244.

Nehru, C.E., Prinz, M., Weisberg, M.K., Ebihara, M.E., Clayton, R.N., Mayeda, T.K. (1992) Brachinites: a new primitive achondrite group (abstract). Meteoritics 27, 267.

Nehru, C.E., Prinz, M., Weisberg, M.K., Ebihara, M.E., Clayton, R.N., Mayeda, T.K. (1996) A new brachinite and petrogenesis of the group (abstract). Lunar Planet. Sci. 27,943–944.

Nehru C., Weisberg M., Boesenberg J. and Kilgore M. (2003) Tafassasset: A metal-rich primitive achondrite with affinities to brachinites. Lunar and Planetary Science Conference 34.

Neumann W., Henke S., Breuer D., Gail H.-P., Schwarz W. H., Trieloff M., Hopp J. and Spohn T. (2018) Modeling the evolution of the parent body of acapulcoites and lodranites: A case study for partially differentiated asteroids. Icarus 311, 146–169.

Norman, Keil K., Griffin W. L. and Ryan C. G. (1995) Fragments of ancient lunar crust: Petrology and geochemistry of ferroan noritic anorthosites from the Descartes region of the Moon. Geochimica et Cosmochimica Acta 59, 831–847.

Ohuchi T. (2013) Experimental studies on crystallographic preferred orientation of olivine: A review. Japanese Magazine of Mineralogical and Petrological Sciences 42, 51–67.

Ott U., Begemann F. and Löhr H. P. (1983) Noble gases in the Brachina and Chassigny meteorites (abstract). Lunar and Planetary Science 14, 586–587.

Ott U., Löhr H. P. and Begemann F. (1987) Noble gases in ALH 84025: like Brachina, unlike Chassigny (abstract). Meteoritics 22, 476–477.

Palme H., Lodders K. and Jones A. (2014) Solar system abundances of the elements. Planets, Asteriods, Comets and The Solar System, Treatise on Geochemistry (Second Edition) 2, 15–36.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508-2518.

Petaev M., Barsukova L., Lipschutz M., Wang M. ‐S., Ariskin A., Clayton R. and Mayeda T. (1994) The Divnoe meteorite: Petrology, chemistry, oxygen isotopes and origin. Meteoritics 29, 182–199.

Pourmand A. and Dauphas N. (2010) Distribution coefficients of 60 elements on TODGA resin: application to Ca, Lu, Hf, U and Th isotope geochemistry. Talanta 81, 741–753.

Prinz M., Nehru C. E., Delaney J. S. and Weisberg M. (1983) Silicates in IAB and IIICD Irons, Winonaites, Lodranites an Brachina: a Primitive and Modified-Primitive Group. In Lunar and Planetary Science Conference XIV pp. 616–617.

Prinz M., Weisberg M. K., Nehru C. E. and Delaney J. S. (1986) ALHA84025: a Second Brachina-Like Meteorite (abstract). Lunar and Planetary Science Conference XVII, 679–680.

Prinz, M. (1998) Brachinites: a developing story. Meteorit. Planet. Sci. 33, 3–4.

Prior D. J., Boyle A. P., Brenker F., Cheadle M. C., Day A., Lopez G., Peruzzo L., Potts G. J., Reddy S., Spiess R., Timms N. E., Trimby P., Wheeler J. and Zetterström L. (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist 84, 1741–1759.

Qi C., Hansen L. N., Wallis D., Holtzman B. K. and Kohlstedt D. L. (2018) Crystallographic Preferred Orientation of Olivine in Sheared Partially Molten Rocks: The Source of the “a‐c Switch.” Geochemistry, Geophysics, Geosystems 19, 316–336.

Scheinberg A., Fu R. R., Elkins-Tanton L. T., and Weiss B. P. (2015) Asteroid differentiation: Melting and large-scale structure. In Asteroids IV (P. Michel et al., eds.), pp. 533–552. Univ. of Arizona, Tucson.

Schiller M., Kooten E., Holst J. C., Olsen M. B. and Bizzarro M. (2014) Precise measurement of chromium isotopes by MC-ICPMS. Journal of analytical atomic spectrometry 29, 1406–1416.

Schwindinger K. R. and Anderson A. T. (1989) Synneusis of Kilauea Iki olivines. Contrib Mineral Petr 103, 187–198.

Shearer C. K., Burger P. V., Guan Y., Papike J. J., Sutton S. R. and Atudorei N.-V. (2012) Origin of sulfide replacement textures in lunar breccias. Implications for vapor element transport in the lunar crust. Geochimica et Cosmochimica Acta 83, 138–158.

Shields, W. R., Murphy, T. J., Catanzaro, E. J., & Garner, E. L. (1966). Absolute isotopic abundance ratios and the atomic weight of a reference sample of chromium. J. Res. Natl. Bur.Stand. A, 70, 193-197.

Singerling S. A., McCoy T. J. and Gardner-Vandy K. G. (2013) Possible evidence for sulfidization reactions in the Miller Range brachinites (?) (abstract). In 44th Lunar and Planetary Science Conference #1669.

Singletary S. J. and Grove T. L. (2003) Early petrologic processes on the ureilite parent body. Meteoritics & Planetary Science 38, 95–108.

Skemer P., Katayama I., Jiang Z. and Karato S. (2005) The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics 411, 157–167.

Smith J. V., Steele I. M. and Leitch C. A. (1983) Mineral chemistry of the shergottites, nakhlites, Chassigny, Brachina, pallasites and urelites. Journal of Geophysical Research 88, B229–B236.

Swindle T. D., Kring D. A., Burkland M. K., Hill D. H. and Boynton W. V. (1998) Noble gases, bulk chemistry, and petrography of olivine‐rich achondrites Eagles Nest and Lewis Cliff 88763: Comparison to brachinites. Meteoritics & Planetary Science 33, 31–48.

Theis, K. J., Schönbächler, M., Benedix, G. K., Rehkämper, M., Andreasen, R., & Davies, C. (2013). Palladium–silver chronology of IAB iron meteorites. Earth and Planetary Science Letters, 361, 402-411.

Tkalcec B. J. and Brenker F. E. (2014) Plastic deformation of olivine rich diogenites and implications for mantle processes on the diogenite parent body. Meteoritics & Planetary Science 49, 1202–1213.

Tkalcec B. J. and Brenker F. E. (2015) Plastic Deformation on the Ureilite Parent Body revealed by Structural Analysis of Dunitic Ureilite NWA 7630 (abstract). In 78th Annual Meeting of the Meteoritical Society #5351.

Tkalcec B. J., Golabek G. J. and Brenker F. E. (2013) Solid-state plastic deformation in the dynamic interior of a differentiated asteroid. Nature Geoscience 6, 93–97.

Tommasi, A., Vauchez, A. and Ionov, D.A. (2008) Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth Planet. Sci. Lett., 272, 65-77.

Touboul, M., Kleine, T., Bourdon, B.,2008. Hf-W Systematics of Cumulate Eucrites and the Chronology of the Eucrite Parent Body. (abstract) 39th Lunar and Planetary Science Conference. #2336.

Touboul, M., Kleine, T., Bourdon, B., Van Orman, J.A., Maden, C., Zipfel, J., Irving, A.J., Bunch, T.E., 2008. Hf-W thermochronometry of the acapulcoite-lodranite parent body (abstract). Meteorit. Planet. Sci. 43, Suppl., 5301.

Touboul, M., Kleine, T., Bourdon, B., Van Orman, J.A., Maden, C., Zipfel, J., 2009. Hf-W thermochronometry: II: Accretion and thermal history of the acapulcoite-lodranite parent body. Earth Planet. Sci. Lett. 284, 168–178.

Trinquier A., Birck J. and Journal A. C. (2007) Widespread 54Cr heterogeneity in the inner solar system. The Astrophysical Journal 688, 1179-1185.

Urey H. C. (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balance of the Earth, the Moon, and Mars. Proc. Natl. Acad. Sci. 41, 127–144.

Vauchez, A. and Garrido, C. (2001) Seismic properties of an asthenospherized lithospheric mantle: constraints from lattice preferred orientations in peridotite from the Ronda massif. Earth Planetary Science Letters, 192, 235-249.

Vauchez, A., Dineur, F. and Rudnick, R. (2005) Microstructure, texture and seismic anisotropy of the lithospheric mantle above a mantle plume: Insights from the Labait volcano xenoliths (Tanzania). Earth Planetary Science Letters, 232, 295-314.

Wadhwa M., Shukolyukov A. A. and Lugmair G. (1998) 53Mn-53Cr systematics in Brachina: A record of one of the earliest phases of igneous activity on an asteroid (abstract). In Lunar and Planetary Science Conference XXIX #1480.

Wadhwa, M., Zipfel, J., Davis, A.M., (1998). Constraints on the formation history of brachinites from rare-earth-element distributions (abstract). Meteorit. Planet. Sci. 33 (Suppl.), A161.

Warren P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters 311, 93–100.

Warren P. H. and Kallemeyn G. W. (1989) Allan Hills 84025-The second brachinite, far more differentiated than brachina, and an ultramafic achondritic clast from L chondrite Yamato 75097. Proceedings of the 19th Lunar and Planetary Science Conference, 475–486.

Warren P. H. and Rubin A. E. (2012) The Miller Range 090340 dunite: not a uniquely ferroan ureilite, not even a ureilite. (abstract). In 43rd Lunar and Planetary Science Conference #2528.

Weigel A., Eugster O. and cosmochimica acta K. C. (1997) Differentiated achondrites Asuka 881371, an angrite, and Divnoe: Noble gases, ages, chemical composition, and relation to other meteorites. Geochimica et Cosmochimica Acta 67, 1, 239-248.

Weisberg M. K., McCoy T. J. and Krot A. N. (2006) Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II pp. 19–52.

Welten K. C., Nishiizumi K. and Caffee M. W. (2014) Cosmic Ray Exposure History and Pairing of the Miller Range Ungrouped Achondrites: MIL 090206, 090340 and 090963 (abstract). In 45th Lunar and Planetary Science Conference #2450.

Weyer, S., & Schwieters, J. B. (2003). High precision Fe isotope measurements with high mass resolution MC-ICPMS. International Journal of Mass Spectrometry, 226(3), 355-368.

Wilson L., Goodrich C. A. and Orman J. A. V. (2008) Thermal evolution and physics of melt extraction on the ureilite parent body. Geochimica et Cosmochimica Acta 72, 6154–6176.

Wlotzka F. (2005) Cr spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6. Meteoritics & Planetary Science 40, 1673–1702.

Worsham, E. A., Bermingham, K. R., & Walker, R. J. (2017). Characterizing cosmochemical materials with genetic affinities to the Earth: genetic and chronological diversity within the IAB iron meteorite complex. Earth and Planetary Science Letters, 467, 157-166.

Yasutake M. (2018) 微惑星から原始惑星への進化における溶融および変形過程. Doctoral Thesis.

Zaslavskaya N. I. and Petaev M. I. (1990) The Divnoe Meteorite I. Petrology and Mineralogy. In Lunar and Planetary Science Conference XXI pp. 1369–1370.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る