リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The initial abundance of niobium-92 in the outer solar system」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The initial abundance of niobium-92 in the outer solar system

日比谷, 由紀 東京大学 DOI:10.15083/0002001897

2021.10.04

概要

One of the major goals of cosmochemistry is to understand the origin of short-lived radionuclides, as it is essential for constraining the time-scale and the genealogy of our solar system. Among the short-lived radionuclides, what is of particular interest to this thesis is niobium-92 (92Nb). The p-process 92Nb decays to zirconium-92 (92Zr) by electron capture with a half-life of 37 million years. The system is promising chronometer for dating early solar system events accompanied by niobium and zirconium fractionation. Moreover, once the initial abundance of 92Nb and its distribution in the early solar system are well established, it provides valuable constraints on the origin of p-process nucleosynthesis.

In order to determine the initial abundance of 92Nb from one meteorite, we need to calibrate the Nb-Zr chronometer with an absolute precise U-Pb chronometer. Therefore, it is essential to establish a meteorite to which high precision U-Pb chronometer can be applied and in which the initial abundances of 92Nb can be determined, the so called “Time anchor”. One meteorite must satisfy the following conditions to tie Nb-Zr age to an absolute U-Pb chronology: (1) a precise U-Pb age can be obtained; (2) an internal Nb-Zr isochron age can be obtained; (3) a cooling rate is rapid enough to make the difference of closure temperature between the two chronometers insignificant; (4) the meteorite has not been affected by secondary alternation or exotic components that disturb the ages.

First evidence for live 92Nb with the initial 92Nb/93Nb of (1.6 ± 0.3) × 10–5 was reported in rutile in Toluca iron meteorite. Although subsequently proposed initial 92Nb/93Nb vary between 10–3 to 10–5, the current paradigm is that the initial 92Nb/93Nb at the solar system formation is (1.7 ± 0.6)× 10–5, obtained using Nb-Zr Time anchor NWA 4590 angrite (U–Pb age: 4557.93 ± 0.36 Ma), and also that 92Nb was homogeneously distributed in the solar system. However, all of the samples previously studied for internal Nb-Zr isochron dating are thought to have originated from the inner solar system. Thus, it is still unclear whether 92Nb was homogeneously distributed in the outer solar system such as the accretion regions of carbonaceous chondrites.

Northwest Africa (NWA) 6704 is a recently found achondrite having unbrecciated and fresh igneous texture. The pristine chondrite-like characteristics of this meteorite, coupled with its ancient U-Pb age (4562.76 ± 0.30 Ma), and its igneous texture different from any known achondrite make it ideal for exploring whether it is the first “Time anchor from the outer solar system”.

The purpose of this study is to evaluate the initial abundance and distribution of 92Nb in the early solar system, on the largest scale to date. To achieve this goal, the NWA 6704 ungrouped primitive achondrite has been investigated. Developing NWA 6704 as the first Time anchor from the outer solar system, and applying the Nb-Zr internal isochron approach, we could determine the initial abundance of 92Nb in the outer solar system. This allowed us to evaluate the distribution of 92Nb between the inner and outer solar system, and to provide new constraints on the early solar system chronology and on early solar system processes related to 92Nb.

In Chapter 2, we developed a new method for combined Cr-Ti isotope analysis applicable to various planetary materials. Both the utility and the validity of the method have been verified by its application to compositionally varied terrestrial and meteorite samples, including terrestrial basalt JB-1b, terrestrial peridotite JP-1, Allende carbonaceous chondrite, and Juvinas non-cumulate eucrite. The developed method enables the combined isotope analyses of 3 µg of Cr and 1.5 µg of Ti, highlighting its potential application to various types of planetary materials.

In Chapter 3, the new method developed in Chapter 2 was applied to NWA 6704, and the origin of this meteorite was investigated in terms of the petrology, geochemistry and 187Re-187Os and O-Cr-Ti isotope systematics. On the basis of our results, we discussed the crystallization process of NWA 6704, the nature and provenance of its parent body, and its potential utility as a “Time anchor”. Our results indicated that the parent asteroid of NWA 6704 underwent significant but instantaneous melting followed by cooling at a high rate (1–102 ˚C/hour) in the initial stage but a significantly lower rate (<10–4–10–2 ˚C/hour at below ~1100 ˚C) in the later stage owing to blanketing effect of impact ejecta piled up on the parent body. Furthermore, since the mineral assemblage includes chromite grains with high Nb/Zr, and orthopyroxene and awaruite grains with low Nb/Zr, the internal Nb-Zr isochron can be expected to be obtained. The O, Cr and Ti stable isotope compositions indicated that the parent body of NWA 6704 sampled the same reservoirs to those of carbonaceous chondrites and distinct from the reservoirs of all meteorites previously studied for internal Nb-Zr isochron dating. Consequently, the results revealed that the NWA 6704 ungrouped primitive achondrite is a viable, new “Time anchor from the outer solar system”.

In Chapter 4, the Nb-Zr internal isochron dating was applied to NWA 6704, and the initial 92Nb abundance at the start of our solar system was determined. The results yielded an initial 92Nb/93Nb of (2.8 ± 0.3) × 10-5 at the time of NWA 6704 formation (4562.76 ± 0.30 Ma), which corresponds to an initial 92Nb/93Nb of (3.0 ± 0.3) × 10-5 at the time of solar system formation. The ratio is distinctly higher than the value in the inner solar system, which significantly affects the interpretation of the Nb–Zr early solar system chronology. This value can serve as the reference point for the Nb–Zr chronometry in the outer solar system. Using the obtained value, we further investigated the nucleosynthetic origin of 92Nb. The results suggested that the ν-process in Type II supernova (SNII) is the most probable origin for 92Nb, and imply that nuclides synthesized in the last SNII were preferentially implanted or preserved in the outer solar system rather than the inner solar system.

この論文で使われている画像

参考文献

Akram, W., Schönbächler, M., Sprung, P., and Vogel, N. (2013). Zirconium—Hafnium isotope evidence from meteorites for the decoupled synthesis of light and heavy neutron-rich nuclei. The Astrophysical Journal, 777, 169.

Akram, W., Schönbächler, M., Bisterzo, S., andGallino, R. (2015). Zirconium isotope ev- idence for the heterogeneous distribution of s-process materials in the solar system. Geochim. Cosmochim. Acta 165, 484–500.

Albarède, F., and Beard, B. (2004). Analytical methods for non-traditional isotopes.Reviews in mineralogy and geochemistry, 55, 113–152.

Alexander, C. M. D. (2005). Re-examining the role of chondrules in producing the elemental fractionations in chondrites. Meteoritics and Planetary Science, 40, 943–965.

Amelin Y., Kaltenbach A., Iizuka T., Stirling C. H., Ireland T. R., Petaev M. and Jacobsen S. B. (2010) U-Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 300, 343–350.

Amelin Y., Koefoed P., Iizuka T., Fernandes V. A., Huyskens M., Yin Q.-Z. and Irving

A. J. (2019) U-Pb, Rb-Sr and Ar-Ar systematics of the ungrouped achondrites Northwest Africa 6704 and Northwest Africa 6693. Geochim. Cosmochim. Acta. https://doi.org/10.1016/j.gca.2018.09.021.

Anders, E., and Goles, G. C. (1961). Theories on the origin of meteorites. J. Chem. Educ, 38, 58.

Anders E., and Grevesse N. (1989). Abundances of the elements: Meteoritic and solar.Geochim. Cosmochim. Acta, 53, 197–214.

Archer G.J., Ash R.D., Bullock E.S., and Walker R.J. (2014). Highly siderophile elements and 187Re–187Os isotopic systematics of the Allende meteorite: Evidence for primary nebular processes and late-stage alteration. Geochim. Cosmochim. Acta, 131, 402–414.

Arndt, N. T., and Fleet, M. E. (1979). Stable and metastable pyroxene crystallization in layered komatiite lava flows. American Mineralogist, 64, 856–864.

Arnould, M., Goriely, S., and Takahashi, K. (2007). The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries. Physics Reports, 450, 97-213.

Ballhaus, C., Berry, R. F., and Green, D. H. (1991). High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107, 27–40.

Barrat, J. A., Jambon, A., Bohn, M., Blichert-Toft, J., Sautter, V., Göpel, C., Gillet, Ph., Boudouma, O., and Keller, F. (2003). Petrology and geochemistry of the unbrecciated achondrite Northwest Africa 1240 (NWA 1240): an HED parent body impact melt. Geochim. Cosmochim. Acta, 67, 3959–3970.

Barnes S.-J., Naldrett A.J., and Gorton M.P. (1985). The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology, 53, 302–323.

Becker H., Morgan J.W., Walker R.J., MacPherson G.L. and Grossman J.N. (2001). Rhenium–osmium systematics of calcium–aluminum-rich inclusions in carbonaceous chondrites. Geochim. Cosmochim. Acta, 65, 3379–3390.

Bédard, J. H. (2007). Trace element partitioning coefficients between silicate melts and orthopyroxene: parameterizations of D variations. Chemical Geology, 244, 263-303.

Benedix, G. K., McCoy, T. J., Keil, K., Bogard, D. D., and Garrison, D. H. (1998). A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochim. Cosmochim. Acta, 62, 2535–2553.

Benedix, G. K., Lauretta, D. S., and McCoy, T. J. (2005). Thermodynamic constraints on the formation conditions of winonaites and silicate-bearing IAB irons. Geochim. Cosmochim. Acta, 69, 5123–5131.

Birck, J. L., Barman, M. R., and Capmas, F. (1997). Re–Os isotopic measurements at the femtomole level in natural samples. Geostandards and Geoanalytical Research, 21, 19–27.

Bogdanovski, O., and G. W. Lugmair. (2004). Manganese-chromium isotope systematics of basaltic achondrite Northwest Africa 011. In 35th Lunar and Planetary Science Conference, #1715 (abstract).

Bottke, W. F., Vokrouhlický, D., Marchi, S., Swindle, T., Scott, E. R. D., Weirich, J. R., and Levison, H. (2015). Dating the Moon-forming impact event with asteroidal meteorites. Science, 348, 321-323.

Bonnand P., Parkinson I. J., James R. H., Karjalainen A. M., and Fehr M. A. (2011) Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26, 528–535.

Bonnand P., Williams H. M., Parkinson I. J., Wood B. J. and Halliday A. N. (2016) Stable chromium isotopic composition of meteorites and metal–silicate experiments: Implications for fractionation during core formation. Earth and Planetary Science Letters, 435, 14–21.

Bonnand, P., Parkinson, I. J., and Anand, M. (2016b). Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon. Geochim. Cosmochim. Acta, 175, 208–221.

Borisov A. and Palme H. (1995). The solubility of iridium in silicate melts: new data from experiments with Ir10Pt90 alloys. Geochim. Cosmochim. Acta, 59, 481–485.

Bouvier A., Spivak-Birndorf L. J., Brennecka G. A. and Wadhwa M. (2011a) New constraints on early Solar System chronology from Al-Mg and U-Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976. Geochim. Cos- mochim. Acta, 75, 5310–5323.

Bouvier A., Brennecka G. A. and Wadhwa M. (2011b) Absolute chronology of the first solids in the solar system. In Workshop on the Formation of the First Solids in the Solar System. Lunar Planet. Inst., Houston. #9054. (abstract).

Brandon A.D., Humayun M., and Puchtel I.S. (2005). Re–Os isotopic systematics and platinum group element concentration of the Tagish Lake carbonaceous chondrite. Geochim. Cosmochim. Acta, 69, 1619–1631.

Brandon A.D., Puchtel I.S., Walker R.J., Day J.M.D., Irving, A.J., and Taylor L.A. (2012). Evolution of the martian mantle inferred from the 187Re–187Os isotope and highly siderophile element abundance systematics of shergottite meteorites. Geochim. Cosmochim. Acta, 76, 206–235.

Brearley, A. J. (1991). Subsolidus microstructures and cooling history of pyroxenes in the Zagami shergottite. Lunar Planet. Sci. XXII, Lunar Planet. Inst., Houston. #135 (abstract).

Brennecka, G. A., and Wadhwa, M. (2012). Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proceedings of the National Academy of Sciences, 109, 9299-9303.

Breton T. and Quitté G. (2014). High-precision measurements of tungsten stable isotopes and application to earth sciences. Journal of Analytical Atomic Spectrometry, 29, 2284–2293.

Burbidge, E. M., Burbidge, G. R., Fowler, W. A., and Hoyle, F. (1957). Synthesis of the elements in stars. Reviews of modern physics, 29, 547.

Burkhardt C., Dauphas N., Tang H., Fischer-Gödde M., Qin L., Chen J. H., Rout S. S., Pack A., Heck P. R., and Papanastassiou D. A. (2017). In search of the Earth-forming reservoir: Mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites. Meteoritics and Planetary Science, 52, 807–826.

Byelikov, A., Adachi, T., Fujita, H., Fujita, K., Fujita, Y., Hatanaka, K., Heger, A., Kalmykov, Y., Kawase, K., Langanke, K., Martínez-Pinedo, G., Nakanishi, K., von Neumann-Cosel, P., Neveling, R., Richter, A., Sakamoto, N., Sakemi, Y., Shevchenko, A., Shimbara, Y., Shimizu, Y., Smit, F. D., Tameshige, Y., Tamii, A., Woosley, S. E., and Yosoi, M. (2007). Gamow-Teller Strength in the Exotic Odd-Odd Nuclei La-138 and Ta-180 and Its Relevance for Neutrino Nucleosynthesis. Physical review letters, 98, 082501.

Cameron, A. G. W. (1957). Nuclear reactions in stars and nucleogenesis. Publications of the Astronomical Society of the Pacific, 69, 201–222.

Capobianco C.J., Jones J. H., and Drake M.J. (1993). Metal-silicate thermochemistry at high temperature: Magma oceans and the "excess siderophile element" problem of the Earth's Upper Mantle. J. Geophys. Res. 98, 5433–5443.

Carlson, R. W., and Boyet, M. (2009). Short-lived radionuclides as monitors of early crust–mantle differentiation on the terrestrial planets. Earth and Planetary Science Letters, 279, 147–156.

Carlson R. W. and Hauri E. H. (2001). Extending the 107Pd–107Ag chronometer to low Pd/Ag meteorites with multicollector plasma-ionization mass spectrometry. Geochim. Cosmochim. Acta, 65, 1839–1848.

Cheoun, M. K., Ha, E., Hayakawa, T., Chiba, S., Nakamura, K., Kajino, T., and Mathews, G. J. (2012). Neutrino induced reactions for ν-process nucleosynthesis of 92 Nb and 98 Tc. Physical Review C, 85, 065807.

Choi, B. G., Huss, G. R., Wasserburg, G. J., and Gallino, R. (1998). Presolar corundum and spinel in ordinary chondrites: Origins from AGB stars and a supernova. Science, 282, 1284–1289.

Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973). A component of primitive nuclear composition in carbonaceous meteorites. Science, 182, 485-488.

Clayton R. N., Onuma N., and Mayeda T. K. (1976). A classifi- cation of meteorites based on oxygen isotopes. Earth Planet. Sci. Lett. 30, 10–18.

Clayton, R. N. (2002). Solar System: Self-shielding in the solar nebula. Nature, 415,860–861.

Clayton R. N., and Mayeda T. K. (1988). Formation of ureilites by nebular processes.Geochim. Cosmochim. Acta. 52, 1313–1318.

Clayton R. N., Mayeda T. K., Goswami J. N., and Olsen E. J. (1991). Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta, 55, 2317–2337.

Clayton, R. N., and Mayeda, T. K. (1996). Oxygen isotope studies of achondrites.Geochim. Cosmochim. Acta, 60, 1999–2017.

Clayton, R. N., and Mayeda, T. K. (1999). Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta, 63, 2089–2104.

Cody, A. M., and Cody, R. D. (1995). Dendrite formation by apparent repeated twinning of calcium oxalate dihydrate. Journal of crystal growth, 151, 369–374.

Cohen A.S. and Waters F.G. (1996). Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Anal. Chim. Acta, 332, 269–275.

Cole D. B., Reinhard C. T., Wang X., Gueguen B., Halverson G. P., Gibson T., Hodgskiss M. S.W., McKenzie N. R., Timothy W. L., and Planavsky N. J. (2016). A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 44, 555-558.

Connelly J. N., Bizzarro M., Krot A. N., Nordlund A., Wielandt D., and Ivanova M. A. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655.

Cook, D. L., Clayton, R. N., Wadhwa, M., Janney, P. E., and Davis, A. M. (2008). Nickel isotopic anomalies in troilite from iron meteorites. Geophysical Research Letters, 35.

Creaser R. A., Papanastassiou D. A., and Wasserburg G. J. (1991). Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochim. Cosmochim. Acta, 55, 397–401.

Dauphas, N., Rauscher, T., Marty, B., and Reisberg, L. (2003). Short-lived p-nuclides in the early solar system and implications on the nucleosynthetic role of X-ray binaries. Nuclear Physics A, 719, C287-C295.

Dauphas, N. (2005). Multiple sources or late injection of short-lived r-nuclides in the early solar system?. arXiv preprint astro-ph/0502514.

Dauphas, N., Remusat, L., Chen, J. H., Roskosz, M., Papanastassiou, D. A., Stodolna, J., Guan, Y., Ma, C., and Eiler, J. M. (2010). Neutron-rich chromium isotope anomalies in supernova nanoparticles. The Astrophysical Journal, 720, 1577.

Dauphas N. and Chaussidon M. (2011). A perspective from extinct radionuclides on a young stellar object: the Sun and its accretion disk. Annu. Rev. Earth Planet. Sci. 39, 351–386.

Dauphas, N., Poitrasson, F., Burkhardt, C., Kobayashi, H., and Kurosawa, K. (2015). Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth Planet. Sci. Lett., 427, 236–248.

Dauphas, N., and Schauble, E. A. (2016). Mass fractionation laws, mass-independent effects, and isotopic anomalies. Annual Review of Earth and Planetary Sciences, 44, 709–783.

Davis, A. M., and McKeegan, K. D. (2014). Short-lived radionuclides and early solar system chronology. Meteorites and Cosmochemical Processes, 361–395.

Day J.M.D., Ash R.D., Liu Y., Bellucci J.J., Rumble D. III., McDonough W.F., Walker R.J., and Taylor L.A. (2009). Early formation of evolved asteroidal crust. Nature, 457, 179–182.

Day J. M. D., Pearson D. G., Macpherson C. G., Lowry D. and Carracedo J. C. (2010). Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochim. Cosmochim. Acta, 74, 6565–6589.

Day J. M. D., Walker R. J., Ash R. D., Liu Y., Rumble D. III., Irving A. J., Goodrich C. A., Tait K., McDonough W. F., and Taylor L. A. (2012). Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies. Geochim. Cosmochim. Acta, 81, 94–128.

Day, J., Corder, C. A., Rumble, D., Assayag, N., Cartigny, P., and Taylor, L. A. (2015). Differentiation processes in FeO-rich asteroids revealed by the achondrite Lewis Cliff 88763. Meteoritics and Planetary Science, 50, 1750–1766.

de Leuw S., Papanastassiou D., and Wasson J. T. (2010). Chromium isotopes in chondrites and the heterogeneous accretion of the solar nebula. In 41th Lunar and Planetary Science Conference,#2703 (abstract).

Durant, D. G., and Fowler, A. D. (2002). Origin of reverse zoning in branching orthopyroxene and acicular plagioclase in orbicular diorite, Fisher Lake, California. Mineralogical Magazine, 66, 1003–1020.

Fabriès, J. (1979). Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contributions to Mineralogy and Petrology, 69, 329–336.

Fernandes, V. A., Burgess, R., Crowther, S. A., Fritz, J. P., Gilmour, J. D., Irving, A., Meier, M. M. M., Nottingham, M., and Wieler, R. (2013). 40Ar-39Ar and Noble Gas Systematics of the Ungrouped Achondrite Northwest Africa 6704. Lunar Planet. Sci. XLIV, Lunar Planet. Inst., Houston. #1956 (abstract).

Fischer-Gödde M., Becker H., and Wombacher F. (2010). Rhodium, gold and other highly siderophile element abundances in chondritic meteorites. Geochim. Cosmochim. Acta., 74, 356–379.

Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., and Reynolds, B. C. (2009). Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. Earth Planet. Sci. Lett., 287, 77–85.

Fleet, M. E., and MacRae, N. D. (1975). A spinifex rock from Munro Township, Ontario. Canadian Journal of Earth Sciences, 12, 928–939.

Floss, C., Crozaz, G., Jolliff, B., Benedix, G., and Colton, S. (2008). Evolution of the winonaite parent body: Clues from silicate mineral trace element distributions. Meteoritics and Planetary Science, 43, 657–674.

Fortenfant, S. S., Günther, D., Dingwell, D. B., and Rubie, D. C. (2003). Temperature dependence of Pt and Rh solubilities in a haplobasaltic melt. Geochim. Cosmochim. Acta, 67, 123–131.

Franchi, I. A., Wright, I. P., Sexton, A. S., and Pillinger, C. T. (1999). The oxygen-isotopic composition of Earth and Mars. Meteoritics and Planetary Science, 34,657–661.

Frei R., Gaucher C., Poulton S. W., and Canfield D. E. (2009). Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes.Nature, 461, 250–254.

Fritz, J., Greshake, A., and Fernandes, V. A. (2017). Revising the shock classification of meteorites. Meteoritics and Planetary Science, 52, 1216–1232.

Gardner-Vandy, K. G., Lauretta, D. S., Greenwood, R. C., McCoy, T. J., Killgore, M., and Franchi, I. A. (2012). The Tafassasset primitive achondrite: Insights into initial stages of planetary differentiation. Geochim. Cosmochim. Acta, 85, 142–159.

Gerber S., Burkhardt C., Budde G., Metzler K., and Kleine T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules. The Astrophysical Journal Letters, 841, 1–7.

Ghosh, A., Weidenschilling, S. J., McSween Jr, H. Y., and Rubin, A. (2006). Asteroidal heating and thermal stratification of the asteroid belt. Meteorites and the early solar system II, 555–566.

Glavin D. P., Kubny A., Jagoutz E., and Lugmair G. W. (2004). Mn-Cr isotope systematics of the D’Orbigny angrite. Meteor. Planet. Sci., 39, 693–700.

Goodrich, C. A. (1992). Ureilites-A critical review, Meteoritics, 27, 327–352.

Goodrich, C. A., and Delaney, J. S. (2000). Fe/Mg–Fe/Mn relations of meteorites and primary heterogeneity of primitive achondrite parent bodies. Geochim. Cosmochim. Acta, 64, 149–160.

Goodrich C. A., Kita N. T., Yin Q. Z., Sanborn M. E., Williams C. D., Nakashima D., Lane M. D. and Boyle S. (2017). Petrogenesis and provenance of ungrouped achondrite Northwest Africa 7325 from petrology, trace elements, oxygen, chromium and titanium isotopes, and mid-IR spectroscopy. Geochim. Cosmochim. Acta, 203, 381–403.

Göpel, C., and Birck, J. L. (2010). Mn/Cr systematics: A tool to discriminate the origin of primitive meteorites. Goldschmidt Conference #348 (abstract).

Göpel, C., Birck, J. L., Galy, A., Barrat, J. A., and Zanda, B. (2015). Mn–Cr systematics in primitive meteorites: Insights from mineral separation and partial dissolution. Geochim. Cosmochim. Acta, 156, 1–24.

Goswami, J. N. (2004). Short-lived nuclides in the early solar system: the stellar connection. New Astronomy Reviews, 48, 125–132.

Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E., and Lee, T. (2006). The irradiation origin of beryllium radioisotopes and other short-lived radionuclides. The Astrophysical Journal, 640, 1163.

Graham, A. L., Easton, A. J., and Hutchison, R. (1977). Forsterite ehondrites; the meteorites Kakangari, Mount Morris (Wisconsin), Pontlyfiri, and Winona. Mineral. Mag, 41, 201–210.

Greenwood, R. C., and Franchi, I. A. (2004). Alteration and metamorphism of CO3 chondrites: Evidence from oxygen and carbon isotopes. Meteoritics and Planetary Science Archives, 39, 1823–1838.

Greenwood R. C., Franchi I. A., Jambon A. and Buchanan P. C. (2005). Widespread magma oceans on asteroidal bodies in the early Solar System. Nature, 435, 916–918.

Greenwood, R. C., Franchi, I. A., Kearsley, A. T., and Alard, O. (2010). The relationship between CK and CV chondrites. Geochim. Cosmochim. Acta, 74, 1684–1705.

Greenwood, R. C., Franchi, I. A., Gibson, J. M., and Benedix, G. K. (2012). Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochim. Cosmochim. Acta, 94, 146–163.

Gueguen B., Reinhard C.T., Algeo T.J., Peterson L.C., Nielsen S.G., Wang X. and Planavsky N.J. (2016) The chromium isotope composition of reducing and oxic marine sediments. Geochim. Cosmochim. Acta, 184, 1–19.

Haba, M. K., Lai Y. J., Wotzlaw J. F., Yamaguchi A., von Quadt A., and Schönbächler M. (2017) Rutiles and Zircons of Mesosiderites: Combined Niobium-Zirconium and Uranium-Lead Chronometry and the Initial Abundance of Niobium-92 in the Solar System. in 48th Lunar and Planetary Science Conference, The Woodlands, Texas, 20 to 24 March 2017 (LPSC 2017), Abstract # 1739.

Harju, E. R., Rubin, A. E., Ahn, I., Choi, B. G., Ziegler, K., and Wasson, J. T. (2014). Progressive aqueous alteration of CR carbonaceous chondrites. Geochim. Cosmochim. Acta, 139, 267–292.

Harper Jr., C.L. (1996). Evidence for 92 Nb in the early solar system and evalua- tion of a new p-process cosmochronometer from 92 Nb/92Mo. Astrophys. J., 466, 437–456.

Hayakawa T., Nakamura K., Kajino T., Chiba S., Iwamoto N., Cheoun M. K., and Mathews G. J. (2013). Supernova neutrino nucleosynthesis of the radioactive 92Nb observed in primitive meteorites. Astrophys. J. Lett., 779, L9.

Hayakawa, T., Ko, H., Cheoun, M. K., Kusakabe, M., Kajino, T., Usang, M. D., Chiba,S., Nakamura, K., Tolstov, A., Nomoto, K., Hashimoto, M. A., Ono, M., Kawano, T., and Mathews, G. J. (2018). Short-Lived Radioisotope Tc 98 Synthesized by the Supernova Neutrino Process. Physical review letters, 121, 102701.

Heger A., Kolbe E., Haxton W. C., Langanke K., Martinez–Pinedo G., and Woosley S. E., (2005). Neutrino nucleosynthesis. Phys. Lett. B, 606, 258–264

Hewins, R. H., and Zanda, B. (2012). Chondrules: Precursors and interactions with the nebular gas. Meteoritics and Planetary Science, 47, 1120–1138.

Hezel D. C., Harak M. and Libourel G. (2018). What we know about elemental bulk chondrule and matrix compositions: Presenting the ChondriteDB Database. Chemie der Erde, 78, 1–14.

Hibiya, Y., Iizuka, T., Yamashita, K., Yoneda, S., and Yamakawa, A. (2019a) Sequential Chemical Separation of Cr and Ti from a Single Digest for High-Precision Isotope Measurements of Planetary Materials. Geostandards and Geoanalytical Research. https://doi.org/10.1111/ggr.12249

Hibiya Y., Archer G. J., Tanaka R., Sanborn M. E., Sato Y., Iizuka T., Ozawa K., Walker R. J., Yamaguchi A., Yin Q-Z., Nakamura T., and Irving, A. J. (2019b). The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re–Os, O and Ti isotope systematics. Geochim. Cosmochim. Acta, 245, 597-627. https://doi.org/10.1016/j.gca.2018.04.031

Hirata, T. (2001). Determinations of Zr isotopic composition and U–Pb ages for terrestrial and extraterrestrial Zr-bearing minerals using laser ablation-inductively coupled plasma mass spectrometry: implications for Nb–Zr isotopic systematics. Chemical Geology, 176, 323-342.

Hoffman, R. D., Woosley, S. E., Fuller, G. M., and Meyer, B. S. (1996). Production of the light p-process nuclei in neutrino-driven winds. The Astrophysical Journal, 460, 478.

Holden N. E. (1990). Total half-lives for selected nuclides. Pure Appl. Chem., 62, 941–958.

Honda M. and Imamura M. (1971). Half-life of Mn–53. Physical Review C, 4, 1182–1188.

Horai, K., and Winkler, J. (1974). Thermal Diffusivity of Lunar Rock Sample 12001, 85.Lunar Planet. Sci. VI, Lunar Planet. Inst., Houston. pp. 354–356 (abstract).

Horan M. F., Walker R. J., Morgan J. W., Grossman J. N. and Rubin A. (2003). Highly siderophile elements in chondrites. Chem. Geol., 196, 5–20.

Huss, G. R., Meyer, B. S., Srinivasan, G., Goswami, J. N., and Sahijpal, S. (2009). Stellar sources of the short-lived radionuclides in the early solar system. Geochimica et Cosmochimica Acta, 73, 4922–4945.

Iizuka, T., Kaltenbach, A., Amelin, Y., and Stirling, C. H. (2013). U–Pb systematics of eu- crites in relation to their thermal history. In 44th Lunar and Planetary Science Conference, #1907 (abstract).

Iizuka, T., Amelin, Y., Kaltenbach, A., Koefoed, P., and Stirling, C. H. (2014). U–Pb systematics of the unique achondrite Ibitira: precise age determination and petrogenetic implications. Geochim. Cosmochim. Acta., 132, 259–273.

Iizuka, T., Yamaguchi, A., Haba, M.K., Amelin, Y., Holden, P., Zink, S., Huyskens, M.H., and Ireland, T.R. (2015). Timing of global crustal metamorphism on Vesta as revealed by high-precision U–Pb dating and trace element chemistry of eucrite zircon. Earth Planet. Sci. Lett., 409, 182–192.

Iizuka T., Lai Y. J., Akram W., Amelin Y., and Schönbächler M. (2016). The initial abundance and distribution of 92Nb in the Solar System. Earth and Planet. Sci. Lett. 439, 172–181.

Imai N., Terashima S., Itoh S. and Ando A. (1995). 1994 compilation values for GSJ reference samples,“Igneous rock series”. Geochemical Journal, 29, 91–95.

Irving A.J., Tanaka R., Steele A., Kuehner S.M., Bunch T.E., Wittke J.H. and HupéG.M. (2011). Northwest Africa 6704: a unique cumulate permafic achondrite containing sodic feldspar, awaruite and “fluid” inclusions, with an oxygen isotopic composition in the acapulcoite-lodranite field. 74th Annual Meteoritical Society Meeting, #5231.

Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M. (1971). Precision measurement of half-lives and specific activities of 235U and 238U: Physical Review Series C, v. 4. doi, 10, 1889–1906.

Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V., and Wänke, H. (1979). The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. In Lunar and Planetary Science Conference Proceedings (Vol. 10, pp. 2031–2050).

Jambon, A., Humayun, M., and Barrat, J. A. (2012). Northwest Africa 6693: a unique achondritic cumulate. In Lunar and Planetary Science Conference Proceedings (Vol. 43, #2099).

Jarosewich E. (1971) Chemical analysis of the Murchison Meteorite. Meteoritics. 6,49–52.

Jarosewich E., Clarke Jr R. S., and Barrows J. N. (1987). Allende meteorite reference sample. Smithsonian Contributions to the Earth Sciences, 1–49.

Jenniskens P., Fries M. D., Yin Q. Z., Zolensky M., Krot A. N., Sandford S. A., Sears D., Beauford R., Ebel D. S., Friedrich J. M., Nagashima K., Wimpenny J., Yamakawa A., Nishiizumi K., Hamajima Y., Caffee M. W., Welten K. C., Laubenstein M., K. Davis A. M., Simon S. B., Heck P. R., Young E. D., Kohl I. E., Thiemens M. H., Nunn M. H., Mikouchi T., Hagiya K., Ohsumi K., Cahill T. A., Lawton J. A, Barnes D., Steele A., Rochette P., Verosub K. L., Gattacceca J., Cooper G., Glavin D. P., Burton A. S., Dworkin J. P., Elsila J. E., Pizzarello S., Ogliore R., Schmitt-Kopplin P., Harir M., Hertkorn N., Verchovsky A., Grady M., Nagao K., Okazaki R., Takechi H., Hiroi T., Smith K., Silber E. A., Brown P. G., Albers J., Klotz D., Hankey M., Matson R., Fries J. A., Walker R. J., Puchtel I., Lee C. A., Erdman M. E., Eppich G. R., Roeske S., Gabelica Z., Lerche M., Nuevo M., Girten B., and Worden S. P. (2012). Radar-enabled recovery of the Sutter’s Mill meteorite, a carbonaceous chondrite regolith breccia. Science, 338, 1583-1587.

Jessberger, E. K., Christoforidis, A., and Kissel, J. (1988). Aspects of the major element composition of Halley's dust. Nature, 332, 691–695.

Jochum K. P., Weis U., Schwager B., Stoll B., Wilson S. A., Haug G. H., Andreae M. O., and Enzwiler J. (2015). Reference values following ISO guidelines for frequently requested rock reference materials. Geostandards Geoanal. Res. 40, 333–350.

Keil, K. (2014). Brachinite meteorites: Partial melt residues from an FeO-rich asteroid.Chemie der Erde-Geochemistry, 74, 311–329.

Keil K., and McCoy T. J. (in press) Acapulcoite-lodranite meteorites: ultramafic asteroidal partial melt residues. Chemie der Erde-Geochemistry, https://doi.org/10.1016/j.chemer.2017. 04.004.

Kennedy, A. K., Lofgren, G. E., and Wasserburg, G. J. (1993). An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. Earth and Planetary Science Letters, 115, 177–195.

Kimura, K., Lewis, R.S., and Anders, E. (1974). Distribution of gold and rhenium between nickel– iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta, 38, 683–701.

Kleine, T., Mezger, K., Münker, C., Palme, H., and Bischoff, A. (2004). 182 Hf-182 W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim. Cosmochim. Acta, 68, 2935–2946.

Kööp L., Davis A. M., Nakashima D., Park C., Krot A. N., Nagashima K., Tenner T. J., Heck P. R. and Kita N. T. (2016). A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochim. Cosmochim. Acta., 189, 70–95.

Kon Y., and Hirata T. (2015). Determination of 10 major and 34 trace elements in 34 GSJ geochemical reference samples using femtosecond laser ablation ICP-MS. Geochem. J. 49, 351–375.

Kretz R. (1966). Interpretation of the shape of mineral grains in metamorphic rocks. J. Petrol. 7, 68–94.

Kruijer T. S., Burkhardt C., Budde G., and Kleine T. (2017). Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl. Acad. Sci. 114, 6712–6716.

Kuehner, S. M., Irving, A. J., (2007). Grain boundary glasses in plutonic angrite NWA 4590: evidence for rapid decompressive partial melting and cooling on Mercury? In 38th Lunar and Planetary Science Conference, #1522 (abstract).

Lai Y. J., Henshall T., Cook D. L., Fehr M. A., and Schönbächler M. (2017). The Abundance of 92Nb in the Early Solar System, in Goldschmidt 2017 conference, Paris, France, 13 to 18 August 2017.

Larsen K. K., Trinquier A., Paton C., Schiller M., Wielandt D., Ivanova M. A., Connelly J. N., Nordlund A, Krot A. N., and Bizzarro M. (2011). Evidence for magnesium isotope hetero- geneity in the solar protoplanetary disk. Astrophys. J. Lett. 735, 37–44.

Larsen K. K., Wielandt D., Schiller M., and Bizzarro M. (2016). Chromatographic speciation of Cr (III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis. Journal of Chromatography A, 1443, 162–174.

Larsen K. K., Wielandt D., and Bizzarro, M. (2018). Multi-element ion-exchange chromatography and high-precision MC-ICP-MS isotope analysis of Mg and Ti from sub-mm-sized meteorite inclusions. Journal of Analytical Atomic Spectrometry, 33, 613–628.

Larimer J. W. (1979). The condensation and fractionation of refractory lithophile elements. Icarus, 40, 446–454.

Laubier, M., Grove, T. L., and Langmuir, C. H. (2014). Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392, 265–278.

Le Corre, L., Reddy, V., Cloutis, E. A., Mann, P., Buchanan, P. C., Gabelica, Z., Hupé, G., and Gaffey, M. J. (2014). Identifying Parent Asteroid of Ungrouped Achondrite Northwest Africa 6704: Lessons from Dawn at Vesta. Lunar Planet. Sci. XLV, Lunar Planet. Inst., Houston. #1311 (abstract).

Leya, I., Wieler, R., and Halliday, A. N. (2001, March). The influence of cosmic-ray production on extinct nuclide systems. New results from improved model calculations. In Lunar and Planetary Science Conference (Vol. 32).

Leya, I., Schönbächler, M., Wiechert, U., Krähenbühl, U., and Halliday, A. N. (2007). High precision titanium isotope measurements on geological samples by high resolution MC-ICPMS. International Journal of Mass Spectrometry, 262, 247–255.

Leya I., Schonbachler M. Wiechert U., Krahenbuhl U., and Halliday A. N. (2008). Titanium isotopes and the radial heterogeneity of the solar system. Earth Planet. Sci. Lett. 266, 233–244.

Leya I., Schönbächler M., Krähenbühl U., and Halliday A. N. (2009). New titanium isotope data for Allende and Efremovka CAIs. The Astrophysical Journal, 702, 1118–1126.

Liccardo, V., Malheiro, M., Hussein, M. S., and Frederico, T. (2018). Nuclear processes in Astrophysics: Recent progress. arXiv preprint arXiv:1805.10183.

Lindsley, D. H., and Andersen, D. J. (1983). A two-pyroxene thermometer. Journal of Geophysical Research: Solid Earth, 88.

Lodders, K. (2003) Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 1220–1247.

Lofgren, G. E. (1980). Experimental studies on the dynamic crystallization of silicate melts, In Physics of Magmatic Process, edited by R. B. Hargrave, Princeton University Press, Princeton, pp.487–551.

Ludwig, K. R. (2001). Users Manual for Isoplot/Ex version 2.47. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a, 55pp.

Lugaro, M., Pignatari, M., Ott, U., Zuber, K., Travaglio, C., Gyürky, G., and Fülöp, Z. (2016). Origin of the p-process radionuclides 92Nb and 146Sm in the early solar system and inferences on the birth of the Sun. Proc. Natl. Acad. Sci. U.S.A. 113, 907–912.

Lugaro, M., Ott, U., and Kereszturi, Á. (2018). Radioactive nuclei from cosmochronology to habitability. Progress in Particle and Nuclear Physics.

Lugmair G. W. and Shukolyukov A. (1998). Early solar system timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta, 62, 2863–2886.

Lyons, J. R., and Young, E. D. (2005). CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature, 435, 317–320.

Makishima, A., and Nakamura, E. (2006). Determination of Major, Minor and Trace Elements in Silicate Samples by ICP-QMS and ICP-SFMS Applying Isotope Dilu- tion-Internal Standardisation (ID-IS) and Multi-Stage Internal Standardisation. Geostandards Geoanal. Res. 30, 245–271.

Mann, U., Frost, D. J., Rubie, D. C., Becker, H., and Audétat, A. (2012). Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and temperatures- Implications for the origin of highly siderophile element concentrations in the Earth's mantle. Geochim. Cosmochim. Acta, 84, 593–613.

Mason, B. (1967). Meteorites. American Scientist, 55, 429–455.

Mattinson, J. M. (2010). Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chemical Geology, 275, 186–198.

McCoy, T. J., Keil, K., Clayton, R. N., and Mayeda, T. K. (1993). Classificational parameters for acapulcoites and lodranites: The cases of FRO 90011, EET 84302 and ALH A81187/84190. Lunar Planet. Sci. XXIV, Lunar Planet. Inst., Houston. #945 (abstract).

McCoy, T. J., Keil, K., Clayton, R. N., Mayeda, T. K., Bogard, D. D., Garrison, D. H., Huss, G. R., Hutcheon, I. D., and Wieler, R. (1996). A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting. Geochim. Cosmochim. Acta, 60, 2681–2708.

McCoy T. J., Mittlefehldt D. W., and Wilson L. (2006). Asteroid differentiation. In Meteorites in the Early Solar System II (D. S. Lauretta and H. Y. McSween Jr., eds.), Univ. of Arizona, Tucson.

McSween, H. Y. (1987). Aqueous alteration in carbonaceous chondrites: Mass balance constraints on matrix mineralogy. Geochim. Cosmochim. Acta, 51, 2469–2477.

McKeegan, K. D., & Davis, A. M. (2003). Early solar system chronology. Treatise on Geochemistry, 1, 711.

Meyer B. S. (2003) Neutrinos, supernovae, molybdenum, and extinct 92Nb. Nucl. Phys. A 719, 13–20.

Mezger, K., Debaille, V., & Kleine, T. (2013). Core formation and mantle differentiation on Mars. Space science reviews, 174, 27-48.

Mittlefehldt, D. W., Lindstrom, M. M., Bogard, D. D., Garrison, D. H., and Field, S. W. (1996). Acapulco-and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin. Geochim. Cosmochim. Acta, 60, 867–882.

Mittlefehldt D. W., McCoy T. J., Goodrich C. A., and Kracher A. (1998). Non-chondritic meteorites from asteroidal bodies. In Planetary Materials, vol. 36 (ed. J. J. Papike). Rev. Mineralogy, pp. 4-1–4-195.

Mikouchi, T., McKay, G. A., Miyamoto, M., and Sugiyama, K. (2011, November). Olivine Xenocrysts in Quenched Angrites: The First" Differentiated" Materials in the Solar System?. In Workshop on Formation of the First Solids in the Solar System (Vol. 1639, p. 9142).

Minster, J. F., and Allegre, C. J. (1982). The isotopic composition of zirconium in terrestrial and extraterrestrial samples: implications for extinct 92Nb. Geochim. Cosmochim. Acta, 46, 565–573.

Morgan, J. W., Higuchi, H., Takahashi, H., and Hertogen, J. (1978) A “chondritic” eucrite parent body: Inference from trace elements. Geochimica et Cosmochimica Acta, 42, 27–38.

Münker, C., Weyer, S., Mezger, K., Rehkämper, M., Wombacher, F., and Bischoff, A. (2000). 92Nb-92Zr and the early differentiation history of planetary bodies. Science, 289, 1538–1542.

Münker, C., Weyer, S., Scherer, E., and Mezger, K. (2001). Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC‐ICPMS measurements. Geochemistry, Geophysics, Geosystems, 2.

Münker, C., Fonseca, R. O., and Schulz, T. (2017). Silicate Earth’s missing niobium may have been sequestered into asteroidal cores. Nature Geoscience, 10, 822.

Newsom, H.E. (1990). Accretion and core formation in the Earth: evidence from siderophile elements. In Origin of the Earth (eds. H.E. Newsom and J.H. Jones) Oxford Univ. Press, New York, pp. 273–288.

Newton, J., Franchi, I. A., and Pillinger, C. T. (2000). The oxygen isotopic record in enstatite meteorites. Meteoritics and Planetary Science, 35, 689–698.

O’Neill H.S.C., Dingwell D.B., Borisov A., Spettel B., and Palme H. (1995). Experimental petrochemistry of some highly sidero- phile elements at high temperatures, and some implications for core formation and the mantle’s early history. Chem. Geol. 120, 255–273.

Ouellette, N., Desch, S. J., Bizzarro, M., Boss, A. P., Ciesla, F., and Meyer, B. (2009). Injection mechanisms of short-lived radionuclides and their homogenization. Geochim. Cosmochim. Acta, 73, 4946-4962.

Ozawa, K. (1984). Olivine-spinel geospeedometry: Analysis of diffusion-controlled Mg-Fe2+ exchange. Geochim. Cosmochim. Acta, 48, 2597-2611.

Pack, A., Tanaka, R., Hering, M., Sengupta, S., Peters, S., and Nakamura, E. (2016). The oxygen isotope composition of San Carlos olivine on the VSMOW2-SLAP2 scale. Rapid Communications in Mass Spectrometry, 30, 1495–1504.

Palme, H. (1981). Abundances of the elements in the solar system. Astronomy and astrophysics, 257–272.

Palme, H., and Beer, H. (1993). Abundances of the elements in the Solar System. In Landolt Bornstein, group VI: astronomy and astrophysics (ed. H. H. Voigt), vol. 3, pp. 196–221. Springer.

Palme, H. (2000). Are there chemical gradients in the inner Solar System? Space Sci. Rev. 92, 237–264.

Palme, H., and O’Neill, H. (2014). Cosmochemical Estimates of Mantle Composition. Planets, Asteriods, Comets and The Solar System, Volume 2 of Treatise on Geochemistry. Edited by Andrew M. Davis.

Papish, O., Nordhaus, J., and Soker, N. (2015). A call for a paradigm shift from neutrino-driven to jet-driven core-collapse supernova mechanisms. Monthly Notices of the Royal Astronomical Society, 448, 2362–2367.

Petitat, M., Birck, J. L., Luu, T. H., and Gounelle, M. (2011). The chromium isotopic composition of the ungrouped carbonaceous chondrite Tagish Lake. The Astrophysical Journal, 736, 23.

Pan, K. C., Ricker, P. M., and Taam, R. E. (2012). Impact of type Ia supernova ejecta on binary companions in the single-degenerate scenario. The Astrophysical Journal, 750, 151.

Prinz, M., Waggoner, D. G., and Hamilton, P. J. (1980). Winonaites: A primitive achondritic group related to silicate inclusions in IAB irons, Lunar Planet. Sci. XI, Lunar Planet. Inst., Houston. pp. 902–904 (abstract).

Prinz, M., Nehru, C. E., Delaney, J. S., and Weisberg, M. (1983). Silicates in IAB and IIICD Irons, Winonaites, Lodranites an Brachina: a Primitive and Modified-Primitive Group. Lunar Planet. Sci. XIV, Lunar Planet. Inst., Houston. pp. 616–617 (abstract).

Puchtel, I. S., Humayun, M., Campbell, A. J., Sproule, R. A., and Lesher, C. M. (2004). Platinum group element geochemistry of komatiites from the Alexo and Pyke Hill areas, Ontario, Canada. Geochim. Cosmochim. Acta 68, 1361–1383.

Puchtel, I. S., Humayun, M., and Walker, R. J. (2007). Os–Pb–Nd isotope and highly siderophile and lithophile trace element systematics of komatiitic rocks from the Volotsk suite, SE Baltic Shield. Precambrian Res. 158, 119–137.

Qin, L., Alexander, C. M. O’ D., Carlson, R. W., Horan, M. F., and Yokoyama, T. (2010a). Contributions to chromium isotope variations of meteorites. Geochim. Cosmochim. Acta., 74, 1122-1145.

Qin, L., Rumble, D., Alexander, C. M. O. D., Carlson, R. W., Jenniskens, P., and Shaddad, M. H. (2010b). The chromium isotopic composition of Almahata Sitta. Meteorit Planet Sci., 45, 1771−1777.

Qin, L., Nittler, L. R., Alexander, C. O. D., Wang, J., Stadermann, F. J., and Carlson, R.W. (2011). Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil–Implication for a late supernova injection into the solar system. Geochim. Cosmochim. Acta, 75, 629–644.

Rankenburg, K., Humayun, M., Brandon, A. D., and Herrin, J. S. (2008). Highly siderophile elements in ureilites. Geochim. Cosmochim. Acta, 72, 4642–4659.

Rauscher, T., Dauphas, N., Dillmann, I., Fröhlich, C., Fülöp, Z., and Gyürky, G. (2013). Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Reports on Progress in Physics, 76, 066201.

Rehkämper M., and Halliday, A. N. (1997). Development and application of new ion-exchange techniques for the separation of the platinum group and other siderophile elements from geological samples. Talanta, 44, 663–672.

Rehkämper, M., Schönbächler, M., and Stirling, C. H. (2001). Multiple collector ICP-MS: introduction to instrumentation, measurement technique and analytical capabilities. Geostand. Newsl. 25, 23–40.

Reinhard, C. T., Planavsky, N. J., Wang, X., Fischer, W. W., Johnson, T. M., and Lyons,T. W. (2014) The isotopic composition of authigenic chromium in anoxic marine sediments: A case study from the Cariaco Basin. Earth and Planetary Science Letters,407, 9–18.

Riches, A. J. V., Day, J. M. D., Walker, R. J., Simonetti, A., Liu, Y., Neal, C. R., and Taylor, L. A. (2012). Rhenium–osmium isotope and highly-siderophile-element abundance sys- tematics of angrite meteorites. Earth Planet. Sci. Lett. 353–354, 208–218.

Righter, K., and Neff, K. E. (2007). Temperature and oxygen fugacity constraints on CK and R chondrites and implications for water and oxidation in the early solar system. Polar Science, 1, 25–44.

Ringwood, A. E. (1961). Chemical and genetic relationships among meteorites.Geochim. Cosmochim. Acta, 24, 159–197.

Rosman, K. J. R. and Taylor, P. D. P. (1998) Isotopic compositions of the elements 1997 (Technical Report). Pure and Applied Chemistry, 70, 217–235.

Rubin, A. E. (2006). Shock, post-shock annealing, and post-annealing shock in ureilites.Meteoritics and Planetary Science, 41, 125–133.

Rubin, A. E. (2007). Petrogenesis of acapulcoites and lodranites: A shock-melting model. Geochim. Cosmochim. Acta, 71, 2383–2401.

Rubin, A. E. (2011). Origin of the differences in refractory-lithophile-element abundances among chondrite groups. Icarus, 213, 547–558.

Russell, W. A., Papanastassiou, D. A., and Tombrello, T. A. (1978). Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta, 42, 1075–1090.

Sanborn M. E., Yin Q.-Z., and Irving A. J. (2014). Isotope forensics utilizing Δ17O-ε54Cr systematics provide supporting evidence for differentiated bodies overlain by chondritic veneers: A case for the CR parent body. Lunar Planet. Sci. XLV, Lunar Planet. Inst., Houston. #2032 (abstract).

Sanborn, M. E., and Yin, Q. Z. (2015). Investigating a Common Source for Brachinites and Graves Nunataks 06128 and 06129 Meteorites Using High Precision Chromium Isotopes. Lunar Planet. Sci. XLVI, Lunar Planet. Inst., Houston. #2241 (abstract).

Sanborn M. E., Wimpenny J., Williams C. D., Yamakawa A., Amelin Y., Irving A. J., and Yin Q.-Z. (2017). Carbonaceous achondrites Northwest Africa 6704/6693: New anchors for early solar system chronology and genealogy. Submitted to Geochim. Cosmochim. Acta.

Sanborn M. E., Wimpenny J., Williams C. D., Yamakawa A., Amelin Y., Irving A. J., and Yin Q.-Z. (2019) Carbonaceous Achondrites Northwest Africa 6704/6693: Milestones for Early Solar System Chronology and Genealogy. Geochim. Cosmochim. Acta, in press, https://doi.org/10.1016/j.gca.2018.10.004

Sanloup, C., Blichert-Toft, J., Télouk, P., Gillet, P., and Albarède, F. (2000). Zr isotope anomalies in chondrites and the presence of 92Nb in the early solar system. Earth and Planetary Science Letters, 184, 7581.

Schatz, H., Aprahamian, A., Görres, J., Wiescher, M., Rauscher, T., Rembges, J. F., Thielemann, F. K., Pfeifferc, B., Möller, P., Kratz, K. L., Herndl, H., Brown B. A., and Rebel, H. (1998). rp-Process nucleosynthesis at extreme temperature and density conditions. Physics reports, 294, 167-263.

Schiller M., Handler M. R., and Baker J. A. (2010a) High-precision Mg isotopic systematics of bulk chondrites. Earth Planet. Sci. Lett. 297, 165–173.

Schiller, M., Van Kooten, E., Holst, J. C., Olsen, M. B., and Bizzarro, M. (2014). Precise measurement of chromium isotopes by MC-ICPMS. Journal of analytical atomic spectrometry, 29, 1406–1416.

Schiller M., Connelly J. N., Glad A. C., Mikouchi T., and Bizzarro M. (2015) Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory.Earth Planet. Sci. Lett. 420, 45–54.

Schmitz B., Yin Q.-Z., Sanborn M. E., Tassinari M., Caplan C., and Huss G. (2016). A new type of solar-system material recovered from Ordovician marine limestone. Nature Communications, 7, 11851.

Schönbächler, M., Rehkämper, M., Halliday, A. N., Lee, D. C., Bourot-Denise, M., Zanda, B., Hattendorf, B., and Günther, D. (2002). Niobium-zirconium chronometry and early solar system development. Science, 295, 1705–1708.

Schönbächler, M., Lee, D.-C., Rehkämper, M., Halliday, A.N., Fehr, A., Hattendorf,B., and Günther, D. (2003). Zirconium isotope evidence for incomplete admixing of r-process components in the solar nebula. Earth Planet. Sci. Lett. 216, 467–481.

Schönbächler, M., Rehkämper, M., Lee, D.-C., and Halliday, A.N. (2004). Ion exchange chromatography and high precision isotopic measurements of zirconium by MC-ICP- MS. Analyst 129, 32–37.

Schönbächler, M., Lee, D.-C., Rehkämper, M., Halliday, A.N., Hattendorf, B., and Günther, D. (2005). Nb/Zr fractionation on the Moon and the search for extinct 92Nb.Geochim. Cosmochim. Acta 69, 775–785.

Schoenberg R., Zink S., Staubwasser M., and von Blanckenburg F. (2008). The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS. Chemical Geology, 249, 294–306.

Schoenberg, R., Merdian, A., Holmden, C., Kleinhanns, I. C., Haßler, K., Wille, M., and Reitter, E. (2016). The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs. Geochim. Cosmochim. Acta, 183, 14–30.

Schrader, D. L., Franchi, I. A., Connolly, H. C., Greenwood, R. C., Lauretta, D. S., and Gibson, J. M. (2011). The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition. Geochim. Cosmochim. Acta, 75, 308–325.

Schramm, L. S., Brownlee, D. E., and Wheelock, M. M. (1989). Major element composition of stratospheric micrometeorites. Meteoritics, 24, 99–112.

Schulze, H., Bischoff, A., Palme, H., Spettel, B., Dreibus, G., and Otto, J. (1994). Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group. Meteoritics and Planetary Science, 29, 275–286.

Schwartz, A. J., Kumar, M., Adams, B. L., and Field, D. P. (Eds.). (2009). Electron backscatter diffraction in materials science (Vol. 2). New York: Springer.

Scott, E. R., Greenwood, R. C., Franchi, I. A., and Sanders, I. S. (2009). Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochim. Cosmochim. Acta, 73, 5835–5853.

Sharp, Z. D. (1990). A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta, 54, 1353–1357.

Shields W. R., Murphy T. J., Catanzaro E. J. and Garner E. L. (1966) Absolute isotopic abundance ratios and the atomic weight of a reference sample of chromium. Journal of Research of the National Bureau of Standards, 70, 193–197.

Shirey S. B., and Walker R. J. (1995). Carius tube digestion for low blank rhenium-osmium analysis. Anal. Chem. 67, 2136–2141.

Shukolyukov, A., and Lugmair, G. W. (2006a). Manganese–chromium isotope systematics of carbonaceous chondrites. Earth Planet. Sci. Lett. 250, 200–213.

Shukolyukov, A., and Lugmair G. W. (2006b). The Mn–Cr isotope systematics in the ureilites Kenna and LEW85440, Lunar Planet. Sci. XXXVII, Lunar Planet. Inst.,Houston. #1478 (abstract).

Shukolyukov, A., Lugmair, G. W., and Irving, A. J. (2009). Mn-Cr isotope systematics of angrite northwest Africa 4801. Lunar Planet. Sci. XL, Lunar Planet. Inst., Houston. #1381 (abstract).

Shukolyukov, A., Lugmair, G. W., and Irving, A. J. (2011). Mn-Cr isotope systematics and excess of 54Cr in metachondrite Northwest Africa 3133. Lunar Planet. Sci. XLII, Lunar Planet. Inst., Houston. #1527 (abstract).

Spitz, A. H., and Boynton, W. V. (1991). Trace element analysis of ureilites: new constraints on their petrogenesis. Geochim. Cosmochim. Acta, 55, 3417–3430.

Spivak-Birndorf L., Wadhwa M., and Janney P. (2009). 26Al-26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implica- tions for high-resolution chronology using extinct chronome- ters. Geochim. Cosmochim. Acta 73, 5202–5211.

Srinivasan, G., Ulyanov, A. A., and Goswami, J. N. (1994). Ca-41 in the early solar system. The Astrophysical Journal, 431, L67-L70.

Sugiura N. and Fujiya W. (2014). Correlated accretion ages and ε54Cr of meteorite parent bodies and the evolution of the solar nebula. Meteoritics & Planetary Science, 49, 772–787.

Tachibana, S., and Huss, G. R. (2003). The initial abundance of 60Fe in the solar system. The Astrophysical Journal Letters, 588, L41.

Takagi Y., Noguchi T., Kimura M., and Yamaguchi A. (2014). Crystallization and subsolidus processes of the NWA 6704 ungrouped achondrite. Japan Geoscience Union Meeting 2014, Japan Geoscience Union, Yokohama. #PPS22-P03 (abstract)

Takigawa, A., Miki, J., Tachibana, S., Huss, G. R., Tominaga, N., Umeda, H., and Nomoto, K. (2008). Injection of short-lived radionuclides into the early solar system from a faint supernova with mixing fallback. The Astrophysical Journal, 688, 1382.

Tanaka, R., and Nakamura, E. (2013). Determination of 17O-excess of terrestrial silicate/oxide minerals with respect to Vienna Standard Mean Ocean Water (VSMOW). Rapid Communications in Mass Spectrometry, 27, 285–297.

Terashima S., Taniguchi M., Mikoshiba M. and Imai N. (1998). Preparation of two new GSJ geochemical reference materials: basalt JB-1b and coal fly ash JCFA-1. Geostandards Geoanal. Res. 22, 113–117.

Tiepolo, M., Bottazzi, P., Foley, S. F., Oberti, R., Vannucci, R., and Zanetti, A. (2001). Fractionation of Nb and Ta from Zr and Hf at mantle depths: the role of titanian pargasite and kaersutite. Journal of Petrology, 42, 221-232.

Thielemann, F. K., Arcones, A., Käppeli, R., Liebendörfer, M., Rauscher, T., Winteler, C., Fröhlich, C. Dillmann, I. Fischer, T. Martinez-Pinedo, G. Langanke K. Farouqid K. Kratz K.-L. Panov I. and Langanke, I. K. (2011). What are the astrophysical sites for the r-process and the production of heavy elements?. Progress in Particle and Nuclear Physics, 66, 346-353.

Tomeoka, K., and Buseck, P. R. (1985). Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni. Geochim. Cosmochimica Acta, 49, 2149–2163.

Touboul M., Kleine T., Bourdon B., Van Orman J. A., Maden C., and Zipfel J. (2009). Hf–W thermochronometry: II. Accretion and thermal history of the acapulcoite–lodranite parent body. Earth and Planetary Science Letters, 284, 168–178.

Travaglio, C., Röpke, F. K., Gallino, R., and Hillebrandt, W. (2011). Type Ia supernovae as sites of the p-process: two-dimensional models coupled to nucleosynthesis. The Astrophysical Journal, 739, 93.

Travaglio C., Gallino R., Rauscher T., Dauphas N., Röpke F. K., and Hillebrandt W.(2014). Radiogenic p-isotopes from Type Ia supernova, nuclear physics uncertainties, and galactic chemical evolution compared with values in primitive meteorites. Astrophys. J. 795, 141

Trinquier A., Birck J-.L., and Allègre C. (2007). Widespread 54Cr heterogeneity in the inner solar system. Astrophysical Journal, 655, 1179–1185.

Trinquier, A., Birck, J. L., and Allègre, C. J. (2008a). High-precision analysis of chromium isotopes in terrestrial and meteorite samples by thermal ionization mass spectrometry. Journal of Analytical Atomic Spectrometry, 23, 1565–1574.

Trinquier A., Birck J.-L., Allègre C. J., Göpel C., and Ulfbeck D. (2008b). 53Mn-53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta, 72, 5146–5163.

Trinquier A., Elliott T., Ulfbeck D., Coath C., Krot A. N., and Bizzarro M. (2009). Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374–376.

Tsuchiyama, A. (1986). Experimental-study of olivine-melt reaction and its petrological implications, Journal of Volcanology and Geothermal Research, 29, 245–264.

Ueda T., Yamashita K., and Kita N. (2006) Chromium isotopic systematics of ureilite.NIPR Sympos. Antarct. Meteorit. XXX, 117–118 (abstr.).

Van Kooten, E. M., Wielandt, D., Schiller, M., Nagashima, K., Thomen, A., Larsen, K. K., Olsen, M. B., Nordlund, A., Krot, A. N., and Bizzarro, M. (2016). Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proceedings of the National Academy of Sciences, 113, 2011–2016.

Vernon, R. H. (1968). Microstructures of high-grade metamorphic rocks at Broken Hill, Australia. Journal of Petrology, 9, 1–22.

Vernon, R. H. (1970). Comparative grain-boundary studies of some basic and ultrabasic granulites, nodules and cumulates. Scottish Journal of Geology, 6, 337–351.

Vetere, F., Iezzi, G., Behrens, H., Holtz, F., Ventura, G., Misiti, V., Cavallo, A., Mollo, S., and Dietrich, M. (2015). Glass forming ability and crystallisation behaviour of sub-alkaline silicate melts. Earth-Science Reviews, 150, 25–44.

Wadhwa, M., Amelin, Y., Bogdanovski, O., Shukolyukov, A., Lugmair, G. W., and Janney, P. (2009). Ancient relative and absolute ages for a basaltic meteorite: Implications for timescales of planetesimal accretion and differentiation. Geochimica et Cosmochimica Acta, 73, 5189–5201.

Walton, E. L., and Herd, C. D. (2007). Dynamic crystallization of shock melts in Allan Hills 77005: implications for melt pocket formation in Martian meteorites. Geochim. Cosmochim. Acta, 71, 5267–5285.

Walker, R. J., Storey, M., Kerr, A. C., Tarney, J., and Arndt, N. T. (1999). Implication of 187Os isotopic heterogeneities in a mantle plume: evidence from Gorgona Island and Curacao. Geochim. Cosmochim. Acta, 63, 713–728.

Walker, R. J., Horan, M. F., Morgan, J. W., Becker, H., Grossman, J. N., and Rubin, A. (2002). Comparative 187Re–187Os systematics of chondrites: Implications regarding early solar system processes. Geochim. Cosmochim. Acta, 66, 4187–4201.

Walsh, K. J., Morbidelli, A., Raymond, S. N., O'brien, D. P., and Mandell, A. M. (2011). A low mass for Mars from Jupiter/'s early gas-driven migration. Nature, 475, 206–209.

Wanajo, S. (2006). The rp-process in neutrino-driven winds. The Astrophysical Journal, 647, 1323.

Wang X., Planavsky N. J., Reinhard C. T., Zou H., Ague J. J., Wu Y., Gill B. C., Schwarzenbach E. M., P., and eucker-Ehrenbrink, B. (2016). Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration. Chemical Geology, 423, 19–33.

Warren, P. H., Ulff-Møller, F., Huber, H., and Kallemeyn, G. W. (2006). Siderophile geochemistry of ureilites: a record of early stages of planetesimal core formation. Geochimica et Cosmochimica Acta, 70, 2104–2126.

Warren, P. H., and Rubin, A. E. (2010). Pyroxene-selective impact smelting in ureilites.Geochim. Cosmochim. Acta, 74, 5109–5133.

Warren P. H. (2011). Stable-isotopic anomalies and the accretionary assmlage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100.

Warren P. H., Rubin A. E., Isa J., Brittenham S., Ahn I., and Choi B.-G. (2013). Northwest Africa 6693: A new type of FeO-rich, low-Δ17O, poikilitic cumulate achondrite. Geochim. Cosmochim. Acta, 107, 135–154.

Wasserburg, G. J., Busso, M., and Gallino, R. (1996). Abundances of actinides and short-lived nonactinides in the interstellar medium: diverse supernova sources for the r-processes. The Astrophysical Journal Letters, 466, L109.

Wasson, J. T., and Kallemeyn, G. W. (1988). Compositions of chondrites. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 325, 535–544.

Wasserburg, G. J., Busso, M., and Gallino, R. (1996). Abundances of actinides and short-lived nonactinides in the interstellar medium: diverse supernova sources for the r-processes. The Astrophysical Journal Letters, 466, L109.

Wasserburg, G. J., Wimpenny, J., & YIN, Q. Z. (2012). Mg isotopic heterogeneity, Al‐Mg isochrons, and canonical 26Al/27Al in the early solar system. Meteoritics & Planetary Science, 47, 1980-1997.

Weisberg, M. K., McCoy, T. J., and Krot, A. N., (2006). Systematics and evaluation of meteorite classification, In, Meteorites and the Early Solar System II, edited by D. S. Lauretta and H. Y. McSween Jr, University of Arizona Press, Tucson, pp.19–52.

Weiss, B. P., and Elkins-Tanton, L. T. (2013). Differentiated planetesimals and the parent bodies of chondrites. Annual Review of Earth and Planetary Sciences, 41, 529–560.

Welsch, B., Faure, F., Famin, V., Baronnet, A., and Bachèlery, P. (2012). Dendritic crystallization: A single process for all the textures of olivine in basalts?. Journal of Petrology, egs077.

Wiechert, U., Halliday, A. N., Lee, D. C., Snyder, G. A., Taylor, L. A., and Rumble, D. (2001). Oxygen isotopes and the Moon-forming giant impact. Science, 294, 345–348.

Wiechert, U. H., Halliday, A. N., Palme, H., and Rumble, D. (2004). Oxygen isotope evidence for rapid mixing of the HED meteorite parent body. Earth and Planetary Science Letters, 221, 373–382.

Wiik, H. B. (1972). The chemical composition of the Haverö meteorite and the genesis of the ureilites. Meteoritics, 7, 553–558.

Wombacher, F., and Rehkämper, M. (2003). Investigation of the mass discrimination of multiple collector ICP-MS using neodymium isotopes and the generalised power law. Journal of Analytical Atomic Spectrometry, 18, 1371–1375.

Wombacher F., Eisenhauer A., Heuser A., and Weyer S. (2009). Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by MC-ICP-MS and double-spike TIMS. Journal of Analytical Atomic Spectrometry, 24, 627–636.

Woosley, S., and Howard, W. (1978). The p-process in supernovae. Astrophys J36:285–304

Woosley, S. E., Hartmann, D. H., Hoffman, R. D., and Haxton, W. C. (1990). The nu-process. The Astrophysical Journal, 356, 272–301.

Woosley, S. E., and Hoffman, R. D. (1992). The alpha-process and the r-process. The Astrophysical Journal, 395, 202–239.

Yamaguchi, A., Barrat, J. A., Greenwood, R. C., Shirai, N., Okamoto, C., Setoyanagi, T., Ebihara, M., Franchi, I.A., Bohn, M., (2009). Crustal partial melting on Vesta: ev- idence from highly metamorphosed eucrites. Geochim. Cosmochim. Acta 73, 7162–7182.

Yamakawa, A., Yamashita, K., Makishima, A., and Nakamura, E. (2009). Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry. Anal. Chem., 81, 9787–9794.

Yamakawa, A., Yamashita, K., Makishima, A., and Nakamura, E. (2010). Chromium isotope systematics of achondrites: Chronology and isotopic heterogeneity of the inner solar system bodies. The Astrophysical Journal, 720, 150–154.

Yamashita, K., Ueda, T., Nakamura, N., Kita, N. and Heaman, L. M. (2005). Chromium isotopic study of mesosiderite and ureilite: evidence for ε54Cr deficit in differentiated meteorites. NIPR Symposium Antarctic Meteorite, 29, 100–101.

Yamashita, K., Maruyama, S., Yamakawa, A., and Nakamura, E. (2010). 53Mn-53Cr chronometry of CB chondrite: evidence for uniform distribution of 53Mn in the early solar system. The Astrophysical Journal, 723, 20–24.

Yang, G., Zimmerman, A., Stein, H., and Hannah, J. (2015). Pretreatment of nitric acid with hydrogen peroxide reduces total procedural Os blank to femtogram levels. Analytical chemistry, 87, 7017–7021.

Yin, Q. Z., Jacobsen, S. B., McDonough, W. F., Horn, I., Petaev, M. I., and Zipfel, J. (2000). Supernova sources and the 92Nb-92Zr p-process chronometer. The Astrophysical Journal Letters, 536, L49.

Yin Q.-Z., Yamashita K., Yamakawa A., Tanaka R., Jacobsen B., Ebel D., Hutcheon I.D. and Nakamura E. (2009) 53Mn–53Cr systematics of Allende chondrules and ε54Cr–Δ17O correlation in bulk carbonaceous chondrites. Lunar Planet. Sci. 40, #2006 (abstr.).

Yokoyama, T., Fukami, Y., Okui, W., Ito, N., and Yamazaki, H. (2015). Nucleosynthetic strontium isotope anomalies in carbonaceous chondrites. Earth and Planetary Science Letters, 416, 46–55.

Yokoyama, T., and Walker, R. J. (2016). Nucleosynthetic isotope variations of siderophile and chalcophile elements in the Solar System. Reviews in Mineralogy and Geochemistry, 81, 107–160.

Young, E. D., and Galy, A. (2004) The isotope geochemistry and cosmochemistry of magnesium. Rev. Mineral. Geochem. 55, 197–230.

Young, E. D. (2014). Inheritance of solar short-and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth and Planetary Science Letters, 392, 16–27.

Yurimoto, H., and Kuramoto, K. (2004). Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science, 305, 1763–1766.

Zhang, J., Dauphas, N., Davis, A. M., and Pourmand, A. (2011). A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites. Journal of Analytical Atomic Spectrometry, 26, 2197–2205.

Zhang, J., Dauphas, N., Davis, A. M., Leya, I., and Fedkin, A. (2012). The proto-Earth as a significant source of lunar material. Nature Geoscience, 5, 251–255.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る