リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「高信頼・高精度接着実装による次世代光接続デバイスの設計と実証 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

高信頼・高精度接着実装による次世代光接続デバイスの設計と実証 (本文)

鹿間, 光太 慶應義塾大学

2020.03.23

概要

1960 年代に発明されたインターネット技術は 21 世紀に至り爆発的な発展を遂げ,スマート フォンの普及と関連情報技術の発展とともに,現代の人々の暮らしに大きな影響を与えている.今後も AI(Artificial Intelligence)技術や IoT(Internet of Things)技術の進展とともに,社会に 大きな影響を与え続けていくことは疑う余地もない.このような情報社会の発展においては,その通信トラフィックを根本から支える光ネットワークが極めて重要な役割を果たしており,光ネットワークの伝送容量は継続的に拡大し続けている.特に 2010 年以降の高精細動画配信 サービスやクラウドサービスの登場によって,光ネットワークの通信トラフィックは爆発的な 増加を続けており,今後も AI 技術や IoT 技術を支えるべく,光ネットワークのさらなる伝送 容量拡大が求められている.また,情報社会におけるビックデータを処理するデータセンタ内 やコンピュータ内においても,そのネットワークの伝送容量拡大と低消費電力化が急務となっ ており,従来の電気インタコネクトに代わり高速な光インタコネクトの導入が進んでいる.

このような背景を踏まえ,光ネットワークを構成する光通信デバイスにおいて高速大容量化,低消費電力化,小型高密度化が進展している.例えば基幹系光ネットワークにおいては,従来 のシングルモードファイバ(SMF: Single-mode fiber)の伝送容量限界を打破するべく,マルチ コアファイバ(MCF: Multicore fiber)やフューモードファイバ(FMF: Few-mode fiber)を用いた空間分割多重(SDM: Space division multiplexing)伝送技術[1.1]が注目を集めている.また光 信号を処理する光集積回路として,シリコンを光導波路として用いた Silicon Photonics(SiPh)技術[1.2]が注目を集めており,小型・高密度化を要する用途において,従来の空間光学系デバ イスや石英系平面光波回路(PLC: Planar Lightwave Circuit)デバイスの置き換えが進んでいる. 加えて小型・高速な化合物半導体変調器や,小型・高速・低消費電力な光送受信デバイスの研 究開発も進展しており,高速電気実装技術や信号処理技術とともに,世界各国で光通信デバイ スの高性能化に向けた研究開発競争が繰り広げられている.

上記で述べたような次世代の光通信デバイスを実用化していく上では,それらを効率的に光ファイバと接続し,モジュール化していく光実装技術がより重要になっている.一般に,光実装における SMF 同士の接続や光学素子の組立においては,サブミクロンスケールの位置決め精度が要求され,接着剤による固定を用いながら,外力や温度変化により発生する部材の変形に対して上記精度を長期的に維持することが必要となる.さらに次世代の光通信デバイスにおいては,従来の数倍以上厳しい位置決め精度が要求されるため,より高信頼・高精度な光実装技術を確立していく必要がある.しかしながら,従来の光通信デバイス開発における接着実装は,ノウハウや経験則によるところが多く,接着剤の選定からモジュールの信頼性検証に至るまでに多くの試行錯誤を要することが少なくない.この理由としては,接着実装を定量的に検 討するためには,光学,材料力学,高分子化学,信頼性工学など多方面の知識を必要とし,ま たその解析に多くの時間を要するためであると考えられる.特に,光通信で特有の課題となる 接着剤のサブミクロンスケールの変形やその変形メカニズムについては,測定や原因切り分け の困難性から未知の部分が多い.それゆえに接着剤の変更を伴うような製品開発には多くの時 間を要する.以上の理由から,従来以上の高信頼性と高精度性が必要とされる次世代光通信デ バイスを実現していく上では,接着実装がその実用化を律速する要因になることが推測される.

そこで本研究では,光実装の最も基盤的形態である光ファイバ接続デバイス,特に光ファイバ同士を接続する光コネクタに着目し,光コネクタに用いられる接着剤のナノ~サブミクロンスケールの微小変形メカニズムを,実験的及び理論的な解析から明らかにすることとした.また同解析で得られた知見を基に,MCF 用光コネクタなどの次世代光接続デバイスを設計・実証することを目指した.本章では,まず本研究の背景として光ファイバ接続技術を俯瞰するとともに,光コネクタのこれまでの開発史について簡単に述べる.次に光ネットワークの動向として,SDM による大容量伝送システムと光インタコネクトの 2 点を示し,将来ネットワークの実現に不可欠な次世代光接続デバイスの概要とその技術課題を述べる.これらの背景をもとに本論文の目的を述べ,本論文の構成として各章の位置づけを示す.

この論文で使われている画像

参考文献

第 1 章の参考文献

[1.1] Y. Miyamoto and R. Kawamura, “Space Division Multiplexing Optical Transmission Technology to Support the Evolution of High-capacity Optical Transport Networks,” NTT Technical Review, vol. 15, no. 6, Jun. (2017).

[1.2] R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 6, pp. 1678-1687 (2006).

[1.3] F. P. Kapron, D. B. Kech, and R. D. Maurer, “Radiation Losses in Glass Optical Waveguides,” Appl. Phys. Lett, vol. 17, no. 10, pp. 423-425 (1970).

[1.4] D. L. Bisbee, “Optical Fiber Joining Technique,” Bell Syst. Tech. J., vol. 50, no. 10, pp. 3153-3158 (1971).

[1.5] L. G. Cohen, “Power Coupling from GaAs Injection Lasers into Optical Fibers,” Bell Syst. Tech. J. vol. 51, no. 3, pp. 573-594 (1972).

[1.6] P. K. Tien and R. J. Martin, “Experiments on Light Waves in a Thin Tapered Film and a New Lightwave Coupler,” Appl. Phys. Lett., vol. 18, no. 398, pp. 398-400 (1971).

[1.7] D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J., vol. 56, no. 5, pp. 703-718 (1977).

[1.8] 安東泰博, ”光コネクタ技術” 電子情報通信学会論文誌 C, vol. J83-C, no. 5, pp. 365-379 (2000).

[1.9] S. Cook and P. K. Runge, “An exploratory fiber-guide interconnection system,” Proc. European Conference on Optical Communications, Paris, France, paper VIII.3 (1976).

[1.10] H. Tsuchiya, H. Nakagome, N. Shimizu, and S. Ohara, “Double eccentric connectors for optical fibers,” Applied Optics, vol. 16, no. 5, pp. 1323-1331 (1977).

[1.11] N. Suzuki, Y. Iwahara, M. Saruwatari, and K. Nawata, “Ceramic capillary connector for 1.3 μm single-mode fibres,” Electron. Lett., vol. 15, no. 25, pp. 809-811 (1979).

[1.12] A. W. Carlisle, “Small size high performance lightguide connector for LANs,” Proc. Optical Fiber Communications Conference, San Diego, CA, USA, paper TUQ18 (1985).

[1.13] E. Sugita, R. Nagase, K. Kanayama, and T. Shintaku, “SC-type single-mode optical fiber connector,” IEEE J. Light. Technol., vol. 7, no. 11, pp. 1689-1696, Nov. (1989).

[1.14] T. Shintaku, R. Nagase, and E. Sugita, “Connection mechanism of physical-contact optical fiber connectors with spherical convex polished ends,” Applied Optics, vol. 30, issue 36, pp. 5260-5265 (1991).

[1.15] R. Nagase, E. Sugita, S. Iwano, K. Kanayama, and Y. Ando, “Design for MU-type single-mode miniature optical connector,” IEICE Trans. Electron., vol. E81-C, no. 3, pp. 408-415 (1998).

[1.16] T. Satake, S. Nagasawa, and R. Arioka, “A new type of demountable plastic-molded single-mode multifiber connector,” IEEE J. Light. Technol., vol. 4, no. 8, pp. 1232-1236 (1986).

[1.17] S. Nagasawa, Y. Yokoyama, F. Ashiya, and T. Satake, “A high-performance single-mode multifiber connector using oblique and direct contact between multiple fibers arranged in plastic ferrule,” IEEE Photon. Techno. Lett., vol. 3, no. 10, pp. 937-939 (1991).

[1.18] A. Sano et al., “69.1-Tb/s (432×171-Gb/s) C- and Extended L-Band Transmission over 240 km Using PDM-16-QAM Modulation and Digital Coherent Detection,” Proc. Optical Fiber Communications Conference, San Diego, CA, USA, paper PDPB7 (2010).

[1.19] T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Com. Mag., vol. 50, issue 2, pp. S31-S42, Feb. (2012).

[1.20] H. Takara et al., “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency,” Proc. European Conference on Optical Communication, Amsterdam, Nederland, paper Th.3.C.1 (2012).

[1.21] K. Shikama, Y. Abe, T Kishi, K Takeda, T Fujii, H Nishi, T Matsui, A. Aratake, K. Nakajima, and S. Matsuo, “Multicore-fiber LC receptacle with compact fan-in/fan-out device for SDM transceiver applications,” IEEE J. Light. Technol., vol. 36, no. 24, pp. 5815-5822 (2018).

[1.22] 100G CWDM4 MSA technical specifications rev 1.0. http://www.cwdm4-msa.org/ retrieved 15 Aug. 2019.

[1.23] 100G PSM4 Specification Version 2.0. http://www.psm4.org/, retrieved 15 Aug. 2019.

[1.24] T. Saida, “Emerging Integrated Devices for Coherent Transmission - Digitally Assisted Analog Optics,” Proc. Optical Fiber Communication Conference, San Francisco, CA, USA, paper Th3B.4 (2017).

[1.25] Consortium for On-Board Optics, https://onboardoptics.org/, retrieved 15 Aug. 2019.

[1.26] C. Cole, "Future datacenter interfaces based on existing and emerging optics technologies," IEEE Photonics Society Summer Topical Meeting Series, Waikoloa, pp. 217-218 (2013).

[1.27] 鹿間光太, 浅川修一郎, 小林潤也, “量産型マイクロホール部品を用いた SF 光コネクタ”電子情報通信学会総合大会, C-3-65, pp. 240 (2011).

[1.28] K. Shikama et al., “Miniature optical connector with magnetic physical contact,” Proc. Optical Fiber Communications Conference, San Diego, CA, USA, paper W2A.14 (2020).

[1.29] K. Shikama and Y. Koike, “Reflowable optical connector with glass-ceramic ferrule for advanced pluggable transceiver packaging,” Optical Fiber Technology, vol. 54, 102074, pp. 1-8 (2020).

[1.30] K. Shikama, S. Asakawa, Y. Abe, S. Yanagi, J. Kobayashi, and T. Takahashi, “Compact multi-fiber receptacle interface for on-board optical interconnection,” Proc. 2nd IEEE CPMT Symposium Japan, Kyoto, Japan, pp. 1-4 (2012).

第 2 章の参考文献

[2.1] D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J., vol. 56, no. 5, pp. 703-718 (1977).

[2.2] H. Kogelnik, “Coupling and conversion coefficients for optical modes,” in Microwave Res. Instit. Symp. Series, vol. 14, J. Fox, Ed. Brooklyn, N.Y.: Polytechnic Press, p. 333 (1964).

[2.3] S. Nemoto and T. Makimoto, “Analysis of splice loss in single-mode fibers using a Gaussian filed approximation,” Opt. Quantum Electron., vol. 11, pp. 447-457 (1979).

[2.4] C. M. Miller, S.C. Mettler, and I. A. White, “Optical fiber splices and connectors,” pp. 90-176, New York, Marcel Dekkerm (1986).

[2.5] 安東泰博,”光コネクタ技術” 電子情報通信学会論文誌 C, vol. J83-C, no.5, pp. 365-379 (2000).

[2.6] Y. Ando, S. Iwano, K. Kanayama, and R. Nagase, “Statistical Analysis on Connection Characteristics of Optical Fiber Connectors,” IEICE Trans. Electron., vol. E77-C, no. 12, pp. 1970-1982, Dec. (1994).

[2.7] K. Kanayama, Y. Ando, R. Nagase, and S. Iwano, “Evaluation method and performance of advanced low-reflection optical connectors,” Proc. Internatl. Wire and Cable Symp., USA, pp. 785-792 (1992).

[2.8] K. Kanayama, Y. Ando, R. Nagase, S. Iwano, and K. Matsunaga, “Advanced physical contact technology for optical connectors,” IEEE Photon. Technol. Lett., vol. 4, issue 11, pp. 1284-1287, Nov. (1992).

[2.9] E. Sugita, R. Nagase, K. Kanayama, and T. Shintaku, “SC-type single-mode optical fiber connector,” IEEE J. Light. Technol., vol. 7, no. 11, pp. 1689-1696, Nov. (1989).

[2.10] N. Suzuki, Y. Iwahara, M. Saruwatari, and K. Nawata, “Ceramic capillary connector for 1.3 μm single-mode fibres,” Electron. Lett., vol. 15, no. 25, pp. 809-811 (1979).

[2.11] R. Nagase, E. Sugita, S. Iwano, K. Kanayama, and Y. Ando, “Design for MU-type single-mode miniature optical connector,” IEICE Trans. Electron., vol. E81-C, no. 3, pp. 408-415, Mar. (1998).

[2.12] T. Shintaku, R. Nagase, and E. Sugita, “Connection mechanism of physical-contact optical fiber connectors with spherical convex polished ends,” Applied Optics, vol. 30, issue 36, pp. 5260-5265 (1991).

[2.13] T. Shintaku, E. Sugita, and R. Nagase, “Highly stable physical-contact optical fiber connectors with spherical convex ends,” IEEE J. Light. Technol., vol. 11, no.2, pp. 241-243, Feb. (1993).

[2.14] IEC 61754-4, Fiber optic connector interfaces –Part 4: Type SC connector family: International Electrotechnical Commission, July (2013).

[2.15] IEC 61754-6, Fiber optic connector interfaces –Part 6: Type MU connector family: International Electrotechnical Commission, July (2013).

[2.16] IEC 61755-3-1, Fibre optic connector optical interfaces - Part 3-1: Optical interface, 2.5 mm and 1.25 mm diameter cylindrical full zirconia PC ferrule, single mode fibre: International Electrotechnical Commission July (2006).

[2.17] M. Takahashi, “Compatibility of conventional-ferrule with step-ferrulefor angled convex optical connector,” Proc. Electronic Components and Technology Conference, Las Vegas, NV, USA, pp. 406-412 (1995).

[2.18] T. Satake, S. Nagasawa, and R. Arioka, “A new type of demountable plastic-molded single-mode multifiber connector,” IEEE J. Light. Technol., vol. 4, no. 8, pp. 1232-1236 (1986).

[2.19] S. Nagasawa, Y. Yokoyama, F. Ashiya, and T. Satake, “A high-performance single-mode multifiber connector using oblique and direct contact between multiple fibers arranged in plastic ferrule,” IEEE Photon. Technol. Lett., vol. 3, no. 10, pp. 937-939 (1991).

[2.20] R. Nagase, Y. Abe, and M. Kihara, “History of Fiber Optic Physical Contact Connector for Low Insertion and High Return Losses,” Proc. IEEE History of Telecommunications Conference, Kobe, Japan, pp. 113-116 (2017).

[2.21] S. Mitachi, A. Ito, and K. Kimura, “Highly Moisture-Resistant, Silane-Modified, Cyanogen-Free Optical Adhesives and Their Reliability,” J. Materials Engineering and Performance, vol. 23, issue 5, pp. 1544-1550 (2014).

[2.22] S. Yanagi, M. Kobayashi, S. Hosono, R. Nagase, S. Matsui, and S. Ohki, “Rapid Assembly Technique for Optical Connector,” IEICE Trans. Electron., vol. E89-C, no. 8, pp. 1227-1232, Aug. (2008).

[2.23] M. J. Lance, E. M. Vogel, L. A. Reith, and W. R. Cannon, “Low-Temperature Aging of Zirconia Ferrules for Optical Connector,” J. Am. Ceram, Soc., vol. 84, no. 11, pp. 2731-2733 (2001).

[2.24] L. A. Reith et al., “Reliability of optical connectors in hot, humid environments,” Proc. 12th Annual Fiber Optic Eng. Conf., vol. 3. pp. 675-685 (1996).

[2.25] A. K. Agrawal and L. D. Hutcheson, “Performance and Reliability of Optical Fiber Connectors in the Outside Plant Environment,” IEEE Trans. Compon. Pacag. Manuf. Technol. part B, vol. 18, no. 2, pp. 221-226, May (1995).

[2.26] B. G. LeFevre, “Failure mechanisms and reliability of fiber optic connectors and splices,” Proc. SPIE, Berlin, Germany, paper 1973 (1993).

[2.27] D Michael, J. LuValle, G. D. Brown, B. G. LeFevre, L. A. Reith, and R. Throm, “Acceptance testing for the pistoning failure mode in fiber optic connectors,” Proc. SPIE, Boston, MA, USA, paper 4215 (2001).

[2.28] F. Caloz, D. Ernst, P. Rossini, L. Gherardi, L. Grassi, and J. Arnaud, “Reliability of optical connectors –Humidity behavior of the adhesive-,” Microelectronics Reliability, vol. 42, issue 9-11, pp. 1323-1328 (2002).

[2.29] Y. Abe, K. Shikama, S. Asakawa, and S. Yanagi, “20-year Reliability Test Results for SC Connector Installed on Outside Plant,” Proc. Optical Fiber Communications Conference, San Diego, CA, USA, paper W1A.1 (2018).

第 3 章の参考文献

[3.1] E. Sugita, R. Nagase, K. Kanayama, and T. Shintaku, “SC-type single-mode optical fiber connector,” IEEE J. Light. Technol., vol. 7, no. 11, pp. 1689-1696, Nov. (1989).

[3.2] R. Nagase, E. Sugita, S. Iwano, K. Kanayama, and Y. Ando, “Design for MU-type single-mode miniature optical connector,” IEICE Trans. Electron., vol. E81-C, no. 3, pp. 408-415, Mar. (1998).

[3.3] T. Shintaku, R. Nagase, and E. Sugita, “Connection mechanism of physical-contact optical fiber connectors with spherical convex polished ends,” Applied Optics, vol. 30, issue 36, pp. 5260-5265 (1991).

[3.4] T. Shintaku, E. Sugita, and R. Nagase, “Highly stable physical-contact optical fiber connectors with spherical convex ends,” IEEE J. Light. Technol., vol. 11, no. 2, pp. 241-243, Feb. (1993).

[3.5] IEC 61755-3-1, Fibre optic connector optical interfaces - Part 3-1: Optical interface, 2.5 mm and 1.25 mm diameter cylindrical full zirconia PC ferrule, single mode fibre, July (2006).

[3.6] Y. Abe, K. Shikama, S. Asakawa, and S. Yanagi, “20-year Reliability Test Results for SC Connector Installed on Outside Plant,” Proc. Optical Fiber Communications Conference, San Diego, CA, USA, paper W1A.1 (2018).

[3.7] M. J. Lance, E. M. Vogel, L. A. Reith, and W. R. Cannon, “Low-Temperature Aging of Zirconia Ferrules for Optical Connector,” J. Am. Ceram, Soc., vol. 84, no. 11, pp. 2731-2733 (2001).

[3.8] L. A. Reith et al., “Reliability of optical connectors in hot, humid environments,” Proc. 12th Annual Fiber Optic Eng. Conf., vol. 3, pp. 675-685 (1996).

[3.9] A. K. Agrawal and L. D. Hutcheson, “Performance and Reliability of Optical Fiber Connectors in the Outside Plant Environment,” IEEE Trans. Compon. Pacag. Manuf. Technol. part B, vol. 18, no. 2, pp. 221-226, May (1995).

[3.10] B. G. LeFevre, “Failure mechanisms and reliability of fiber optic connectors and splices,” Proc. SPIE, Berlin, Germany, paper 1973 (1993).

[3.11] D Michael, J. LuValle, G. D. Brown, B. G. LeFevre, L. A. Reith, and R. Throm, “Acceptance testing for the pistoning failure mode in fiber optic connectors,” Proc. SPIE, Boston, MA, USA, paper 4215 (2001).

[3.12] F. Caloz, D. Ernst, P. Rossini, L. Gherardi, L. Grassi, and J. Arnaud, “Reliability of optical connectors –Humidity behavior of the adhesive-,” Microelectronics Reliability, vol. 42, issue 9-11, pp. 1323-1328 (2002).

[3.13] S. Mitachi, “Development of highly moisture durable optical adhesives for optical devices,” Proc. Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, pp. 207-212 (2008).

[3.14] 野瀬卓平,中浜精一,宮田清蔵 編,大学院高分子化学: 講談社 (1997).

[3.15] F. R. Larson and J. Miller, “A Time-Temperature Relationship for Rupture and Creep Stresses,” Transactions of ASME, vol. 74, no. 7, pp. 765-775 (1952).

[3.16] Y. Miyano and M. Kanemitsu, “Time and temperature dependence of flexural strength in transversal direction of fibres in CFRP,” Fibre Science and Technology, vol. 18, issue 1, pp. 65-79 (1983).

[3.17] K. Shikama, Y. Abe, S. Asakawa, S. Yanagi, and T. Takahashi, “Multicore fiber connector with physical-contact connection,” IEICE Trans. on Electron., vol. E99-C, no. 2, pp. 242-249, Feb. (2016).

[3.18] R. Nagase, T. Shibuya, T. Takahashi, D. Kubo and H. Matsuura, “Fiber Withdrawal Phenomena on Optical Connectors,” IEICE Technical Report, EMD2010-128 (2010).

[3.19] M. Takahashi, “Generating Mechanism of Maintaining Force for Optical Fiber Installed in Ferrule Hole,” IEEE J. Light. Technol., vol. 16, no. 4, pp. 549-553, Apr. (1998).

[3.20] 笠森正人,宮野靖,”エポキシ樹脂の長期クリープ変形の予測”,材料システム,vol. 12, pp. 77-81 (1993).

第 4 章の参考文献

[4.1] K. Shikama and Y. Koike, “Reflowable optical connector with glass-ceramic ferrule for advanced pluggable transceiver packaging,” Optical Fiber Technology, vol. 54, 102074, pp.1-8, Jan. (2020).

[4.2] C. Kachris and I. Tomkos, “A survey on optical Interconnects for data centers,” IEEE Commun. Surveys Tuts., vol. 14, no. 4, pp. 1021-1036 (2012).

[4.3] Consortium for On-Board Optics, https://onboardoptics.org/, retrieved 15 Aug. 2019.

[4.4] B. Buscaino, B. D. Taylor, and J. M. Kahn, “Multi-Tb/s-per-Fiber Coherent Co-Packaged Optical Interfaces for Data Center Switches,” IEEE J. Light. Technol., vol. 37, issue 13, pp. 3401-3412 (2019).

[4.5] C. Doerr et al., “Silicon Photonics Coherent Transceiver in a Ball-Grid Array Package,” Proc. Optical Fiber Communication Conference, San Francisco, CA, USA, paper Th5D.5 (2017). [4.6] A. Novack et al., “A Silicon Photonic Transceiver and Hybrid Tunable Laser for 64 Gbaud Coherent Communication,” Proc. Optical Fiber Communication Conference, San Diego, CA, USA, paper Th4D.4 (2018).

[4.7] T. Kishi et al., “A 25-Gbps×4 ch, Low-Power Compact Wire-Bond-Free 3D-Stacked Transmitter Module with 1.3-μm LD-Array-on- Si for On-Board Optics,” Proc. Optical Fiber Communication Conference, San Diego, CA, USA, paper Tu2I.1 (2019).

[4.8] C. Doerr et al., “Single-Chip Silicon Photonics 100-Gb/s Coherent Transceiver,” Proc. Optical Fiber Communication Conference, San Francisco, CA, USA, paper Th5C.1 (2014). [4.9] T. Saida, “Emerging Integrated Devices for Coherent Transmission - Digitally Assisted Analog Optics,” Proc. Optical Fiber Communication Conference, San Francisco, CA, USA, paper Th3B.4 (2017).

[4.10] S. Kamei et al., “Silicon Photonics-based Coherent Optical Subassembly (COSA) for Compact Coherent Transceiver,” Proc. Microoptics Conference, Berkley, CA, USA, paper 14D.1 (2016).

[4.11] T. Barwicz et al., “Automated, high-throughput photonic packaging,” Optical Fiber Technology, vol. 44, pp. 24-35 Aug. (2018).

[4.12] L. Brusberg et al., “Low-profile fiber connector for co-packaged optics,” Proc. SPIE, San Francisco, CA, USA, paper 10538S (2018).

[4.13] QSFP-DD Hardware Rev. 5.0, http://www.qsfp-dd.com/, retrieved at Aug.15, 2019. [4.14] Specification for OSFP Rev. 2.0, https://osfpmsa.org/, retrieved at Aug.15, 2019.

[4.15] R. Nagase, E. Sugita, S. Iwano, K. Kanayama, and Y. Ando, “Miniature optical connector with small zirconia ferrule,” IEEE Photon. Technol. Lett., vol. 3, no. 11, pp. 1045-1047 (1991).

[4.16] E. Sugita, R. Nagase, K. Kanayama, and T. Shintaku, “SC-type single-mode optical fiber connector,” IEEE J. Light. Technol., vol. 7, no. 11, pp. 1689-1696, Nov. (1989).

[4.17] R. Nagase, E. Sugita, S. Iwano, K. Kanayama, and Y. Ando “Design for MU-type single-mode miniature optical connector” IEICE Trans. Electron., vol. E81-C, no. 3, pp. 408-415, Mar. (1998).

[4.18] R. Nagase, T. Shibuya, T. Takahashi, D. Kubo and H. Matsuura, “Fiber Withdrawal Phenomena on Optical Connectors,” IEICE Technical Report, EMD2010-128 (2010).

[4.19] K. Shikama, Y. Abe, S. Yanagi, S. Asakawa, and T. Takahashi, “Multicore fiber connector with physical-contact connection,” IEICE Trans. on Electron., vol. E99-C, no. 2, pp. 242-249 (2016).

[4.20] Y. Abe, K. Shikama, S. Yanagi, and T. Takahashi, “Physical-contact-type fan-out device for multicore fibre,” Electron. Lett., vol. 49, issue 11, pp. 711-712 (2013).

[4.21] S. Mitachi and R. Nagase, “Glass Ceramic Ferrule Realizing Low Cost Optical Connectors for Fiber to the Home,” Proc. Optoelectonics and Communications Conference, vol. 2, no.1, pp. 8-9 (1997).

[4.22] R. Nagase, Y. Takeuchi, and S. Mitachi, “Optical connector with glass-ceramic ferrule,” Electron. Lett., vol. 33, issue 14, pp. 1243-1244 (1997).

[4.23] S. Yanagi, H. Sato, Y. Shuto, M. Ohno, and S. Tohmori, “Optical characteristics of injection molded plastic ferrules for single-mode optical fiber applications,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 5, pp. 1266-1270 (1999).

[4.24] S. Mitachi, N. Yonekawa, and K. Hashimoto, “Physical contact conditions of glass-ceramic ferrules for optical connectors,” Proc. Annual Meeting of the IEEE Lasers and Electro-Optics Society, Glasgow, Scotland, UK, paper Th.M4 (2002).

[4.25] M. Kihara, M. Uchino, M. Omachi, and H. Watanabe, “Investigation into optical performance of fiber connections with imperfect physical contact,” IEEE J. Light. Technol., vol. 31, no. 6, pp. 967-974 (2013).

[4.26] M. Kihara and H. Watanabe, “Corrections to “Investigation Into Optical Performance of Fiber Connections With Imperfect Physical Contact” IEEE J. Light. Technol., vol. 34, no. 15, pp. 3592-3595 (2016).

[4.27] K. Shikama, A. Aratake, and Y. Koike, “Analysis of nano-creep deformation of epoxy adhesive in optical fiber connector for long-term reliability prediction,” Optical Fiber Technology, vol. 52, 101975, pp. 1-8, Nov. (2019).

第 5 章の参考文献

[5.1] T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Com. Mag., vol. 50, issue 2, pp. S31-S42, Feb. (2012).

[5.2] D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photonics, vol. 7, no. 5, pp. 354-362 (2013).

[5.3] H. Takara et al., “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” Proc. European Conference on Optical Communication, Amsterdam, Nederland, paper Th.3.C.1 (2012).

[5.4] J. Sakaguchi et al., “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s,” Proc. Optical Fiber Communication Conference, Los Angeles, CA, USA, paper PDP5C.1 (2012).

[5.5] A. Sano et al., “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving,” Opt. Express, vol. 21, no. 14, pp. 16777-16783 (2013).

[5.6] T. Shintaku, R. Nagase, and E. Sugita, “Connection mechanism of physical-contact optical fiber connectors with spherical convex polished ends,” Applied Optics, vol. 30, issue 36, pp. 5260-5265 (1991).

[5.7] T. Shintaku, E. Sugita, and R. Nagase, “Highly stable physical-contact optical fiber connectors with spherical convex ends,” IEEE J. Light. Technol., vol. 11, no. 2, pp. 241-243, Feb. (1993).

[5.8] K. Shikama, A. Aratake, and Y. Koike, “Analysis of nano-creep deformation of epoxy adhesive in optical fiber connector for long-term reliability prediction,” Optical Fiber Technology, vol. 52, 101975, Nov. (2019).

[5.9] K. Shikama, Y. Abe, S. Yanagi, and T. Takahashi, “Physical-contact conditions for multicore fiber optical connectors,” Proc. Optical Fiber Communication Conference, Anaheim, CA, USA, paper OM3I.1 (2013).

[5.10] K. Shikama, Y. Abe, S. Asakawa, S. Yanagi, and T. Takahashi, “Multicore fiber connector with physical-contact connection,” IEICE Trans. Electron., vol. E99-C, no. 2, pp.242-249, Feb. (2016).

[5.11] K. Shikama, S. Asakawa, Y. Abe, and T. Takahashi, “Multiple multicore fibre connector with physical-contact connection,” Electron. Lett., vol. 51, issue 10, pp. 775–777 (2015).

[5.12] M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multicore fiber: Proposal and design principle,” IEICE Electron. Express, vol. 6, no. 2, pp.98-103 (2009).

[5.13] S. Nozoe et al., “Ultra-Low Crosstalk 125-μm-Cladding Four-Hole Four-Core Fibers Fabricated by the Over-Cladding Bundled Rods Method,” IEEE J. Light. Technol. vol. 37, issue 21, pp. 5600-5608 (2019).

[5.14] T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber feasible to ultra-long-haul transmission,” Proc. Optical Fiber Communication Conference, Los Angeles, CA, USA, paper PDPC2 (2011).

[5.15] T. Mizuno et al., “12-Core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” Proc. Optical Fiber Communication Conference, San Francisco, CA, USA, paper Th5B.2 (2014).

[5.16] T. Mizuno, H. Takara, K. Shibahara, A. Sano, and Y. Miyamoto, “Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems,” IEEE J. Light. Technol., vol. 34, no. 6, pp1484-1493 (2016).

[5.17] R. Ryf et al., “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” Proc. Optical Fiber Communication Conference, Los Angeles, CA, USA, paper PDPB10 (2011).

[5.18] M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: Coupled-mode theory and coupled-power theory,” Opt. Express, vol. 19, no. 26, pp. B102– B111 (2011).

[5.19] S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity” McGraw-Hill, New York: D. Van Nostrand Company, Inc. (1951).

[5.20] IEC 61754-4, “Fiber optic connector interfaces –Part 4: Type SC connector family”, International Electrotechnical Commission.

[5.21] K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saito, and M. Koshiba, “Reduction of crosstalk by trench-assisted multicore fibre,” Proc. Optical Fiber Communication Conference, Los Angeles, CA, USA, paper OWJ4 (2011).

[5.22] Y. Abe, K. Shikama, S. Yanagi, and T. Takahashi, “Physical-contact type fan-out device for multicore fiber”, Electron. Lett., vol. 49, no. 11, pp. 711-712 (2013).

[5.23] T. Matsui et al., “Design of 125 μm cladding multi-core fiber with full-band compatibility to conventional single-mode fiber,” Proc. European Conference on Optical Communications, Valencia, Spain, paper We.1.4.5 (2015).

[5.24] R. Nagase, K. Sakaime, K. Watanabe, and T. Saito, “MU-type multicore fiber connector,” IEICE Trans. Electron., vol. E96-C, no. 9, pp.1173-1177 (2013).

[5.25] E. Nomoto, K. Hiruma, T. Sugawara, K. Tanaka, and Y. Lee, “SC-type Multi-core Optical-fiber Connectors Using a Pressurization Spring,” Optical Review, vol. 22, no. 5, pp. 679-685 (2015).

[5.26] K. Saito, T. Matsui, K. Nakajima, and T. Kurashima, “Multi-Core Fiber Connector with Precise Rotational Angle Alignment,” Proc. Optoelectonics and Communications Conference, Melbourne, Australia, paper TH10B-3 (2014).

[5.27] T. Satake, S. Nagasawa, and R. Arioka, “A new type of demountable plastic-molded single-mode multifiber connector,” IEEE J. Light. Technol., vol. 4, no. 8, pp. 1232-1236 (1986).

[5.28] K. Watanabe, T. Saito, K. Suematsu, R. Nagase, and M. Shiino, “Development of small MT type 2-multicore fiber connector,” Proc. Optical Fiber Communication Conference, San Francisco, CA, USA, paper W4D.6 (2014).

[5.29] K. Watanabe, T. Saito, K. Kawasaki, M. Iwaya, T. Ando, K. Suematsu, and M. Shiino, “Development of MPO type 8-multicore fiber connector,” Proc. Optical Fiber Communication Conference, Los Angeles, CA, USA, paper W4B.3 (2015).

[5.30] T. Morishima et al., "MCF-enabled Ultra-High-Density 256-core MT Connector and 96-core Physical-Contact MPO Connector," Proc. Optical Fiber Communication Conference, San Francisco, CA, USA, paper Th5D.4 (2018).

[5.31] R. Koyama, H. Izumita, and T. Kurashima, “Physical Contact Connection Between SC Connector and Raw Cleaved SM-Fiber End,” IEEE Photon. Technol. Lett., vol. 24, no. 24, pp. 2280-2283 (2012).

第 6 章の参考文献

[6.1] W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett., vol. 24, no. 11, pp. 1902-1905 (2012).

[6.2] R. R. Thomson et al., “Ultrafast-laser inscription of a three dimensional fanout device for multicore fiber coupling applications,” Opt. Express, vol. 15, no. 18, pp. 11691-11697 (2007).

[6.3] T. Watanabe and Y. Kokubun, “Stacked polymer waveguide type fan-in/fan-out device for dense multi-core fibre”, IET Optoelectronics, vol. 9, issue 4, pp. 158-162 (2015).

[6.4] H. Uemura, K. Omichi, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Fused taper type fan-in/fan-out device for 12 core multi-core fiber,” Proc. Optoelectronics and Communication Conference, Melbourne, Australia, pp. 49-50 (2014).

[6.5] H. Takara et al., “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express, vol. 20, issue 9, pp. 10100-10105 (2012).

[6.6] K. Watanabe, T. Saito, K, Imamura, and M. Shiino, “Development of fiber bundle type fan-out for multi-core fiber,” Proc. Optoelectroics and Communication Conference, Busan, Korea, pp. 475-476 (2012).

[6.7] Y. Abe, K. Shikama, S. Yanagi, and T. Takahashi, “Low-loss physical-contact-type fan-out device for 12-core multicore fiber,” Proc. European Conference on Optical Communication, London, UK, Paper P.1.7 (2013).

[6.8] Y. Abe, K. Shikama, S. Yanagi, and T. Takahashi, “Physical-contact-type fan-out device for multicore fibre,” Electron. Lett., vol. 49, issue 11, pp. 711-712 (2013).

[6.9] K. Shikama, Y. Abe, H. Ono, and A. Aratake, “Low-Loss and Low-Mode-Dependent-Loss Fan-In/Fan-Out Device for 6-Mode 19-Core Fiber," IEEE J. Light. Technol., vol. 36, no. 2, pp. 302-308 (2018).

[6.10] K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saito, and M. Koshiba, “Reduction of crosstalk by trench-assisted multicore fibre,” Proc. Optical Fiber Communication Conference, Los Angeles, CA, USA, paper OWJ4 (2011).

[6.11] S. Matuso, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saito, and M. Koshiba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express, vol. 20, no. 27, pp. 28398-23408 (2012).

[6.12] T. Mizuno et al., “12-core × 3-mode Dense Space Division Multiplexed Transmission over 40 km Employing Multi-carrier Signals with Parallel MIMO Equalization,” Proc. Optical Fiber Communication Conference, San Francisco, CA, USA, paper Th5B.2 (2014).

[6.13] T. Sakamoto et al., “Low-loss and low-DMD few-mode multi-core fiber with highest core multiplicity factor,” Proc. Optical Fiber Communication Conference, Anaheim, USA, paper Th5A.2 (2016).

[6.14] K. Shikama, Y. Abe, T Kishi, K Takeda, T Fujii, H Nishi, T Matsui, A. Aratake, K. Nakajima, and S. Matsuo, “Multicore-fiber LC receptacle with compact fan-in/fan-out device for SDM transceiver applications,” IEEE J. Light. Technol., vol. 36, no. 24, pp. 5815-5822 (2018).

[6.15] S. Kravitz, “Packing Cylinders into Cylindrical Containers,” Journal of Mathematics Magazine, vol. 40, issue 2, pp. 65-71 (1967).

[6.16] D. Würtz, M. Monagan, and R. Peikert, “The history of packing circles in a square,” Maple in Mathematics and the Sciences, MapleTech, Special Issue, pp. 35-42 (1994).

[6.17] H. Melissen, “Densest Packings of Congruent Circles in an Equilateral Triangle,” The American Mathematical Monthly, vol. 100, no. 10, pp. 916-925 (1993).

[6.18] J. Sakaguchi et al., “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” IEEE J. Light. Technol., vol. 31, no. 4, pp. 554-562 (2013).

[6.19] H. Takara et al., “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency,” Proc. European Conference on Optical Communication, Amsterdam, Netherlands, paper Th3.C.1 (2012).

[6.20] A. Sano et al., “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving,” Opt. Express, vol. 21, issue 14, pp. 16777-16783 (2013).

[6.21] Y. Abe, K. Shikama, H. Ono, S. Yanagi, and T. Takahashi, “Fan-in/fan-out device employing v-groove substrate for multicore fibre,” Electron. Lett., vol. 51, no. 17, pp. 1347-1348 (2015).

[6.22] T. Kobayashi et al., “2× 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” Proc. European Conference on Optical Communication, London, UK, paper PD1.E.4 (2013).

[6.23] J. Sakaguchi et al., “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” Proc. Optical Fiber Communication Conference, Los Angeles, CA, USA, paper Th5C.2 (2015).

[6.24] K. Igarashi, D. Soma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N. Yoshikane, T. Tsuritani, I. Morita, and M. Suzuki, “Ultra-dense spatial-division-multiplexed optical fiber transmission over 6-mode 19-core fibers,” Opt. Express, vol. 24, no. 10, pp. 10213-10231 (2016).

[6.25] N. K. Fontaine, S. G. Leon-Saval, R. Ryf, J. R. S. Gil, B. Ercan, and J. Bland-Hawthorn, “Mode-selective dissimilar fiber photonic lantern spatial multiplexers for few-mode fiber,” Proc. European Conference on Optical Communication, London, UK, paper PD1.C.3 (2013).

[6.26] P. Genevaux et al., “6-mode spatial multiplexer with low loss and high selectivity for transmission over few mode fiber,” Proc. Optical Fiber Communication Conference, Los Angeles, USA, paper W1A.5 (2015).

[6.27] G. Labroille, P. Jian, N. Barré, B. Denolle, and J.F. Morizur, “Mode selective 10-mode multiplexer based on multi-plane light conversion,” Proc. Optical Fiber Communication Conference, Anaheim, CA, USA, paper Th3E.5 (2016).

[6.28] K. Saitoh et al., “PLC-based mode multi/demultiplexers for mode division multiplexing,” Optical Fiber Technology, vol. 35, pp. 80-92, Feb. (2017).

[6.29] P. Mitchell, G. Brown, R. Thomson, N. Psaila, and A. Kar, “57 channel (19x3) spatial multiplexer fabricated using direct laser inscription,” Proc. Optical Fiber Communication Conference, San Francisco, USA, paper M3K.5 (2014).

[6.30] K. P. Ho and J. M. Kahn, “Mode-dependent loss and gain: statistics and effect on mode-division multiplexing,” Opt. Express, vol. 19, no.17, pp. 16612-16635 (2011).

[6.31] C. Antonelli, A. Mecozzi, M. Shtaif, and P. J. Winzer, “Modeling and performance metrics of MIMO-SDM systems with different amplification schemes in the presence of mode-dependent loss,” Opt. Express, vol. 23, no. 3, pp. 2203-2219 (2014).

[6.32] K. Shikama, Y. Abe, S. Asakawa, S. Yanagi, and T. Takahashi, “Multicore fiber connector with physical-contact connection,” IEICE Trans. on Electron., vol. E99-C, no.2, pp. 242-249 (2016).

[6.33] B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett., vol. 22, no. 22, pp. 1647-1649 (2010).

[6.34] B. G. Lee et al., “End-to-end multicore multimode fiber optic link operating up to 120 Gb/s,” IEEE J. Light. Technol., vol. 30, no. 6, pp. 886-892 (2012).

[6.35] P. D. Heyn et al., “Ultra-Dense 16x56Gb/s NRZ GeSi EAM-PD Arrays Coupled to Multicore Fiber for Short-Reach 896Gb/s Optical Links,” Proc. Optical Fiber Communication Conference, Los Angeles, USA, paper M3G.3 (2017).

[6.36] T. Hayashi et.al., “End-to-End multi-core fibre transmission link enabled by silicon photonics transceiver with grating coupler array,” Proc. European Conference on Optical Communication, Gothenburg, Sweden, paper Th2.A.4 (2017).

[6.37] T. Oda, K. Hirakawa, K. Ichii, S. Yamamoto, and K. Aikawa, “Thermally expanded core fiber with a 4-mm mode field diameter suitable for low-loss coupling with silicon photonic devices,” Proc. Optical Fiber Communication Conference, San Francisco, USA, paper Tu3K.5 (2017).

[6.38] M. Kobaysashi et al., “A New Physical Contact Connection Method Using the Buckling Force of Optical Fiber,” IEICE Trans. on Electron., vol. E80-C, no. 2, pp. 334-339 (1997).

[6.39] T. Matsui et al., “Design of 125 μm cladding multi-core fiber with full-band compatibility to conventional single-mode fiber,” Proc. European Conference on Optical Communication, Valencia, Spain, paper We1.4.5 (2015).

[6.40] T. Fujii et al., “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” Proc. European Conference on Optical Communication, Düsseldorf, Germany, paper Th3.A.2 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る