リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Raman Analysis and Electrochemical Reduction of Silicate Ions in Molten NaCl–CaCl₂」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Raman Analysis and Electrochemical Reduction of Silicate Ions in Molten NaCl–CaCl₂

Ma, Yuanjia Yamamoto, Takayuki Yasuda, Kouji Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/abf4b2

2021.04

概要

This study investigated the ionic species and electrochemical reduction of silicate ions at a solid graphite electrode in molten NaCl–CaCl₂ eutectic melts with various concentrations of O²⁻ ion at 1023 K. Silicate ion species in the melts with various O²⁻/SiO₂ ratios (${r}_{{O}^{2-}/{text{SiO}}_{2}})$ were determined by Raman spectroscopy. The dominant species was SiO₃²⁻ for ${r}_{{O}^{2-}/{text{SiO}}_{2}}$ = 1.0, and SiO44− for ${r}_{{O}^{2-}/{text{SiO}}_{2}}$ = 1.5 and 2.0. From cyclic voltammetry, XRD, and SEM analyses, electrochemical reduction was indicated for SiO₃²⁻ and SiO₄⁴⁻ at more negative than 1.0 V and 0.80 V vs Na⁺/Na, respectively. Formation of CaSi₂ was confirmed at 0.50 V in all molten salts with ${r}_{{O}^{2-}/{text{SiO}}_{2}}$ = 1.0, 1.5, and 2.0. The potential ranges for pure Si deposition are almost the same in molten salts with ${r}_{{O}^{2-}/{text{SiO}}_{2}}$ = 1.0 and 1.5.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Key World Energy Statistics 2019, IEA, (2019).

Energy Outlook 2018, IEA (2018).

Industrial Rare Metal 2019, Arumu Publ. Co. (2019).

Photovoltaic Market 2019, RTS Corp. (2019).

H. Schweickert, K. Reusche, and H. Gustsche, U.S. Patent, 3011877 (1961).

H. Gutsche, U.S. Patent, 3011877 (1962).

C. Bye and B. Ceccaroli, Sol. Energ. Mater. Sol. C., 130, 634 (2014).

F. Chigondo, Silicon, 10, 789 (2018).

K. Hanazawa, N. Yuge, and Y. Kato, Mater. Trans., 45, 844 (2004).

G. Burns, J. Rabe, and S. Yilmaz, PCT International Patent, WO2005/061383

(2005).

11. K. Tang, S. Andersson, E. Nordstrand, and M. Tangstad, JOM, 64, 952 (2012).

12. X. Ma, T. Yoshikawa, and K. Morita, Sep. Purif. Technol., 125, 264 (2014).

13. Y. Wang, X. Ma, and K. Morita, Metall. Mater. Trans. B, 45, 334 (2014).

37.

38.

39.

40.

41.

42.

43.

44.

45.

T. Shimamune and I. Yoshikawa, Japanese Patent Toku Kai, H15–342016 (2003).

E. Robert and T. Zijlema, PCT International Patent, WO2006/100114 (2006).

S. Sakaguchi, PCT International Patent, WO2007/119605 (2007).

S. Honda, M. Yasueda, S. Hayashida, and M. Yamaguchi, Japanese Patent Toku

Kai, H19–145663 (2007).

T. Nohira, K. Yasuda, and Y. Ito, Nat. Mater., 2, 397 (2003).

K. Yasuda, T. Nohira, and Y. Ito, J. Phys. Chem. Solids, 66, 443 (2005).

K. Yasuda, T. Nohira, K. Takahashi, R. Hagiwara, and Y. H. Ogata, J. Electrochem.

Soc., 152, D232 (2005).

K. Yasuda, T. Nohira, K. Amezawa, Y. H. Ogata, and Y. Ito, J. Electrochem. Soc.,

152, D69 (2005).

K. Yasuda, T. Nohira, R. Hagiwara, and Y. H. Ogata, Electrochim. Acta, 53, 106

(2007).

K. Yasuda, T. Nohira, R. Hagiwara, and Y. H. Ogata, J. Electrochem. Soc., 154,

E95 (2007).

Y. Nishimura, T. Nohira, K. Kobayashi, and R. Hagiwara, J. Electrochem. Soc.,

158, E55 (2011).

T. Toba, K. Yasuda, T. Nohira, X. Yang, R. Hagiwara, K. Ichitsubo, K. Masuda,

and T. Homma, Electrochemistry, 81, 559 (2013).

X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, Metall. Mater. Trans.

B, 45, 1337 (2014).

X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, J. Electrochem. Soc.,

161, D3116 (2014).

X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, Metall. Mater. Trans.

B, 47, 788 (2015).

X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, Metall. Mater. Trans.

E, 3, 145 (2016).

M. Zhong, K. Yasuda, T. Homma, and T. Nohira, Electrochemistry, 86, 77 (2018).

M. Zhong, X. Yang, K. Yasuda, T. Homma, and T. Nohira, Metall. Mater. Trans. B,

49B, 341 (2018).

T. Nohira, A. Ido, T. Shimao, X. Yang, K. Yasuda, R. Hagiwara, and T. Homma,

ECS Trans., 75, 17 (2016).

K. Yasuda, T. Shimao, R. Hagiwara, T. Homma, and T. Nohira, J. Electrochem.

Soc., 164, H5049 (2017).

Y. Ma, A. Ido, K. Yasuda, R. Hagiwara, and T. Nohira, J. Electrochem. Soc., 166,

D162 (2019).

X. Yang, L. Ji, X. Zou, T. Lim, J. Zhao, E. T. Yu, and A. J. Bard, Angew. Chem. Int.

Ed., 56, 15078 (2017).

X. Zou, L. Ji, X. Yang, T. Lim, E. T. Yu, and A. J. Bard, J. Am. Chem. Soc., 139,

16060 (2017).

X. Zou, L. Ji, J. Ge, D. R. Sadoway, E. T. Yu, and A. J. Bard, Nat. Commun., 10,

5772 (2019).

S. Wang, F. Zhang, X. Liu, and L. Zhang, Thermochim. Acta, 470, 105 (2008).

B. O. Mysen, D. Virgo, and C. M. Scarfe, Am. Mineral., 65, 690 (1980).

D. Virgo, B. O. Mysen, and I. Kushiro, Science, 208, 1371 (1980).

B. O. Mysen, Structure and Properties of Silicate Melts (Elsevier, Amsterdam)

(1988).

C. Wang, J. Zhang, Z. Liu, K. Jiao, G. Wang, J. Yang, and K. Chou, Metall. Mater.

Trans. B, 48, 328 (2017).

L. B. Pankratz, Thermodynamic Properties of Carbides, Nitrides, and Other

Selected Substances (U. S. Bureau of Mines (USBM))(Washington D.C.) (1994).

M. W. Chase, NIST-JANAF Thermochemical Tables, 4th ed., Part I Al-Co

(American Chemical Society, and the American Institute of Physics for the

National Institute of Standards and Technology, New York, NY) (1998).

R. Winand, Electrochim. Acta, 39, 1091 (1994).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る