リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Design of Coibamide A Mimetics with Improved Cellular Bioactivity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Design of Coibamide A Mimetics with Improved Cellular Bioactivity

Kitamura, Takashi Suzuki, Rikito Inuki, Shinsuke Ohno, Hiroaki McPhail, Kerry L. Oishi, Shinya 京都大学 DOI:10.1021/acsmedchemlett.1c00591

2022.01

概要

Coibamide A, a cyclic depsipeptide isolated from a Panamanian marine cyanobacterium, shows potent cytotoxic activity via the inhibition of the Sec61 translocon. We designed a coibamide A mimetic in which the ester linkage between MeThr and d-MeAla in coibamide A was replaced with an alkyl linker to provide a stable macrocyclic scaffold possessing a MeLys(Me) residue. Taking advantage of a facile solid-phase synthetic approach, an structure–activity relationship (SAR) study of the newly designed macrocyclic structure was performed, with a focus on altering the pattern of N-methyl substitution and amino acid configurations. Overall, the simplified macrocyclic scaffold with an alkyl linker resulted in a significantly reduced cytotoxicity. Instead, more potent coibamide A derivatives with a β-(4-biphenylyl)alanine (Bph) group were identified after the optimization of the Tyr(Me) position in the original macrocyclic scaffold of coibamide A based on the characteristic apratoxin A substructures. The similar SAR between coibamide A and apratoxin A suggests that the binding site of the Tyr(Me) side chain at the luminal end of Sec61α may be shared.

この論文で使われている画像

参考文献

(1) Medina, R. A.; Goeger, D. E.; Hills, P.; Mooberry, S. L.; Huang,

N.; Romero, L. I.; Ortega-Barría, E.; Gerwick, W. H.; McPhail, K. L.

Coibamide A, a potent antiproliferative cyclic depsipeptide from the

Panamanian marine cyanobacterium Leptolyngbya sp. J. Am. Chem.

Soc. 2008, 130, 6324−6325.

(2) Yao, G.; Pan, Z.; Wu, C.; Wang, W.; Fang, L.; Su, W. Efficient

synthesis and stereochemical revision of coibamide A. J. Am. Chem.

Soc. 2015, 137, 13488−13491.

(3) Hau, A. M.; Greenwood, J. A.; Löhr, C. V.; Serrill, J. D.; Proteau,

P. J.; Ganley, I. G.; McPhail, K. L.; Ishmael, J. E. Coibamide A induces

mTOR-independent autophagy and cell death in human glioblastoma

cells. PLoS One 2013, 8, e65250.

(4) Wan, X.; Serrill, J. D.; Humphreys, I. R.; Tan, M.; McPhail, K. L.;

Ganley, I. G.; Ishmael, J. E. ATG5 promotes death signaling in

response to the cyclic depsipeptides coibamide A and apratoxin A.

Mar. Drugs 2018, 16, 77.

(5) Shi, W.; Lu, D.; Wu, C.; Li, M.; Ding, Z.; Li, Y.; Chen, B.; Lin,

X.; Su, W.; Shao, X.; Xia, Z.; Fang, L.; Liu, K.; Li, H. Coibamide A

kills cancer cells through inhibiting autophagy. Biochem. Biophys. Res.

Commun. 2021, 547, 52−58.

(6) Serrill, J. D.; Wan, X.; Hau, A. M.; Jang, H. S.; Coleman, D. J.;

Indra, A. K.; Alani, A. W. G.; McPhail, K. L.; Ishmael, J. E. Coibamide

A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression

and suppresses tumor growth in glioblastoma xenografts. Invest. New

Drugs 2016, 34, 24−40.

(7) Kazemi, S.; Kawaguchi, S.; Badr, C. E.; Mattos, D. R.; RuizSaenz, A.; Serrill, J. D.; Moasser, M. M.; Dolan, B. P.; Paavilainen, V.

O.; Oishi, S.; McPhail, K. L.; Ishmael, J. E. Targeting of HER/ErbB

family proteins using broad spectrum Sec61 inhibitors coibamide A

and apratoxin A. Biochem. Pharmacol. 2021, 183, 114317.

(8) Tranter, D.; Paatero, A. O.; Kawaguchi, S.; Kazemi, S.; Serrill, J.

D.; Kellosalo, J.; Vogel, W. K.; Richter, U.; Mattos, D. R.; Wan, X.;

Thornburg, C. C.; Oishi, S.; McPhail, K. L.; Ishmael, J. E.;

Paavilainen, V. O. Coibamide A targets Sec61 to prevent biogenesis

of secretory and membrane proteins. ACS Chem. Biol. 2020, 15,

2125−2136.

(9) Lang, S.; Pfeffer, S.; Lee, P. H.; Cavalié, A.; Helms, V.; Förster,

F.; Zimmermann, R. An update on Sec61 channel functions,

mechanisms, and related diseases. Front. Physiol. 2017, 8, 887.

(10) Sicking, M.; Lang, S.; Bochen, F.; Roos, A.; Drenth, J. P. H.;

Zakaria, M.; Zimmermann, R.; Linxweiler, M. Complexity and

specificity of Sec61-channelopathies: human diseases affecting gating

of the Sec61 complex. Cells 2021, 10, 1036.

(11) Linxweiler, M.; Schick, B.; Zimmermann, R. Let’s talk about

Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and

personalized medicine. Signal Transduct. Target Ther. 2017, 2, e17002.

(12) O’Keefe, S.; Roboti, P.; Duah, K. B.; Zong, G.; Schneider, H.;

Shi, W. Q.; High, S. Ipomoeassin-F inhibits the in vitro biogenesis of

the SARS-CoV-2 spike protein and its host cell membrane receptor. J.

Cell Sci. 2021, 134, jcs257758.

(13) Van Puyenbroeck, V.; Vermeire, K. Inhibitors of protein

translocation across membranes of the secretory pathway: novel

antimicrobial and anticancer agents. Cell. Mol. Life Sci. 2018, 75,

1541−1558.

(14) Luesch, H.; Paavilainen, V. O. Natural products as modulators

of eukaryotic protein secretion. Nat. Prod. Rep. 2020, 37, 717−736.

AUTHOR INFORMATION

Corresponding Author

Shinya Oishi − Graduate School of Pharmaceutical Sciences,

Kyoto University, Kyoto 606-8501, Japan; Department of

Medicinal Chemistry, Kyoto Pharmaceutical University,

Kyoto 607-8412, Japan; orcid.org/0000-0002-28332539; Email: soishi@mb.kyoto-phu.ac.jp

Authors

Takashi Kitamura − Graduate School of Pharmaceutical

Sciences, Kyoto University, Kyoto 606-8501, Japan

Rikito Suzuki − Graduate School of Pharmaceutical Sciences,

Kyoto University, Kyoto 606-8501, Japan; Department of

Medicinal Chemistry, Kyoto Pharmaceutical University,

Kyoto 607-8412, Japan

Shinsuke Inuki − Graduate School of Pharmaceutical Sciences,

Kyoto University, Kyoto 606-8501, Japan; orcid.org/

0000-0002-7525-1280

Hiroaki Ohno − Graduate School of Pharmaceutical Sciences,

Kyoto University, Kyoto 606-8501, Japan

Kerry L. McPhail − Department of Pharmaceutical Sciences,

College of Pharmacy, Oregon State University, Corvallis,

Oregon 97331, United States; orcid.org/0000-00032076-1002

Complete contact information is available at:

https://pubs.acs.org/10.1021/acsmedchemlett.1c00591

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the NIGMS (R01GM132649),

AMED (JP18lm0203006j0002 and JP19am0101092j0003),

and the Takeda Science Foundation.

ABBREVIATIONS

Alloc, allyloxycarbonyl; ATG5, authophagy-related protein 5;

Bph, β-(4-biphenylyl)alanine; DIC, N,N′-diisopropylcarbodiimide; DIEA, N,N-diisopropylethylamine; EDCI, 1-ethyl-3-(3(dimethylamino)propyl)carbodiimide; EGFR, epidermal

growth factor receptor; HATU, O-(7-aza-1H-benzotriazol-1yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate;

HFIP, 1,1,1,3,3,3-hexafluoro-2-propanol; Hva, 2-hydroxyisovaleric acid; HOAt, 1-hydroxy-7-azabenzotriazole; HOBt, 1hydroxybenzotriazole; Me2Val, N,N-dimethylvaline; MeAla, Nmethylalanine; MeIle, N-methylisoleucine; MeLeu, N-methylleucine; MeLys, Nα-methyllysine; MeLys(Me), N,N′-dimethyl109

https://doi.org/10.1021/acsmedchemlett.1c00591

ACS Med. Chem. Lett. 2022, 13, 105−110

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

ACS Medicinal Chemistry Letters

pubs.acs.org/acsmedchemlett

(15) Huang, K.-C.; Chen, Z.; Jiang, Y.; Akare, S.; Kolber-Simonds,

D.; Condon, K.; Agoulnik, S.; Tendyke, K.; Shen, Y.; Wu, K.-M.;

Mathieu, S.; Choi, H.-w.; Zhu, X.; Shimizu, H.; Kotake, Y.; Gerwick,

W. H.; Uenaka, T.; Woodall-Jappe, M.; Nomoto, K. Apratoxin A

shows novel pancreas-targeting activity through the binding of Sec61.

Mol. Cancer Ther. 2016, 15, 1208−1216.

(16) Paatero, A. O.; Kellosalo, J.; Dunyak, B. M.; Almaliti, J.;

Gestwicki, J. E.; Gerwick, W. H.; Taunton, J.; Paavilainen, V. O.

Apratoxin kills cells by direct blockade of the Sec61 protein

translocation channel. Cell Chem. Biol. 2016, 23, 561−566.

(17) Junne, T.; Wong, J.; Studer, C.; Aust, T.; Bauer, B. W.; Beibel,

M.; Bhullar, B.; Bruccoleri, R.; Eichenberger, J.; Estoppey, D.;

Hartmann, N.; Knapp, B.; Krastel, P.; Melin, N.; Oakeley, E. J.;

Oberer, L.; Riedl, R.; Roma, G.; Schuierer, S.; Petersen, F.; Tallarico,

J. A.; Rapoport, T. A.; Spiess, M.; Hoepfner, D. Decatransin, a new

natural product inhibiting protein translocation at the Sec61/SecYEG

translocon. J. Cell Sci. 2015, 128, 1217−1229.

(18) Cross, B. C. S.; McKibbin, C.; Callan, A. C.; Roboti, P.;

Piacenti, M.; Rabu, C.; Wilson, C. M.; Whitehead, R.; Flitsch, S. L.;

Pool, M. R.; High, S.; Swanton, E. Eeyarestatin I inhibits Sec61mediated protein translocation at the endoplasmic reticulum. J. Cell

Sci. 2009, 122, 4393−4400.

(19) Gamayun, I.; O’Keefe, S.; Pick, T.; Klein, M.-C.; Nguyen, D.;

McKibbin, C.; Piacenti, M.; Williams, H. M.; Flitsch, S. L.;

Whitehead, R. C.; Swanton, E.; Helms, V.; High, S.; Zimmermann,

R.; Cavalié, A. Eeyarestatin compounds selectively enhance Sec61mediated Ca2+ leakage from the endoplasmic reticulum. Cell Chem.

Biol. 2019, 26, 571−583.

(20) Besemer, J.; Harant, H.; Wang, S.; Oberhauser, B.; Marquardt,

K.; Foster, C. A.; Schreiner, E. P.; de Vries, J. E.; Dascher-Nadel, C.;

Lindley, I. J. D. Selective inhibition of cotranslational translocation of

vascular cell adhesion molecule 1. Nature 2005, 436, 290−293.

(21) Garrison, J. L.; Kunkel, E. J.; Hegde, R. S.; Taunton, J. A

substrate-specific inhibitor of protein translocation into the

endoplasmic reticulum. Nature 2005, 436, 285−289.

(22) MacKinnon, A. L.; Garrison, J. L.; Hegde, R. S.; Taunton, J.

Photo-leucine incorporation reveals the target of a cyclodepsipeptide

inhibitor of cotranslational translocation. J. Am. Chem. Soc. 2007, 129,

14560−14561.

(23) Zong, G.; Hu, Z.; O’Keefe, S.; Tranter, D.; Iannotti, M. J.;

Baron, L.; Hall, B.; Corfield, K.; Paatero, A. O.; Henderson, M. J.;

Roboti, P.; Zhou, J.; Sun, X.; Govindarajan, M.; Rohde, J. M.;

Blanchard, N.; Simmonds, R.; Inglese, J.; Du, Y.; Demangel, C.; High,

S.; Paavilainen, V. O.; Shi, W. Q. Ipomoeassin F binds Sec61α to

inhibit protein translocation. J. Am. Chem. Soc. 2019, 141, 8450−

8461.

(24) Baron, L.; Paatero, A. O.; Morel, J.-D.; Impens, F.; GueninMacé, L.; Saint-Auret, S.; Blanchard, N.; Dillmann, R.; Niang, F.;

Pellegrini, S.; Taunton, J.; Paavilainen, V. O.; Demangel, C.

Mycolactone subverts immunity by selectively blocking the Sec61

translocon. J. Exp. Med. 2016, 213, 2885−2896.

(25) Chen, Y.; Bilban, M.; Foster, C. A.; Boger, D. L. Solution-phase

parallel synthesis of a pharmacophore library of HUN-7293

analogues: a general chemical mutagenesis approach to defining

structure-function properties of naturally occurring cyclic (depsi)peptides. J. Am. Chem. Soc. 2002, 124, 5431−5440.

(26) Ding, R.; Zhang, T.; Xie, J.; Williams, J.; Ye, Y.; Chen, L.

Eeyarestatin I derivatives with improved aqueous solubility. Bioorg.

Med. Chem. Lett. 2016, 26, 5177−5181.

(27) Onda, Y.; Masuda, Y.; Yoshida, M.; Doi, T. Conformationbased design and synthesis of apratoxin A mimetics modified at the

α,β-unsaturated thiazoline moiety. J. Med. Chem. 2017, 60, 6751−

6765.

(28) Yao, G.; Wang, W.; Ao, L.; Cheng, Z.; Wu, C.; Pan, Z.; Liu, K.;

Li, H.; Su, W.; Fang, L. Improved total synthesis and biological

evaluation of coibamide A analogues. J. Med. Chem. 2018, 61, 8908−

8916.

(29) Gehringer, M.; Mäder, P.; Gersbach, P.; Pfeiffer, B.; Scherr, N.;

Dangy, J. P.; Pluschke, G.; Altmann, K.-H. Configurationally stabilized

Letter

analogs of M. ulcerans exotoxins mycolactones A and B reveal the

importance of side chain geometry for mycolactone virulence. Org.

Lett. 2019, 21, 5853−5857.

(30) Zong, G.; Hu, Z.; Duah, K. B.; Andrews, L. E.; Zhou, J.;

O’Keefe, S.; Whisenhunt, L.; Shim, J. S.; Du, Y.; High, S.; Shi, W. Q.

Ring expansion leads to a more potent analogue of ipomoeassin F. J.

Org. Chem. 2020, 85, 16226−16235.

(31) Wu, C.; Cheng, Z.; Lu, D.; Liu, K.; Cheng, Y.; Wang, P.; Zhou,

Y.; Li, M.; Shao, X.; Li, H.; Su, W.; Fang, L. Novel N-methylated

cyclodepsipeptide prodrugs for targeted cancer therapy. J. Med. Chem.

2021, 64, 991−1000.

(32) Nabika, R.; Suyama, T. L.; Hau, A. M.; Misu, R.; Ohno, H.;

Ishmael, J. E.; McPhail, K. L.; Oishi, S.; Fujii, N. Synthesis and

biological evaluation of the [D-MeAla11]-epimer of coibamide A.

Bioorg. Med. Chem. Lett. 2015, 25, 302−306.

(33) Biron, E.; Chatterjee, J.; Kessler, H. Optimized selective Nmethylation of peptides on solid support. J. Pept. Sci. 2006, 12, 213−

219.

(34) Kelly, C. N.; Townsend, C. E.; Jain, A. N.; Naylor, M. R.; Pye,

C. R.; Schwochert, J.; Lokey, R. S. Geometrically diverse lariat peptide

scaffolds reveal an untapped chemical space of high membrane

permeability. J. Am. Chem. Soc. 2021, 143, 705−714.

(35) Chen, Q.-Y.; Liu, Y.; Luesch, H. Systematic chemical

mutagenesis identifies a potent novel apratoxin A/E hybrid with

improved in vivo antitumor activity. ACS Med. Chem. Lett. 2011, 2,

861−865.

Recommended by ACS

Potent Bactericidal Antimycobacterials Targeting the

Chaperone ClpC1 Based on the Depsipeptide Natural

Products Ecumicin and Ohmyungsamycin A

Paige M. E. Hawkins, Richard J. Payne, et al.

MARCH 16, 2022

JOURNAL OF MEDICINAL CHEMISTRY

READ

Discovery and Development of Cyclic Peptide Inhibitors

of CIB1

Victoria A. Haberman, Albert A. Bowers, et al.

OCTOBER 27, 2021

ACS MEDICINAL CHEMISTRY LETTERS

READ

High-Resolution Structure of ClpC1-Rufomycin and

Ligand Binding Studies Provide a Framework to Design

and Optimize Anti-Tuberculosis Leads

Nina M. Wolf, Sanghyun Cho, et al.

APRIL 16, 2019

ACS INFECTIOUS DISEASES

READ

Synthetic Sansanmycin Analogues as Potent

Mycobacterium tuberculosis Translocase I Inhibitors

Wendy Tran, Richard J. Payne, et al.

NOVEMBER 30, 2021

JOURNAL OF MEDICINAL CHEMISTRY

READ

Get More Suggestions >

110

https://doi.org/10.1021/acsmedchemlett.1c00591

ACS Med. Chem. Lett. 2022, 13, 105−110

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る