リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Numerical and experimental study on the behavior of vortex rings generated by shock–bubble interaction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Numerical and experimental study on the behavior of vortex rings generated by shock–bubble interaction

Kitamura K. 20402547 Yue Z. Fujimoto T. Asai H. Kubota A. Myokan M. Ichihara D. 80815803 Sasoh A. 40215752 横浜国立大学

2022.04.04

概要

In this study, three-dimensional numerical simulations and experiments of the interaction between a normal shock and bubbles generated by the repetitive energy depositions of a laser pulse in a Mach 1.92 flow was conducted. As a result of the shock–bubble interaction, a vortex ring, caused by a baroclinic effect, was generated. Owing to the self-induced velocity field, the advection velocity of the vortex rings decreased with increasing laser pulse energy. In the experiments, when interactions among the vortex rings became strong, separations in transverse directions between adjacent bubbles were induced. This was reproduced through numerical simulations by imposing an artificial disturbance in the initial positions of the bubbles, i.e., by 5% of the bubble diameter in a transversal direction. The asymmetric behaviors of a row of vortex rings were classified into three patterns based on the ratio of the distance between the vortex rings to the size of the vortex rings (λ: inverse Strouhal number). In pattern 1, with λ >2.9, there was negligible interference between the vortex rings because the interval of the vortex rings was sufficiently large. In pattern 2, with λ = 0.97–1.2, separation in the vortex-ring rows appeared, and the separation angle increased as λ decreased. In pattern 3, with λ <0.62, the interference intensified, and the vortex rings collapsed, forming a turbulent flow behind the shock wave.

この論文で使われている画像

参考文献

25

1.

J. Pawlowski, D. Graham, C. Boccadoro, P. Coen, and D. Maglieri, “Origins and Overview of the Shaped Sonic Boom

Demonstration Program,” AIAA Paper 2005-0005, 2005.

2.

M. Kanamori, T. Takahashi, Y. Makino, Y. Naka, and H. Ishikawa, “Comparison of Simulated Sonic Boom in

Stratified Atmosphere with Flight Test Measurements,” AIAA J. 56, 7, 2018.

3.

H.S. Pham, T. Shoda, T. Tamba, A. Iwakawa, and A. Sasoh, “Impacts of Laser Energy Deposition on Flow Instability

over Double-Cone Model,” AIAA J. 55, 9, 2017.

4.

S.A. Fisher, M.C. Neale, and A.J. Brooks, “On the Sub-Critical Stability of Variable Ramp Intakes at Mach Numbers

Around 2,” National Gas Turbine Establishment Rept. ARC-R/M-3711, London, 1970.

5.

Osuka, T., Erdem, E., Hasegawa, N., Majima, R., Tamba, T., Yokota, S., Sasoh, A., and Kontis, K., “Laser Energy

Deposition Effectiveness on Shock-Wave Boundary-Layer Interactions over Cylinder-Flare Combinations,” Physics

of Fluids, Vol. 26, No. 9, 2014, Paper 096103.

6.

H.S. Pham, M. Myokan, T. Tamba, A. Iwakawa, and A. Sasoh, “Effects of Repetitive Laser Energy Deposition on

Supersonic Duct Flows,” AIAA J. 56, 2, 2018.

7.

S. Taguchi, N. Ohnishi, M. Furudate, and K. Sawada, “Numerical Analysis of Drag Reduction for Supersonic Blunt

Body by Pulse Energy Deposition,” AIAA Paper 2007-1235 (2007).

8.

R. G. Adelgre, H. Yan, G. S. Elliot, D. D. Knight, T. J. Beutner and A. A. Zheltovodov, “Control of Edney IV

Interaction by Pulsed Laser Energy Deposition,” AIAA J. 43, 256 (2005).

9.

J.-H. Kim, A. Matsuda, T. Sakai, and A. Sasoh, “Wave Drag Reduction Performance with Acting Spike Induced by

Laser-Pulse Energy Depositions,” AIAA J. 49, 2076 (2011).

10. A. Russell, M. Myokan, H. Bottini, A. Sasoh, H. Zare-Behtash, and K. Kontis, “Application of laser energy deposition

to improve performance for high speed intakes,” Propulsion and Power Research, 9, 1, 2020.

11. J. H. Kim, A. Matsuda, and A. Sasoh, “Interactions among Baroclinically-Generated Vortex Rings in Building Up an

Acting Spike to a Bow Shock Layer,” Phys. Fluids 23, 021703 (2011).

12. Narayanaswamy, V., Raja, L. L., and Clemens, N. T., “Control of Unsteadiness of a Shock Wave/Turbulent Boundary

Layer Interaction by Using a Pulsed-Plasma-Jet Actuator,” Physics of Fluids, 24, 7, 2012, Paper 076101.

13. R. J. Exton, R. J. Balla, B. Shirinzadeh, G. J. Brauckmann, G. C. Herring and W. C. Kelliher, “On-Board Projection of

a Microwave Plasma Upstream of a Mach 6 Bow Shock,” Phys. Plasmas 8, 5013 (2001).

14. D. Riggins, H. Nelson, and E. Johnson, “Blunt-Body Wave Drag Reduction using Focused Energy Deposition,” AIAA

J. 38, 723 (2000).

26

15. Feszty, D., Badcock, K. J., and Richards, B. E., “Driving Mechanisms of High-Speed Unsteady Spiked Body Flows,

Part 1: Pulsation Mode,” AIAA J., 42, 1, 2004.

16. S. M. Bogdonoff and I. E. Vas, “Preliminary Investigations of Spiked Bodies at Hypersonic Speeds,” J. Aerosp. Sci.

26, 65 (1959).

17. D. Maull, “Hypersonic flow over axially symmetric spiked bodies,” J. Fluid Mech. 8, 584 (1960).

18. D. M. Bushnell, “Shock Wave Drag Reduction,” Annu. Rev. Fluid Mech. 36, 81 (2004).

19. J.-F. Haas and B. Sturtevant, “Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities,” J.

Fluid Mech. 181, 41 (1987).

20. D. Ranjan, J. Oakley, and R. Bonazza, “Shock-Bubble Interactions,” Annu. Rev. Fluid Mech. 43, 117 (2011).

21. G. Layes, G. Jourdan and L. Houas, “Distortion of a Spherical Gaseous Interface Accelerated by a Plane Shock

Wave,” Phys. Rev. Lett. 91, 174502 (2003).

22. G. Layes, G. Jourdan and L. Houas, “Experimental investigation of the shock wave interaction with a spherical gas

inhomogeneity,” Phys. Fluids 17, 028103 (2005).

23. G. Rudinger and L. Somers, “Behaviour of small regions of different gases carried in accelerated gas flows,” J. Fluid

Mech. 7, 161 (1960).

24. J.M. Picone and J.P. Boris, “Vorticity generation by shock propagation through bubbles in a gas” J. Fluid Mech. 189,

23 (1988).

25. J.J. Quirk and S. Karni, “On the dynamics of a shock–bubble interaction,” J. Fluid Mech. 318, 129 (1996).

26. A. Bagabir and D. Drikakis, “Mach number effects on shock-bubble interaction,” Shock Waves 11, 209 (2001).

27. A. Chauhan, R. Pattankar, and S. Ghosh, “Pulsed Laser Energy Deposition in Supersonic Flow Over a Cylinder,”

AIAA Paper 2022-2016 (2022).

28. Y. Ogino, N. Ohnishi, S. Taguchi, and K. Sawada, “Baroclinic vortex influence on wave drag reduction induced by

pulse energy deposition,” Physics of Fluids, 21, 066102, 2009.

29. K. Kitamura, P. Roe and F. Ismail, “Evaluation of Euler fluxes for hypersonic flow computations,” AIAA J. 47, 44

(2009).

30. M. Pandolfi, and D. D’Ambrosio, D., “Numerical Instabilities in Upwind Methods: Analysis and Cures for the

‘Carbuncle’ Phenomenon,” J. Comput. Phys., 166, 2 (2001).

31. K.M. Peery, and S.T. Imlay, “Blunt-Body Flow Simulations,” AIAA Paper 88-2904 (1988).

27

32. K. Kitamura and E. Shima, “Towards shock-stable and accurate hypersonic heating computations: A new pressure

flux for AUSM-family schemes,” J. Comput. Phys. 245 (2013).

33. M. Myokan, A. Kubota, A. Iwakawa, and A. Sasoh, “Repetitive Energy Deposition at a Supersonic Intake in

Subcritical and Buzz Modes,” AIAA J. 58, 1 (2020).

34. B. van Leer, “Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection,” J.

Comput. Phys. 23, 276 (1977).

35. G.D. van Albada, B. van Leer and W.W. Roberts, “A comparative study of computational methods in cosmic gas

dynamics” Astron. Astrophys. 108, 76 (1982).

36. C. Hirsch. “Numerical computation of internal and external flows: The fundamentals of computational fluid

dynamics,” Wiley, Sons, New York, (2007).

37. A. Iwakawa, T. Shoda, R. Majima, S.H. Pham and A. Sasoh, “Mach-number Effect on Supersonic Drag Reduction

using Repetitive Laser Energy Depositions over Blunt-Body,” Trans. Japan Soc. Aeronaut. Space Sci. 60, 303 (2017).

38. A. Iwakawa, T. Sakai, and A. Sasoh, “Repetition Frequency Dependence of Wave Drag Reduction Induced by LaserPulse-Energy Depositions,” Trans. JSASS Aerosp. Techol. Japan 11, 53 (2013).

28

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る