リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「地上加速型レールガンにおける加速・過渡弾道数値解析 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

地上加速型レールガンにおける加速・過渡弾道数値解析 (本文)

笠原, 弘貴 慶應義塾大学

2022.05.25

概要

本論文では地上環境下で極超音速まで加速された飛翔体におけるサボ分離を三次元解析により調査した.数値解析において流体側に三次元圧縮性 Euler 方程式,異なる速度で移動・回転する飛翔体・サボの運動を再現するために六自由度剛体運動方程式を用いた.

第一章では本研究における背景と動機,先行研究について示した.第二章では本研究で使用した流体・剛体運動の支配方程式を示し,サボ分離再現のために利用した重合格子法および用いた計算手法の高速化のために分散メモリ型並列機における並列化方法を示した.

第三章では Erengil によって行われた地上環境下における極超音速サボ分離実験を対象とし本研究で構築した計算手法を用いて実験を再現し,先行研究によって捉えられたサボ重心軌跡とピッチ角変化を対象に数値計算モデルの妥当性を検証した.飛翔体・サボから生じる離脱衝撃波は分離に従い異なる干渉形態を示し,3 種類に分類された.分離初期において飛翔体・サボ間の流路が非定常的に閉塞することにより衝撃波がサボ前方で振動する干渉形態が生じた.分離中期において,サボ飛翔体を覆うように生じた離脱衝撃波はそれぞれの物体周りから生じる二種類の衝撃波に分離した.分離後期では飛翔体・サボ間で衝撃波が複数反射し,飛翔体表面を沿うように不連続な圧力が形成された.サボ表面を5 種類に分類し,各領域における流体力・モーメントへの寄与率を解析した結果,サボ前方部のスコープ領域が分離を支配していることが示唆された.

第四章では共同研究によって行われた地上加速型レールガン実験における飛翔体加速,サボ分離を数値計算モデルにより再現した.加速過程において飛翔体前方に先行衝撃波が発生し,管端付近の圧力分布を変化させた.また先行衝撃波によって誘起された極超音速流によりマッハディスクが加速管前方に形成された.分離過程において先行衝撃波による極超音速流は飛翔体の分離を阻害し,流体現象のみによってサボ分離が遅延する可能性が示唆された.飛翔体・サボが先行衝撃波とマッハディスクを追い越す際に 2 つの異なる追い越し過程が確認された.衝撃波追い越し過程は飛翔体周りでの衝撃波に影響を与え,先行衝撃波到達時点で飛翔体抗力が最大値を取り衝撃波貫通後に急激に減少する現象が発生した.第五章では主要な結論を示した.

この論文で使われている画像

参考文献

[1] 国立研究開発法人科学技術振興機構 研究開発戦略センター. “世界の宇宙技術力比較.” G-TeC報告書,2015.

[2] 日本航空宇宙工業会. “世界の宇宙産業動向.” 第765号,2016.

[3] 宇宙航空研究開発機構. “H-ΙΙΑロケット.” 2017.

[4] JAXA宇宙科学研究所. “再使用高頻度宇宙輸送システムの研究.” 平成27年度戦略的開発研究報告書,2015.

[5] Ragab, M. M., McNeil Cheatwood, F., Hughes, S. J., and Lowry, A. “Launch Vehicle Recovery and Reuse.” AIAA SPACE 2015 Conference and Exposition, 2015. https://doi.org/10.2514/6.2015-4490.

[6] 矢守章. “電磁飛翔体加速装置開発の歩み- (1).” 宇宙科学研究報告, 第117号, 2001, pp 1 – 36.

[7] Youngquist, R. C., and Cox, R. B. “The Feasibility of Railgun Horizontal- Launch Assist.” Technical Report KSC-13597, KSC-2010-010, NASA, 2011.

[8] Schneider, M., Božić, O., and Eggers, T. “Some Aspects Concerning the Design of Multistage Earth Orbit Launchers Using Electromagnetic Acceleration.” IEEE Transactions on Plasma Science, Vol. 39, No. 2, 2011, pp. 794–801. https://doi.org/10.1109/TPS.2010.2091971.

[9] Mehta, U. B., and Bowles, J. V. “Two-Stage-to-Orbit Spaceplane Concept with Growth Potential.” Journal of Propulsion and Power, Vol. 17, No. 6, 2001, pp. 1149–1161. https://doi.org/10.2514/2.5886.

[10] Kong, H., Ji, L., Yuan, W., and Yan, P. “Research on Interior Ballistic Mechanics of Electromagnetic Railgun.” International Symposium of Electromagnetic Launch Technology, Vol.2, No. 4, 2012. https://doi.org/10.1109/EML.2012.6325079.

[11] Tzeng, J. T. “Dynamic Response of Electromagnetic Railgun Due to Projectile Movement.” IEEE Transactions on Magnetics, Vol. 39, No. 1, 2003, pp. 472–475. https://doi.org/10.1109/TMAG.2002.806384.

[12] O’Rourke, R. “Navy Lasers Railgun, and Hypervelocity Projectile: Background and Issues for Congress.” CRS REPORT, 2016. https://fas.org/sgp/crs/weapons/R44175.pdf

[13] 久保田弘敏. “宇宙飛行体の熱気体力学.” 東京大学出版会, 2002.

[14] Sengil, N., and Sengil, U. “Aerothermal Load and Drag Force Analysis of the Electromagnetically Launched Projectiles under Rarefied Gas Conditions.” IEEE Transactions on Plasma Science, Vol. 43, No. 5, 2015, pp. 1131–1135. https://doi.org/10.1109/TPS.2015.2404213.

[15] McNab, I. R., Candler, G. V., and Barbee, C. S. “Projectile Nosetip Thermal Management for Railgun Launch to Space.” IEEE Transactions on Magnetics, Vol. 43, No. 1, 2007, pp. 491–495. https://doi.org/10.1109/TMAG.2006.887450.

[16] 大林茂,大谷清伸,菊池崇将,小川俊広,鵜飼孝博. “バリスティックレンジ装置について.” 航空宇宙空力班シンポジウム,2012.

[17] Tower, M. M., Jackson, G. L., Farris, L. K., and Haight, C. H. “Hypervelocity Impact Testing Using an Electromagnetic Railgun Launcher.” International Journal of Impact Engineering, Vol. 5, 1987, pp. 635–644. https://doi.org/10.1016/0734-743X(87)90078-9.

[18] Fortov, V. E., Lebedev, E. F., Luzganov, S. N., Kozlov, A. V., Medin, S. A., Parshikov, A. N., Polistchook, V. P., and Shurupov, A. V. “Railgun Experiment and Computer Simulation of Hypervelocity Impact of Lexan Projectile on Aluminum Target.” International Journal of Impact Engineering, Vol. 33, 2006, pp. 254–263. https://doi.org/10.1016/j.ijimpeng.2006.09.008.

[19] Tanaka, M., Moritaka, Y., Akahoshi, Y., Nakamura, A., Yamori, R., and Sasaki, S. “Development of a Light Space Debris Shield Using High Strength Fibers.” International Journal of Impact Engineering, Vol. 26, 2001, pp. 761–772. https://doi.org/10.1016/S0734-743X(01)00127-0.

[20] Reck, B., Hundertmark, S., Simicic, D., Hruschka, R., Sauerwein, B., Leopold, F., and Schneider, M. “Behavior of a Railgun Launch Package at the Muzzle and during Sabot Discard.” IEEE Transactions on Plasma Science, Vol. 47, No. 5, 2019, pp. 2545–2549. https://doi.org/10.1109/TPS.2019.2902715.

[21] 弾道学研究会. “火器弾薬技術ハンドブック.” (財)防衛技術協会, 2003.

[22] Aso, Y. “Relaxation of the Current Concentration due to Velocity Skin Effect in Solid Armature Rail Gun.” IEEJ Transactions on Fundamentals and Materials, Vol. 118-A, No.5, 1998, pp.549-552 . https://doi.org/10.1541/ieejfms1990.118.5_549.

[23] Aso, Y. “Theoretical tail angle of optimum armature shape for velocity skin effect.” IEEJ Transactions on Fundamentals and Materials, Vol. 118, No. 10, 1998, pp. 1190-1191.

[24] Božić, O., and Giese, P. “Aerothermodynamic Aspects of Railgun- Assisted Launches of Projectiles with Sub-and Low-Earth-Orbit Payloads.” IEEE Transactions on Magnetics, Vol. 43, No. 1, 2007, pp. 474–479. https://doi.org/10.1109/TMAG.2006.887528.

[25] Schmidt, E. M., and Shear, D. “Aerodynamic Interference during Sabot Discard.” Journal of Spacecraft and Rockets, Vol. 15, No. 3, 1978, pp. 162–167. https://doi.org/10.2514/3.57301.

[26] Schmidt, E. M. “Wind-Tunnel Measurements of Sabot-Discard Aerodynamics.” Journal of Spacecraft and Rockets, Vol. 18, No. 3, 1981, pp. 235–240. https://doi.org/10.2514/3.57809.

[27] Nusca, M. “Numerical Simulation of Sabot Discard Aerodynamics.” 9th Applied Aerodynamics Conference, 1991. https://doi.org/10.2514/6.1991-3255.

[28] Erengil, M. E. “An Aerodynamic Model for Symmetric Sabot Separation.” 37th AIAA Aerospace Sciences Meeting and Exhibit, 1999. https://doi.org/10.2514/6.1999-992.

[29] Cayzac, R., Carette, E., Alziary de Roquefort, T., Renard, F.-X., Roux, D., Patry, J.-N., and Balbo, P. “Computational Fluid Dynamics and Experimental Validations of the Direct Coupling Between Interior, Intermediate and Exterior Ballistics.” Journal of Applied Mechanics, Vol. 78, November, 2012, pp. 1–11. https://doi.org/10.1115/1.4003812.

[30] Huang, Z, Wessam, M, and Chen, Z. “Numerical Investigation of the Three-Dimensional Dynamic Process of Sabot Discard.” Journal of Mechanical Science and Technology, Vol. 28, No. 7, 2014, pp. 2637–2649. https://doi.org/10.1007/s12206-014-0620-6.

[31] Gopalapillai, R., Kim, H. D., Setoguchi, T., and Matsuo, S. “On the Near- Field Aerodynamics of a Projectile Launched from a Ballistic Range.” Journal of Mechanical Science and Technology, Vol. 21, No. 7, 2007, pp. 1129–1138. https://doi.org/10.1007/BF03027663.

[32] Zielinski, A. E., Weinacht, P., and Bennett, J. “Electromagnetic and Aeromechanical Analysis of Sabot Discard for Railgun Projectiles.” Journal of Spacecraft and Rockets, Vol. 37, No. 2, 2000, pp. 257–264. https://doi.org/10.2514/2.3554.

[33] Erengil, M. E. “Sabot Discard Model for Conventional and Electromagnetic Launch Packages.” 19th International Symposium of Ballistics, May, 2001, pp. 7–11.

[34] Minnicino, M. “Influence of Material Properties on Sabot Design.”, 26th International Symposium on Ballistics, September, 2012.

[35] 藤井孝蔵. “流体力学の数値計算法.” 東京大学出版会, 1994.

[36] 生井武文, 井上雅弘. “粘性流体の力学.” 理工学社, 2002.

[37] Mcbride, B., Gordon, S., and Reno, M. “Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species.” Nasa

[38] Prabhu, R. K., and Erickson, W. D. “A Rapid Method for the Computation of Equilibrium Chemical Composition of Air to 15000 K.” NASA Technical Paper, Vol. 2792, 1988.

[39] 片柳亮二. “航空機の飛行力学と制御.” 森北出版株式会社, 1982.

[40] 加藤寛一郎, 大屋昭男, 柄沢研治. “航空機力学入門.” 東京大学出版会, 1982.

[41] 嶋田有三, 佐々修一. “飛行力学.” 森北出版株式会社, 2017.

[42] Costello, M., and Sahu, J. “Using Computational Fluid Dynamic/Rigid Body Dynamic Results to Generate Aerodynamic Models for Projectile Flight Simulation.” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 222, No. 7, 2008, pp. 1067–1079. https://doi.org/10.1243/09544100JAERO304.

[43] Mirtich, B., and Canny, J. “Impulse-Based Simulation of Rigid Bodies.” Proceedings of the Symposium on Interactive 3D Graphics, 1995, pp. 181–188. https://doi.org/10.1145/199404.199436.

[44] 藤澤誠. “CGのための物理シミュレーションの基礎.” 株式会社マイナビ, 2013.

[45] Wada, Y., and Liou, M. “An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities.” SIAM Journal on Applied Mathematics, Vol. 18, No. 3, 1997, pp. 633–657. https://doi.org/10.1137/S1064827595287626.

[46] Burg, C. “Higher Order Variable Extrapolation for Unstructured Finite Volume RANS Flow Solvers.” 17th AIAA Computational Fluid Dynamics Conference, 2005, pp. 1–17. https://doi.org/10.2514/6.2005- 4999.

[47] Chen, R. F., and Wang, Z. J. “Fast, Block Lower-Upper Symmetric Gauss – Seidel Scheme Introduction.” AIAA Journal, Vol. 38, No. 12, 2000, pp. 2238–2245. https://doi.org/10.2514/2.914.

[48] Wilcox, D.C. “Turbulent Modeling for CFD.” DCW Industries, 1988.

[49] Blazek, J. “Computational Fluid Dynamics: Principles and Applications: Third Edition.” Butterworth-Heinemann, 2015.

[50] Mavriplis, D. J. “Revising the Least-square Procedure for Gradient Reconstruction on Unstructured method.” AIAA Paper, No. 2003- 3986, 2003. https://doi.org/10.2514/6.2003-3986.

[51] Shima, E., Kitamura, K., and Fujimoto, K. “New Gradient Calculation Method for MUSCL Type CFD Schemes in Arbitrary Polyhedral.” AIAA Paper, No. 2010-1081, 2010. https://doi.org/10.2514/6.2010-1081.

[52] Barth, T., and Jespersen, D. “The Design and Application of Upwind Schemes on Unstructured Meshes.” 27th Aerospace Sciences Meeting, 1989. https://doi.org/10.2514/6.1989-366.

[53] 菱田学,橋本敦,村上桂一,青山剛史. “高速非構造 CFD ソルバ FaSTAR における新勾配制限関数.” 第42回流体力学講演会╱航空宇宙数値シミュレーション技術シンポジウム2010論文集, 2010, pp. 85–90.

[54] 小林敏雄. “数値流体力学ハンドブック.” 丸善出版, 2003.

[55] Darwish, M. S., and Moukalled, F. “TVD Schemes for Unstructured Grids.” International Journal of Heat and Mass Transfer, Vol. 46, No. 4, 2003, pp. 599–611. https://doi.org/10.1016/S0017-9310(02)00330-7.

[56] Wang, Z. J. “High-Order Computational Fluid Dynamics Tools for Aircraft Design.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 372, No. 2022, 2014. https://doi.org/10.1098/rsta.2013.0318.

[57] Fujii, K. “Unified Zonal Method Based on the Fortified Solution Algorithm.” Journal of Computational Physics, 1995, pp. 92-108.

[58] Möller, T. “A Fast Triangle-Triangle Intersection Test.” Journal of Graphics Tools, Vol. 2, No. 2, 1997, pp. 25–30. https://doi.org/10.1080/10867651.1997.10487472.

[59] Kennel, M. B. “KDTREE 2: Fortran 95 and C++ Software to Efficiently Search for near Neighbors in a Multi-Dimensional Euclidean Space.” 2004. https://arxiv.org/abs/physics/0408067

[60] Ericson, C. “Real Time Collision Detection.” Elsevier, 2005

[61] Chang, X. H., Ma, R., Wang, N. H., and Zhang, L. P. “Parallel Implicit Hole-Cutting Method for Unstructured Chimera Grid.” Tenth International Conference on Computational Fluid Dynamics, No. 2, 2018, pp. 1–14. https://doi.org/10.1016/j.compfluid.2019.104403.

[62] Hendrickson, B., and Leland, R. “The Chaco User’s Guide, Version 2.0. Technical Report SAND94–2692.” Sandia National Laboratories, July, 1995, pp. 1–44.

[63] Pellegrini, F. “Distillating Knowledge about Scotch.” Combinatorial Scientific Computing, 2009, pp. 1–12.

[64] Karypis, G., and Kumar, V. “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.” SIAM Journal on Scientific Computing, Vol. 20, No. 1, 1998, pp. 359–392. https://doi.org/10.1137/S1064827595287997.

[65] Acharya, R. S., and Naik, S. D. “Modelling of Shockwave Force and Its Effect during Sabot Discard Process.” Defense Science Journal, Vol. 57, No. 5, 2007, pp. 677–690. https://doi.org/10.14429/dsj.57.1801.

[66] Dick, J., and Dolling, D. “Pressure Measurements on a Mach 5 Sabot at Different Stages of the Discard Process.” Journal of Spacecraft and Rockets, Vol. 35, No. 1, 1998, pp. 23–29. https://doi.org/10.14429/dsj.57.1801.

[67] Bhange, N. P., Sen, A., and Ghosh, A. K. “Technique to Improve Precision of Kinetic Energy Projectiles through Motion Study.” AIAA Atmospheric Flight Mechanics Conference, August, 2009, pp. 1–33. https://doi.org/10.2514/6.2009-5720.

[68] Cayzac, R., Carette, E., and Alziary de Roquefort, T. “Intermediate 19th International Symposium on Ballistics, Vol. 1, May, 2001, pp. 297– 305.

[69] Schmidt, E. M., and Plostins, P. “Aerodynamics of Asymmetric Sabot Discard.” Journal of Spacecraft and Rockets, Vol. 20, No. 2, 1983, pp. 187–188. https://doi.org/10.2514/3.28377.

[70] Zhang, B., Liu, H., Chen, F., and Wang, G. “Numerical Simulation of Flow Fields Induced by a Supersonic Projectile Moving in Tubes.” Shock Waves, Vol. 22, 2012, pp. 417–425. https://doi.org/10.1007/s00193-012- 0389-4.

[71] Watanabe, R., Fujii, K., and Higashino, F. “Three-Dimensional Computation of the Flow Induced by a Projectile Overtaking a Shock Wave.” 28th Fluid Dynamics Conference, 1997. https://doi.org/10.2514/6.1997-1840.

[72] Muthukumaran, C. K., Rajesh, G., and Kim, H. D. “Launch Dynamics of Supersonic Projectiles.” Journal of Spacecraft and Rockets, Vol. 50, No. 6, 2013, pp. 1150–1161. https://doi.org/10.2514/1.A32466.

[73] Jiang, Z., Takayama, K., and Skews, B. W. “Numerical Study on Blast Flowfields Induced by Supersonic Projectiles Discharged from Shock Tubes.” Physics of Fluids, Vol. 10, No. 1, 1998, pp. 277–288. https://doi.org/10.1063/1.869566.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る