リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Primordial organic matter in the xenolithic clast in the Zag H chondrite: Possible relation to D/P asteroids」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Primordial organic matter in the xenolithic clast in the Zag H chondrite: Possible relation to D/P asteroids

Kebukawa Yoko 70725374 Zolensky Michael E. Ito Motoo 40606109 Ogawa Nanako O. 80359174 Takano Yoshinori 80399815 Ohkouchi Naohiko 00281832 Nakato Aiko Suga Hiroki Takeichi Yasuo 40636461 Takahashi Yoshio 10304396 Kobayashi Kensei 20183808 横浜国立大学

2020.02.15

概要

Some xenolithic clasts in meteorites may have originated from unique primitive Solar System bodies. These clasts would provide novel insights into the early evolution of the Solar System. We conducted multiple analyses of organic matter (OM) in a CI-like xenolithic clast in the Zag (H5) meteorite including bulk elemental and isotopic analysis, FTIR, STXM/XANES, and NanoSIMS. The bulk C and N abundances in the Zag clast were +5.1 ± 0.4 wt.% and +0.26 ± 0.01 wt.%, respectively, which were the highest observed among various chondrite groups. The bulk δ^13C value of the Zag clast was +23.0 ± 4.1‰ which was close to the value of the Tagish Lake meteorite; the δ^15N value was +300 ± 3‰ which was close to the values of CR chondrites and Bells (a unique CM). The δD values of C-rich regions obtained by NanoSIMS were approximately +600 to +2000‰ which were close to the values of IOM from CI, CM and Tagish Lake. Some isotopic “hot spots” were observed with δD values up to ≈ +4000‰ and δ^15N values up to ≈ +5500‰. The infrared transmission spectrum of the Zag clast was consistent with the abundant phyllosilicates and carbonates observed in the clast. The STXM showed abundant OM in various forms. C-XANES spectra from the OM were generally similar to CI/CM/CR chondrites. However, some variations existed in the molecular structures. OM in the Zag clast was partially associated with carbonates. The functional group, elemental and isotopic signatures of the OM in the Zag clast support the idea that the Zag clast is unique among known carbonaceous chondrite groups and originated from the outer Solar System such as aqueously-altered D/P type asteroids.

参考文献

479

Aikawa, Y., Furuya, K., Hincelin, U. and Herbst, E. (2018) Multiple Paths of Deuterium Fractionation

480

481

482

in Protoplanetary Disks. Astrophys. J. 855, 119.

Alexander, C. M. O. D., Fogel, M., Yabuta, H. and Cody, G. D. (2007) The origin and evolution of

chondrites recorded in the elemental and isotopic compositions of their macromolecular

483

484

485

organic matter. Geochim. Cosmochim. Acta 71, 4380-4403.

Alexander, C. M. O. D., Newsome, S. D., Fogel, M. L., Nittler, L. R., Busemann, H. and Cody, G. D.

(2010) Deuterium enrichments in chondritic macromolecular material—Implications for the

486

487

488

489

origin and evolution of organics, water and asteroids. Geochim. Cosmochim. Acta 74, 44174437.

Alexander, C. M. O. D., Bowden, R., Fogel, M. L., Howard, K. T., Herd, C. D. and Nittler, L. R. (2012)

The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial

490

491

492

planets. Science 337, 721-723.

Alexander, C. M. O. D., Cody, G. D., Kebukawa, Y., Bowden, R., Fogel, M. L., Kilcoyne, A. L. D.,

Nittler, L. R. and Herd, C. D. K. (2014) Elemental, isotopic, and structural changes in Tagish

493

494

495

Lake insoluble organic matter produced by parent body processes. Meteorit. Planet. Sci. 49,

503-525.

Alexander, C. M. O. D., Bowden, R., Fogel, M. L. and Howard, K. T. (2015) Carbonate abundances

496

497

498

and isotopic compositions in chondrites. Meteorit. Planet. Sci. 50, 810-833.

Alexander, C. M. O. D., Cody, G. D., De Gregorio, B. T., Nittler, L. R. and Stroud, R. M. (2017) The

nature, origin and modification of insoluble organic matter in chondrites, the major source of

499

500

501

Earth’s C and N. Chemie der Erde Geochemistry 77, 227-256.

Alexander, C. M. O. D., Greenwood, R. C., Bowden, R., Gibson, J. M., Howard, K. T. and Franchi, I.

A. (2018) A mutli-technique search for the most primitive CO chondrites. Geochim.

502

503

504

Cosmochim. Acta 221, 406-420.

Bardyn, A., Baklouti, D., Cottin, H., Fray, N., Briois, C., Paquette, J., Stenzel, O., Engrand, C., Fischer,

H. and Hornung, K. (2017) Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured

505

506

507

by COSIMA/Rosetta. Monthly Notices of the Royal Astronomical Society 469, S712-S722.

Bonal, L., Huss, G. R., Krot, A. N. and Nagashima, K. (2010a) Chondritic lithic clasts in the CB/CHlike meteorite Isheyevo: Fragments of previously unsampled parent bodies. Geochim.

508

509

510

Cosmochim. Acta 74, 2500-2522.

Bonal, L., Huss, G. R., Krot, A. N., Nagashima, K., Ishii, H. A. and Bradley, J. P. (2010b) Highly 15Nenriched chondritic clasts in the CB/CH-like meteorite Isheyevo. Geochim. Cosmochim. Acta

511

512

513

74, 6590-6609.

Bourdelle, F., Benzerara, K., Beyssac, O., Cosmidis, J., Neuville, D. R., Brown, G. E. and Paineau, E.

(2013) Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-

514

515

ray microscopy at the Fe L2,3 edges. Contrib. Mineral. Petrol. 166, 423-434.

Brearley, A. J. (1990) Carbon-rich aggregates in type 3 ordinary chondrites: Characterization, origins,

516

517

and thermal history. Geochim. Cosmochim. Acta 54, 831-850.

Brearley, A. J. (1992) CI chondrite-like clasts in the Nilpena polymict ureilite: Implications for

518

519

520

521

522

aqueous alteration processes in CI chondrites. Geochim. Cosmochim. Acta 56, 1373-1386.

Brearley, A. J. (2006) The action of water. In Meteorites and the Early Solar System II (eds. D. S.

Lauretta, J. H. Y. McSween). University of Arizona Press, Tucson, pp. 587-624.

Briani, G., Gounelle, M., Marrocchi, Y., Mostefaoui, S., Leroux, H., Quirico, E. and Meibom, A.

(2009) Pristine extraterrestrial material with unprecedented nitrogen isotopic variation.

523

524

525

Proceedings of the National Academy of Sciences of the United States of America 106, 1052210527.

Buchanan, P., Zolensky, M. and Reid, A. (1993) Carbonaceous chondrite clasts in the howardites

526

527

Bholghati and EET87513. Meteoritics 28, 659-669.

Busemann, H., Young, A. F., Alexander, C. M. O., Hoppe, P., Mukhopadhyay, S. and Nittler, L. R.

528

529

530

531

(2006) Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312,

727-730.

Busemann, H., Nguyen, A. N., Cody, G. D., Hoppe, P., Kilcoyne, A. L. D., Stroud, R. M., Zega, T. J.

and Nittler, L. R. (2009) Ultra-primitive interplanetary dust particles from the comet

532

533

26P/Grigg-Skjellerup dust stream collection. Earth. Planet. Sci. Lett. 288, 44-57.

Calvert, C. C., Brown, A. and Brydson, R. (2005) Determination of the local chemistry of iron in

534

535

536

inorganic and organic materials. J. Electron. Spectrosc. Relat. Phenom. 143, 173-187.

Chan, Q. H. S., Zolensky, M. E., Bodnar, R. J., Farley, C. and Cheung, J. C. H. (2017) Investigation of

organo-carbonate associations in carbonaceous chondrites by Raman spectroscopy. Geochim.

537

538

539

Cosmochim. Acta 201, 392-409.

Chan, Q. H. S., Zolensky, M. E., Kebukawa, Y., Fries, M., Ito, M., Steele, A., Rahman, Z., Nakato, A.,

Kilcoyne, A. L. D., Suga, H., Takahashi, Y., Takeichi, Y. and Mase, K. (2018) Organic matter

540

541

542

543

in extraterrestrial water-bearing salt crystals. Science Advances 4, eaao3521.

Chan, Q. H. S., Nakato, A., Kebukawa, Y., Zolensky, M. E., Nakamura, T., Maisano, J. A., Colbert, M.

W., Martinez, J. E., Kilcoyne, A. L. D., Suga, H., Takahashi, Y., Takeichi, Y., Mase, K. and

Wright, I. P. (2019) Heating experiments of the Tagish Lake meteorite: Investigation of the

544

545

546

effects of short-term heating on chondritic organics. Meteorit. Planet. Sci. 54, 104-125.

Cody, G. D. and Alexander, C. M. O. D. (2005) NMR studies of chemical structural variation of

insoluble organic matter from different carbonaceous chondrite groups. Geochim. Cosmochim.

547

548

549

550

551

Acta 69, 1085-1097.

Cody, G. D., Ade, H., Alexander, C. M. O., Araki, T., Butterworth, A., Fleckenstein, H., Flynn, G.,

Gilles, M. K., Jacobsen, C., Kilcoyne, A. L. D., Messenger, K., Sandford, S. A., Tyliszczak, T.,

Westphal, A. J., Wirick, S. and Yabuta, H. (2008a) Quantitative organic and light-element

analysis of comet 81P/Wild 2 particles using C-, N-, and O-μ-XANES. Meteorit. Planet. Sci.

552

553

554

43, 353-365.

Cody, G. D., Alexander, C. M. O. D., Yabuta, H., Kilcoyne, A. L. D., Araki, T., Ade, H., Dera, R.,

Fogel, M., Militzer, B. and Mysen, B. O. (2008b) Organic thermometry for chondritic parent

555

556

557

bodies. Earth. Planet. Sci. Lett. 272, 446-455.

Cody, G. D., Heying, E., Alexander, C. M. O. D., Nittler, L. R., Kilcoyne, A. L. D., Sandford, S. A.

and Stroud, R. M. (2011) Establishing a molecular relationship between chondritic and

558

559

560

cometary organic solids. Proc. Nat. Acad. Sci.USA 108, 19171-19176.

Davidson, J., Busemann, H. and Franchi, I. A. (2012) A NanoSIMS and Raman spectroscopic

comparison of interplanetary dust particles from comet Grigg-Skjellerup and non-Grigg

561

562

563

564

Skjellerup collections. Meteorit. Planet. Sci. 47, 1748-1771.

De Gregorio, B. T., Stroud, R. M., Nittler, L. R., Alexander, C. M. O. D., Kilcoyne, A. L. D. and Zega,

T. J. (2010) Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison

to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron

565

566

567

irradiation. Geochim. Cosmochim. Acta 74, 4454-4470.

De Gregorio, B. T., Stroud, R. M., Cody, G. D., Nittler, L. R., Kilcoyne, A. L. D. and Wirick, S. (2011)

Correlated microanalysis of cometary organic grains returned by Stardust. Meteorit. Planet.

568

569

570

571

Sci. 46, 1376-1396.

De Gregorio, B. T., Stroud, R. M., Nittler, L. R., Alexander, C. M. O. D., Bassim, N. D., Cody, G. D.,

Kilcoyne, A. L. D., Sandford, S. A., Milam, S. N., Nuevo, M. and Zega, T. J. (2013) Isotopic

and chemical variation of organic nanoglobules in primitive meteorites. Meteorit. Planet. Sci.

572

573

48, 904-928.

DeMeo, F. E., Binzel, R. P., Carry, B. t., Polishook, D. and Moskovitz, N. A. (2014) Unexpected D-

574

type interlopers in the inner main belt. Icarus 229, 392-399.

575

576

Duprat, J., Dobrica, E., Engrand, C., Aleon, J., Marrocchi, Y., Mostefaoui, S., Meibom, A., Leroux, H.,

Rouzaud, J. N., Gounelle, M. and Robert, F. (2010) Extreme deuterium excesses in

577

578

579

ultracarbonaceous micrometeorites from central Antarctic snow. Science 328, 742-745.

Emery, J. P., Cruikshank, D. P. and Van Cleve, J. (2006) Thermal emission spectroscopy (5.2-38 mu

m) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained

580

581

582

583

584

silicates. Icarus 182, 496-512.

Füri, E. and Marty, B. (2015) Nitrogen isotope variations in the Solar System. Nature Geoscience 8,

515.

Floss, C., Stadermann, F. J., Bradley, J. P., Dai, Z. R., Bajt, S., Graham, G. and Lea, A. S. (2006)

Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic

585

586

587

imaging study. Geochim. Cosmochim. Acta 70, 2371-2399.

Floss, C., Stadermann, F. J., Mertz, A. F. and Bernatowicz, T. J. (2011) A NanoSIMS and Auger

Nanoprobe investigation of an isotopically primitive interplanetary dust particle from the

588

589

55P/Tempel-Tuttle targeted stratospheric dust collector. Meteorit. Planet. Sci. 45, 1889-1905.

Flynn, G., Keller, L., Wirick, S. and Jacobsen, C. (2008) Organic matter in interplanetary dust particles.

590

591

592

Proceedings of the International Astronomical Union 4, 267-276.

Flynn, G. J., Keller, L. P., Feser, M., Wirick, S. and Jacobsen, C. (2003) The origin of organic matter

in the solar system: Evidence from the interplanetary dust particles. Geochim. Cosmochim.

593

594

Acta 67, 4791-4806.

Franchi, I. A., Wright, I. P. and Pillinger, C. T. (1986) Heavy nitrogen in Bencubbin—a light-element

595

596

597

598

isotopic anomaly in a stony-iron meteorite. Nature 323, 138-140.

Fray, N., Bardyn, A., Cottin, H., Baklouti, D., Briois, C., Engrand, C., Fischer, H., Hornung, K., Isnard,

R. and Langevin, Y. (2017) Nitrogen-to-carbon atomic ratio measured by COSIMA in the

particles of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical

599

600

601

Society 469, S506-S516.

Fujiya, W., Hoppe, P., Ushikubo, T., Fukuda, K., Lindgren, P., Lee, M. R., Koike, M., Shirai, K. and

Sano, Y. (2019) Migration of D-type asteroids from the outer Solar System inferred from

602

603

604

605

carbonate in meteorites. Nature Astronomy 3, 910-915.

Gaffey, M. J. and Gilbert, S. L. (1998) Asteroid 6 Hebe: The probable parent body of the H‐type

ordinary chondrites and the IIE iron meteorites. Meteorit. Planet. Sci. 33, 1281-1295.

Gomes, R., Levison, H. F., Tsiganis, K. and Morbidelli, A. (2005) Origin of the cataclysmic Late Heavy

606

607

Bombardment period of the terrestrial planets. Nature 435, 466-469.

Gounelle, M., Spurny, P. and Bland, P. A. (2006) The orbit and atmospheric trajectory of the Orgueil

608

609

meteorite from historical records. Meteorit. Planet. Sci. 41, 135-150.

Grady, M. M. and Pillinger, C. (1990) ALH 85085: Nitrogen isotope analysis of a highly unusual

610

611

primitive chondrite. Earth. Planet. Sci. Lett. 97, 29-40.

Grady, M. M. and Pillinger, C. (1993) Acfer 182: search for the location of15N-enriched nitrogen in

612

an unusual chondrite. Earth. Planet. Sci. Lett. 116, 165-180.

613

Hashiguchi, M., Kobayashi, S. and Yurimoto, H. (2013) In situ observation of D-rich carbonaceous

614

615

globules embedded in NWA 801 CR2 chondrite. Geochim. Cosmochim. Acta 122, 306-323.

Hashiguchi, M., Kobayashi, S. and Yurimoto, H. (2015) Deuterium- and 15N-signatures of organic

616

617

618

619

620

globules in Murchison and Northwest Africa 801 meteorites. Geochem. J. 49, 377-391.

Herd, C. D. K., Blinova, A., Simkus, D. N., Huang, Y., Tarozo, R., Alexander, C. M. O. D., Gyngard,

F., Nittler, L. R., Cody, G. D., Fogel, M. L., Kebukawa, Y., Kilcoyne, A. L. D., Hilts, R. W.,

Slater, G. F., Glavin, D. P., Dworkin, J. P., Callahan, M. P., Elsila, J. E., De Gregorio, B. T. and

Stroud, R. M. (2011) Origin and evolution of prebiotic organic matter as inferred from the

621

622

Tagish Lake meteorite. Science 332, 1304-1307.

Hiroi, T., Zolensky, M. E. and Pieters, C. M. (2001) The Tagish Lake meteorite: A possible sample

623

624

625

from a D-type asteroid. Science 293, 2234-2236.

Ito, M., Uesugi, M., Naraoka, H., Yabuta, H., Kitajima, F., Mita, H., Takano, Y., Karouji, Y., Yada, T.,

Ishibashi, Y., Okada, T. and Abe, M. (2014) H, C, and N isotopic compositions of Hayabusa

626

627

628

629

category 3 organic samples. Earth, Planets and Space 66, 91.

Ivanova, M. A., Kononkova, N. N., Krot, A. N., Greenwood, R. C., Franchi, I. A., Verchovsky, A. B.,

Trieloff, M., Korochantseva, E. V. and BRANDSTÄTTER, F. (2008) The Isheyevo meteorite:

Mineralogy, petrology, bulk chemistry, oxygen, nitrogen, carbon isotopic compositions, and

630

631

632

40Ar‐39Ar ages. Meteorit. Planet. Sci. 43, 915-940.

Kebukawa, Y., Nakashima, S., Ishikawa, M., Aizawa, K., Inoue, T., Nakamura-Messenger, K. and

Zolensky, M. E. (2010) Spatial distribution of organic matter in the Bells CM2 chondrite using

633

634

635

near-field infrared microspectroscopy. Meteorit. Planet. Sci. 45, 394-405.

Kebukawa, Y., Kilcoyne, A. L. D. and Cody, G. D. (2013) Exploring the potential formation of organic

solids in chondrites and comets through polymerization of interstellar formaldehyde. The

636

637

638

639

Astrophys. J. 771, 19.

Kebukawa, Y., Zolensky, M. E., Chan, Q. H. S., Nagao, K., Kilcoyne, A. L. D., Bodnar, R. J., Farley,

C., Rahman, Z., Le, L. and Cody, G. D. (2017) Characterization of carbonaceous matter in

xenolithic clasts from the Sharps (H3.4) meteorite: Constraints on the origin and thermal

640

641

642

processing. Geochim. Cosmochim. Acta 196, 74-101.

Kebukawa, Y., Alexander, C. M. O. D. and Cody, G. D. (2019a) Comparison of FT‐IR spectra of

bulk and acid insoluble organic matter in chondritic meteorites: An implication for missing

643

644

645

carbon during demineralization. Meteorit. Planet. Sci. 7, 1632-1641.

Kebukawa, Y., Ito, M., Zolensky, M. E., Greenwood, R. C., Rahman, Z., Suga, H., Nakato, A., Chan,

Q. H., Fries, M. and Takeichi, Y. (2019b) A novel organic-rich meteoritic clast from the outer

646

647

solar system. Scientific Reports 9, 3169.

Keller, L. P., Messenger, S., Flynn, G. J., Clemett, S., Wirick, S. and Jacobsen, C. (2004) The nature

648

649

of molecular cloud material in interplanetary dust. Geochim. Cosmochim. Acta 68, 2577-2589.

Kerridge, J. F. (1983) Isotopic composition of carbonaceous-chondrite kerogen - Evidence for an

650

interstellar origin of organic-matter in meteorites. Earth. Planet. Sci. Lett. 64, 186-200.

651

652

Kilcoyne, A., Tyliszczak, T., Steele, W., Fakra, S., Hitchcock, P., Franck, K., Anderson, E., Harteneck,

B., Rightor, E. and Mitchell, G. (2003) Interferometer-controlled scanning transmission X-ray

653

654

655

microscopes at the Advanced Light Source. Journal of Synchrotron Radiation 10, 125-136.

Koprinarov, I. N., Hitchcock, A. P., McCrory, C. T. and Childs, R. F. (2002) Quantitative Mapping of

Structured Polymeric Systems Using Singular Value Decomposition Analysis of Soft X-ray

656

657

658

Images. The Journal of Physical Chemistry B 106, 5358-5364.

Le Guillou, C., Bernard, S., Brearley, A. J. and Remusat, L. (2014) Evolution of organic matter in

Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations.

659

660

661

Geochim. Cosmochim. Acta 131, 368-392.

Le Guillou, C., Changela, H. G. and Brearley, A. J. (2015) Widespread oxidized and hydrated

amorphous silicates in CR chondrites matrices: Implications for alteration conditions and H2

662

663

degassing of asteroids. Earth. Planet. Sci. Lett. 420, 162-173.

Levison, H. F., Bottke, W. F., Gounelle, M., Morbidelli, A., Nesvorny, D. and Tsiganis, K. (2009)

664

665

Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364-366.

Lu, Y., Huang, J. Y., Wang, C., Sun, S. and Lou, J. (2010) Cold welding of ultrathin gold nanowires.

666

667

Nature Nanotechnology 5, 218-224.

Marty, B. (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth.

668

669

670

Earth. Planet. Sci. Lett. 313-314, 56-66.

Matrajt, G., Ito, M., Wirick, S., Messenger, S., Brownlee, D. E., Joswiak, D., Flynn, G., Sandford, S.,

Snead, C. and Westphal, A. (2008) Carbon investigation of two Stardust particles: A TEM,

671

672

NanoSIMS, and XANES study. Meteorit. Planet. Sci. 43, 315-334.

Matrajt, G., Messenger, S., Brownlee, D. and Joswiak, D. (2012) Diverse forms of primordial organic

673

674

675

matter identified in interplanetary dust particles. Meteoritics & Planetary Science 47, 525-549.

Matrajt, G., Messenger, S., Joswiak, D. and Brownlee, D. (2013) Textures and isotopic compositions

of carbonaceous materials in A and B-type Stardust tracks: Track 130 (Bidi), track 141 (Coki)

676

677

and track 80 (Tule). Geochim. Cosmochim. Acta 117, 65-79.

Mikhlin, Y. and Tomashevich, Y. (2005) Pristine and reacted surfaces of pyrrhotite and arsenopyrite as

678

679

studied by X-ray absorption near-edge structure spectroscopy. Phys. Chem. Miner. 32, 19-27.

Millar, T., Bennett, A. and Herbst, E. (1989) Deuterium fractionation in dense interstellar clouds.

680

681

Astrophys. J. 340, 906-920.

Morbidelli, A., Levison, H. F., Tsiganis, K. and Gomes, R. (2005) Chaotic capture of Jupiter's Trojan

682

683

asteroids in the early Solar System. Nature 435, 462-465.

Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J. and Zolensky, M. E. (2006)

684

685

686

687

Organic globules in the Tagish Lake meteorite: Remnants of the protosolar disk. Science 314,

1439-1442.

Nakamura, K., Zolensky, M. E., Tomita, S., Nakashima, S. and Tomeoka, K. (2002) Hollow organic

globules in the Tagish Lake meteorite as possible products of primitive organic reactions.

688

International Journal of Astrobiology 1, 179-189.

689

690

Nakashima, D., Nakamura, T. and Noguchi, T. (2003) Formation history of CI-like phyllosilicate-rich

clasts in the Tsukuba meteorite inferred from mineralogy and noble gas signatures. Earth.

691

692

693

Planet. Sci. Lett. 212, 321-336.

Nittler, L. R., Stroud, R. M., Trigo-Rodríguez, J. M., De Gregorio, B. T., Alexander, C. M. O. D.,

Davidson, J., Moyano-Cambero, C. E. and Tanbakouei, S. (2019) A cometary building block

694

695

696

697

in a primitive asteroidal meteorite. Nature Astronomy 3, 659-666.

Noguchi, T., Yabuta, H., Itoh, S., Sakamoto, N., Mitsunari, T., Okubo, A., Okazaki, R., Nakamura, T.,

Tachibana, S., Terada, K., Ebihara, M., Imae, N., Kimura, M. and Nagahara, H. (2017)

Variation of mineralogy and organic material during the early stages of aqueous activity

698

699

700

701

702

703

recorded in Antarctic micrometeorites. Geochim. Cosmochim. Acta 208, 119-144.

Ogawa, N. O., Nagata, T., Kitazato, H. and Ohkouchi, N. (2010) Ultra sensitive elemental

analyzer/isotope ratio mass spectrometer for stable nitrogen and carbon isotope analyses. In

Earth, life, and isotopes (eds. N. Ohkouchi, I. Tayasu, K. Koba). Kyoto University Press, pp.

339-353.

Prombo, C. A. and Clayton, R. N. (1985) A striking nitrogen isotope anomaly in the Bencubbin and

704

705

706

Weatherford meteorites. Science 230, 935-937.

Remusat, L., Palhol, F., Robert, F., Derenne, S. and France-Lanord, C. (2006) Enrichment of deuterium

in insoluble organic matter from primitive meteorites: A solar system origin? Earth. Planet.

707

708

709

Sci. Lett. 243, 15-25.

Remusat, L., Guan, Y., Wang, Y. and Eiler, J. M. (2010) Accretion and preservation of D-rich organic

particles in carbonaceous chondrites: Evidence for important transport in the early solar system

710

nebula. Astrophys. J. 713, 1048-1058.

711

712

Rubin, A. E., Zolensky, M. E. and Bodnar, R. J. (2002) The halite‐bearing Zag and Monahans (1998)

meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on

713

714

715

716

717

718

719

720

721

722

the H‐chondrite parent body. Meteorit. Planet. Sci. 37, 125-141.

Sandford, S. A., Aleon, J., Alexander, C. M. O. D., Araki, T., Bajt, S., Baratta, G. A., Borg, J., Bradley,

J. P., Brownlee, D. E., Brucato, J. R., Burchell, M. J., Busemann, H., Butterworth, A., Clemett,

S. J., Cody, G., Colangeli, L., Cooper, G., D'Hendecourt, L., Djouadi, Z., Dworkin, J. P., Ferrini,

G., Fleckenstein, H., Flynn, G. J., Franchi, I. A., Fries, M., Gilles, M. K., Glavin, D. P.,

Gounelle, M., Grossemy, F., Jacobsen, C., Keller, L. P., Kilcoyne, A. L. D., Leitner, J., Matrajt,

G., Meibom, A., Mennella, V., Mostefaoui, S., Nittler, L. R., Palumbo, M. E., Papanastassiou,

D. A., Robert, F., Rotundi, A., Snead, C. J., Spencer, M. K., Stadermann, F. J., Steele, A.,

Stephan, T., Tsou, P., Tyliszczak, T., Westphal, A. J., Wirick, S., Wopenka, B., Yabuta, H., Zare,

R. N. and Zolensky, M. E. (2006) Organics captured from comet 81P/Wild 2 by the Stardust

723

724

725

726

spacecraft. Science 314, 1720-1724.

Schimmelmann, A., Qi, H., Coplen, T. B., Brand, W. A., Fong, J., Meier-Augenstein, W., Kemp, H. F.,

Toman, B., Ackermann, A. and Assonov, S. (2016) Organic reference materials for hydrogen,

carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl

727

728

729

esters, glycines, L-valines, polyethylenes, and oils. Anal. Chem. 88, 4294-4302.

Sugahara, H., Takano, Y., Ogawa, N. O., Chikaraishi, Y. and Ohkouchi, N. (2017) Nitrogen Isotopic

Fractionation in Ammonia during Adsorption on Silicate Surfaces. ACS Earth and Space

730

731

732

733

Chemistry 1, 24-29.

Sugiura, N. and Zashu, S. (2001) Carbon‐silicate aggregates in the CH chondrite Pecora Escarpment

91467: A carrier of heavy nitrogen of interstellar origin. Meteorit. Planet. Sci. 36, 515-524.

Takeichi, Y., Inami, N., Suga, H., Ono, K. and Takahashi, Y. (2014) Development of a compact

734

735

736

737

scanning transmission X-ray microscope (STXM) at the photon factory. Chem. Lett. 43, 373375.

Takeichi, Y., Inami, N., Suga, H., Miyamoto, C., Ueno, T., Mase, K., Takahashi, Y. and Ono, K. (2016)

Design and performance of a compact scanning transmission X-ray microscope at the Photon

738

739

740

741

Factory. Rev. Sci. Instrum. 87, 013704.

Tayasu, I., Hirasawa, R., Ogawa, N. O., Ohkouchi, N. and Yamada, K. (2011) New organic reference

materials for carbon-and nitrogen-stable isotope ratio measurements provided by Center for

Ecological Research, Kyoto University, and Institute of Biogeosciences, Japan Agency for

742

743

Marine-Earth Science and Technology. Limnology 12, 261-266.

Tsiganis, K., Gomes, R., Morbidelli, A. and Levison, H. (2005) Origin of the orbital architecture of the

744

745

746

giant planets of the Solar System. Nature 435, 459-461.

Vernazza, P., Delbo, M., King, P. L., Izawa, M. R. M., Olofsson, J., Lamy, P., Cipriani, F., Binzel, R.

P., Marchis, F., Merin, B. and Tamanai, A. (2012) High surface porosity as the origin of

747

748

749

emissivity features in asteroid spectra. Icarus 221, 1162-1172.

Vernazza, P., Fulvio, D., Brunetto, R., Emery, J. P., Dukes, C. A., Cipriani, F., Witasse, O., Schaible,

M. J., Zanda, B., Strazzulla, G. and Baragiola, R. A. (2013) Paucity of Tagish Lake-like parent

750

751

752

bodies in the Asteroid Belt and among Jupiter Trojans. Icarus 225, 517-525.

Vernazza, P., Marsset, M., Beck, P., Binzel, R., Birlan, M., Brunetto, R., Demeo, F., Djouadi, Z., Dumas,

C. and Merouane, S. (2015) Interplanetary dust particles as samples of icy asteroids. Astrophys.

753

754

J. 806, 204.

Vinogradoff, V., Bernard, S., Le Guillou, C. and Remusat, L. (2018) Evolution of interstellar organic

755

756

compounds under asteroidal hydrothermal conditions. Icarus 305, 358-370.

Vokrouhlicky, D., Bottke, W. F. and Nesvorny, D. (2016) Capture of trans-Neptunian planetesimals in

757

758

759

the main asteroid belt. Astronomical Journal 152.

Vollmer, C., Kepaptsoglou, D., Leitner, J., Busemann, H., Spring, N. H., Ramasse, Q. M., Hoppe, P.

and Nittler, L. R. (2014) Fluid-induced organic synthesis in the solar nebula recorded in

760

761

extraterrestrial dust from meteorites. Proc. Nat. Acad. Sci.USA 111, 15338-15343.

Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P. and Mandell, A. M. (2011) A low mass

762

763

764

for Mars from Jupiter's early gas-driven migration. Nature 475, 206-209.

Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. and Mandell, A. M. (2012) Populating

the asteroid belt from two parent source regions due to the migration of giant planets-“The

765

766

Grand Tack”. Meteorit. Planet. Sci. 47, 1941-1947.

Wing, M. R. and Bada, J. L. (1991) Geochromatography on the parent body of the carbonaceous

767

768

769

chondrite Ivuna. Geochim. Cosmochim. Acta 55, 2937-2942.

Yabuta, H., Alexander, C. M. O. D., Fogel, M. L., Kilcoyne, A. L. D. and Cody, G. D. (2010) A

molecular and isotopic study of the macromolecular organic matter of the ungrouped C2 WIS

770

771

91600 and its relationship to Tagish Lake and PCA 91008. Meteorit. Planet. Sci. 45, 1446-1460.

Yang, B., Lucey, P. and Glotch, T. (2013) Are large Trojan asteroids salty? An observational,

772

773

774

theoretical, and experimental study. Icarus 223, 359-366.

Yesiltas, M., Kebukawa, Y., Peale, R. E., Mattson, E., Hirschmugl, C. J. and Jenniskens, P. (2014)

Infrared imaging spectroscopy with micron resolution of Sutter's Mill meteorite grains.

775

776

777

Meteorit. Planet. Sci. 49, 2027-2037.

Yesiltas, M., Peale, R. E., Unger, M., Sedlmair, J. and Hirschmugl, C. J. (2015) Organic and inorganic

correlations for Northwest Africa 852 by synchrotron-based Fourier transform infrared

778

779

780

microspectroscopy. Meteorit. Planet. Sci. 50, 1684-1696.

Yesiltas, M. and Kebukawa, Y. (2016) Associations of organic matter with minerals in Tagish Lake

meteorite via high spatial resolution synchrotron-based FTIR microspectroscopy. Meteorit.

781

782

783

Planet. Sci. 51, 584-595.

Yurimoto, H., Itoh, S., Zolensky, M., Kusakabe, M., Karen, A. and Bodnar, R. (2014) Isotopic

compositions of asteroidal liquid water trapped in fluid inclusions of chondrites. Geochem. J.

784

785

786

48, 549-560.

Zega, T. J., Alexander, C. M. O. D., Busemann, H., Nittler, L. R., Hoppe, P., Stroud, R. M. and Young,

A. F. (2010) Mineral associations and character of isotopically anomalous organic material in

787

788

789

the Tagish Lake carbonaceous chondrite. Geochim. Cosmochim. Acta 74, 5966-5983.

Zolensky, M., Hewins, R., Mittlefehldt, D., Lindstrom, M., Xiao, X. and Lipschutz, M. (1992)

Mineralogy, petrology and geochemistry of carbonaceous chondritic clasts in the LEW 85300

790

791

792

polymict eucrite. Meteoritics 27, 596-604.

Zolensky, M., Clayton, R., Mayeda, T., Chokai, J. and Norton, O. (2003) Carbonaceous chondrite

clasts in the halite-bearing H5 chondrite Zag. Meteoritics and Planetary Science Supplement

793

794

795

38.

Zolensky, M., Briani, G., Gounelle, M., Mikouchi, T., Ohsumi, K., Weisberg, M., Le, L., Satake, W.

and Kurihara, T. (2009) Searching for chips of Kuiper Belt objects in meteorites. Lunar and

796

797

Planetary Science Conference 40, #2162 (abstr.).

Zolensky, M. E., Weisberg, M. K., Buchanan, P. C. and Mittlefehldt, D. W. (1996) Mineralogy of

798

799

800

carbonaceous chondrite clasts in HED achondrites and the Moon. Meteorit. Planet. Sci. 31,

518-537.

Zolensky, M. E. (1999) Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite,

801

802

Monahans (1998). Science 285, 1377-1379.

Zolensky, M. E., Nakamura, K., Gounelle, M., Mikouchi, T., Kasama, T., Tachikawa, O. and Tonui, E.

803

(2002) Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite. Meteorit.

804

805

806

Planet. Sci. 37, 737-761.

Zolensky, M. E., Bodnar, R. J., Yurimoto, H., Itoh, S., Fries, M., Steele, A., Chan, Q. H.-S., Tsuchiyama,

A., Kebukawa, Y. and Ito, M. (2017) The search for and analysis of direct samples of early

807

808

809

810

Solar System aqueous fluids. Philosophical Transactions of the Royal Society A 375.

811

Figures captions

812

813

Fig. 1. (A) The bulk C and N abundances (wt.%) of the Zag clast, and various carbonaceous chondrites.

814

(B) The N/C ratios of the Zag clast, various chondrites (bulk and IOM), an IDP, and Comet Wild 2.

815

Chondrite, IDP, and cometary particle data from: Grady and Pillinger (1990); Alexander et al. (2007);

816

Cody et al. (2008a); Ivanova et al. (2008); Alexander et al. (2010); De Gregorio et al. (2010); Herd et

817

al. (2011); Alexander et al. (2012); Alexander et al. (2018).

818

819

Fig. 2. Infrared absorption spectrum of the clast from the Zag meteorite.

820

821

Fig. 3. (Upper) Backscattered electron (BSE) images of the carbon-rich areas in the Zag clast. (Lower)

822

Elemental composition maps by energy-dispersive X-ray spectroscopy (EDS) of the carbon-rich areas

823

in the Zag clast.

824

825

Fig. 4. The FIB section from the C-rich area #03 in the Zag clast. (A) A STXM image at 395 eV (darker

826

area corresponds to lower transmission), (B) C-O-Fe elemental map, (C) Peak intensity map, aromatic

827

C in red, carbonates in green, and blue corresponds to background, (D) δD image, and (E) δ15N image.

828

Yellow circles indicate δD and δ15N hot spots.

829

830

Fig. 5. The FIB section from the C-rich area #25 in the Zag clast. (A) A STXM image at 395 eV (darker

831

area corresponds to lower transmission), (B) C-O-Fe elemental map, (C) Peak intensity map, aromatic

832

C in red, carbonates in green, and blue corresponds to background, (D) δD image, and (E) δ15N image.

833

A yellow rectangle contained an organic nanoglobules. An enlarged peak intensity map of the yellow

834

rectangle area is shown in (E).

835

836

Fig. 6. The FIB section from the C-rich area #26 in the Zag clast. (A) A STXM image at 395 eV (darker

837

area corresponds to lower transmission), (B) C-O-Fe elemental map, (C) Pea ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る