リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Organic matter in carbonaceous chondrite lithologies of Almahata Sitta: Incorporation of previously unsampled carbonaceous chondrite lithologies into ureilitic regolith」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Organic matter in carbonaceous chondrite lithologies of Almahata Sitta: Incorporation of previously unsampled carbonaceous chondrite lithologies into ureilitic regolith

Kebukawa Yoko 70725374 Zolensky Michael. E. Goodrich Cyrena A. Ito Motoo 40606109 Ogawa Nanako O. 80359174 Takano Yoshinori 80399815 Ohkouchi Naohiko 00281832 Kiryu Kento Igisu Motoko Shibuya Takazo 00512906 Marcus Matthew A. Ohigashi Takuji 50375169 Martinez James Kodama Yu Shaddad Muawia H. Jenniskens Peter 横浜国立大学

2021.07.19

概要

The Almahata Sitta (AhS) meteorite is a unique polymict ureilite. Recently, carbonaceous chondritic lithologies were identified in AhS. Organic matter (OM) is ubiquitously found in primitive carbonaceous chondrites. The molecular and isotopic characteristics of this OM reflect its origin and parent body processes, and are particularly sensitive to heating. The C1 lithologies AhS 671 and AhS 91A were investigated, focusing mainly on the OM. We found that the OM in these lithologies is unique and contains primitive isotopic signatures, but experienced slight heating possibly by short-term heating event(s). These characteristics support the idea that one or more carbonaceous chondritic bodies were incorporated into the ureilitic parent body. The uniqueness of the OM in the AhS samples implies that there were large variations in primitive carbonaceous chondritic materials in the solar system other than known primitive carbonaceous chondrite groups such as CI, CM, and CR chondrites.

この論文で使われている画像

参考文献

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

Abreu N. M. and Brearley A. J. 2010. Early solar system processes recorded in the matrices of two

highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochimica et

Cosmochimica Acta 74:1146-1171.

Alexander C. M. O. D., Bowden R., Fogel M. L., Howard K. T., Herd C. D., and Nittler L. R. 2012.

The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial

planets. Science 337:721-723.

Alexander C. M. O. D., Fogel M., Yabuta H., and Cody G. D. 2007. The origin and evolution of

chondrites recorded in the elemental and isotopic compositions of their macromolecular

organic matter. Geochimica et Cosmochimica Acta 71:4380-4403.

Alexander C. M. O. D., Newsome S. D., Fogel M. L., Nittler L. R., Busemann H., and Cody G. D.

2010. Deuterium enrichments in chondritic macromolecular material—Implications for the

origin and evolution of organics, water and asteroids. Geochimica et Cosmochimica Acta

74:4417-4437.

Bourdelle F., Benzerara K., Beyssac O., Cosmidis J., Neuville D. R., Brown G. E., and Paineau E.

2013. Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray

microscopy at the Fe L2,3 edges. Contributions to Mineralogy and Petrology 166:423-434.

Brearley A. J. 1990. Carbon-rich aggregates in type 3 ordinary chondrites: Characterization, origins,

and thermal history. Geochimica et Cosmochimica Acta 54:831-850.

Busemann H., Alexander C. M. O. D., and Nittler L. R. 2007. Characterization of insoluble organic

matter in primitive meteorites by microRaman spectroscopy. Meteoritics & Planetary Science

42:1387-1416.

Busemann H., Young A. F., Alexander C. M. O., Hoppe P., Mukhopadhyay S., and Nittler L. R. 2006.

Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312:727-

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

730.

Chan Q. H. S., Nakato A., Kebukawa Y., Zolensky M. E., Nakamura T., Maisano J. A., Colbert M. W.,

Martinez J. E., Kilcoyne A. L. D., Suga H., Takahashi Y., Takeichi Y., Mase K., and Wright I.

P. 2019. Heating experiments of the Tagish Lake meteorite: Investigation of the effects of shortterm heating on chondritic organics. Meteoritics & Planetary Science 54:104-125.

Chan Q. H. S., Zolensky M. E., Kebukawa Y., Fries M., Ito M., Steele A., Rahman Z., Nakato A.,

Kilcoyne A. L. D., Suga H., Takahashi Y., Takeichi Y., and Mase K. 2018. Organic matter in

extraterrestrial water-bearing salt crystals. Science advances 4:eaao3521.

Changela H. G., Le Guillou C., Bernard S., and Brearley A. J. 2018. Hydrothermal evolution of the

morphology, molecular composition, and distribution of organic matter in CR (Renazzo-type)

chondrites. Meteoritics & Planetary Science 53:1006-1029.

Cody G. D., Alexander C. M. O. D., Yabuta H., Kilcoyne A. L. D., Araki T., Ade H., Dera R., Fogel

M., Militzer B., and Mysen B. O. 2008. Organic thermometry for chondritic parent bodies.

Earth and Planetary Science Letters 272:446-455.

Collinet M. and Grove T. L. 2020. Incremental melting in the ureilite parent body: Initial composition,

melting temperatures, and melt compositions. Meteoritics & Planetary Science 55:832-856.

Downes H., Abernethy F. A. J., Smith C. L., Ross A. J., Verchovsky A. B., Grady M. M., Jenniskens

P., and Shaddad M. H. 2015. Isotopic composition of carbon and nitrogen in ureilitic fragments

of the Almahata Sitta meteorite. Meteoritics & Planetary Science 50:255-272.

Ferrari A. C. and Robertson J. 2000. Interpretation of Raman spectra of disordered and amorphous

carbon. Physical Review B 61:14095-14107.

Goodrich C. A., Hartmann W. K., O'Brien D. P., Weidenschilling S. J., Wilson L., Michel P., and Jutzi

M. 2015. Origin and history of ureilitic material in the solar system: The view from asteroid

2008 TC 3 and the Almahata Sitta meteorite. Meteoritics & Planetary Science 50:782-809.

Goodrich C. A., Van Orman J. A., and Wilson L. 2007. Fractional melting and smelting on the ureilite

parent body. Geochimica et Cosmochimica Acta 71:2876-2895.

Goodrich C. A., Zolensky M. E., Fioretti A. M., Shaddad M. H., Downes H., Hiroi T., Kohl I., Young

E. D., Kita N. T., Hamilton V. E., Riebe M. E. I., Busemann H., Macke R. J., Fries M., Ross D.

K., and Jenniskens P. 2019. The first samples from Almahata Sitta showing contacts between

ureilitic and chondritic lithologies: Implications for the structure and composition of asteroid

2008 TC3. Meteoritics & Planetary Science 54:2769-2813.

Hashiguchi M., Kobayashi S., and Yurimoto H. 2015. Deuterium- and 15N-signatures of organic

globules in Murchison and Northwest Africa 801 meteorites. Geochemical Journal 49:377-391.

Herd C. D. K., Blinova A., Simkus D. N., Huang Y., Tarozo R., Alexander C. M. O. D., Gyngard F.,

Nittler L. R., Cody G. D., Fogel M. L., Kebukawa Y., Kilcoyne A. L. D., Hilts R. W., Slater G.

F., Glavin D. P., Dworkin J. P., Callahan M. P., Elsila J. E., De Gregorio B. T., and Stroud R.

M. 2011. Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake

meteorite. Science 332:1304-1307.

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

Isaji Y., Ogawa N. O., Boreham C. J., Kashiyama Y., and Ohkouchi N. 2020. Evaluation of δ13C and

δ15N Uncertainties Associated with the Compound-Specific Isotope Analysis of

Geoporphyrins. Analytical Chemistry 92:3152-3160.

Ito M. and Messenger S. 2008. Isotopic imaging of refractory inclusions in meteorites with the

NanoSIMS 50L. Applied Surface Science 255:1446-1450.

Ito M., Uesugi M., Naraoka H., Yabuta H., Kitajima F., Mita H., Takano Y., Karouji Y., Yada T.,

Ishibashi Y., Okada T., and Abe M. 2014. H, C, and N isotopic compositions of Hayabusa

category 3 organic samples. Earth, Planets and Space 66:91.

Jenniskens P., Shaddad M. H., Numan D., Elsir S., Kudoda A. M., Zolensky M. E., Le L., Robinson

G. A., Friedrich J. M., Rumble D., Steele A., Chesley S. R., Fitzsimmons A., Duddy S., Hsieh

H. H., Ramsay G., Brown P. G., Edwards W. N., Tagliaferri E., Boslough M. B., Spalding R.

E., Dantowitz R., Kozubal M., Pravec P., Borovicka J., Charvat Z., Vaubaillon J., Kuiper J.,

Albers J., Bishop J. L., Mancinelli R. L., Sandford S. A., Milam S. N., Nuevo M., and Worden

S. P. 2009. The impact and recovery of asteroid 2008 TC3. Nature 458:485-488.

Kaliwoda M., Hochleitner R., Hoffmann V. H., Mikouchi T., Gigler A. M., and Schmahl W. W. 2013.

New Raman Spectroscopic Data of the Almahata Sitta Meteorite. Spectroscopy Letters 46:141146.

Kebukawa Y., Alexander C. M. O. D., and Cody G. D. 2011. Compositional diversity in insoluble

organic matter in type 1, 2 and 3 chondrites as detected by infrared spectroscopy. Geochimica

et Cosmochimica Acta 75:3530–3541.

Kebukawa Y., Alexander C. M. O. D., and Cody G. D. 2019a. Comparison of FT‐IR spectra of bulk

and acid insoluble organic matter in chondritic meteorites: An implication for missing carbon

during demineralization. Meteoritics & Planetary Science 54:1632–1641.

Kebukawa Y., Ito M., Zolensky M. E., Greenwood R. C., Rahman Z., Suga H., Nakato A., Chan Q. H.,

Fries M., and Takeichi Y. 2019b. A novel organic-rich meteoritic clast from the outer solar

system. Scientific reports 9:3169.

Kebukawa Y., Nakashima S., and Zolensky M. E. 2010. Kinetics of organic matter degradation in the

Murchison meteorite for the evaluation of parent-body temperature history. Meteoritics &

Planetary Science 45:99-113.

Kebukawa Y., Zolensky M. E., Chan Q. H. S., Nagao K., Kilcoyne A. L. D., Bodnar R. J., Farley C.,

Rahman Z., Le L., and Cody G. D. 2017. Characterization of carbonaceous matter in xenolithic

clasts from the Sharps (H3.4) meteorite: Constraints on the origin and thermal processing.

Geochimica et Cosmochimica Acta 196:74-101.

Kebukawa Y., Zolensky M. E., Ito M., Ogawa N. O., Takano Y., Ohkouchi N., Nakato A., Suga H.,

Takeichi Y., Takahashi Y., and Kobayashi K. 2020. Primordial organic matter in the xenolithic

clast in the Zag H chondrite: Possible relation to D/P asteroids. Geochimica et Cosmochimica

Acta 271:61-77.

Kilcoyne A., Tyliszczak T., Steele W., Fakra S., Hitchcock P., Franck K., Anderson E., Harteneck B.,

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Rightor E., and Mitchell G. 2003. Interferometer-controlled scanning transmission X-ray

microscopes at the Advanced Light Source. Journal of synchrotron radiation 10:125-136.

Kiryu K., Kebukawa Y., Igisu M., Shibuya T., Zolensky M. E., and Kobayashi K. 2020. Kinetics in

thermal evolution of Raman spectra of chondritic organic matter to evaluate thermal history of

their parent bodies. Meteoritics & Planetary Science in press.

Koprinarov I. N., Hitchcock A. P., McCrory C. T., and Childs R. F. 2002. Quantitative Mapping of

Structured Polymeric Systems Using Singular Value Decomposition Analysis of Soft X-ray

Images. The Journal of Physical Chemistry B 106:5358-5364.

Le Guillou C., Bernard S., Brearley A. J., and Remusat L. 2014. Evolution of organic matter in Orgueil,

Murchison and Renazzo during parent body aqueous alteration: In situ investigations.

Geochimica et Cosmochimica Acta 131:368-392.

Le Guillou C. and Brearley A. 2014. Relationships between organics, water and early stages of aqueous

alteration in the pristine CR3.0 chondrite MET 00426. Geochimica et Cosmochimica Acta

131:344-367.

Le Guillou C., Changela H. G., and Brearley A. J. 2015. Widespread oxidized and hydrated amorphous

silicates in CR chondrites matrices: Implications for alteration conditions and H2 degassing of

asteroids. Earth and Planetary Science Letters 420:162-173.

Mittlefehldt D. W., McCoy T. J., Goodrich C. A., and Kracher A. 1998. Non-chondritic meteorites

from asteroidal bodies. In Planetary materials (ed. J. J. Papike), pp. 4-1–4-195. Mineralogical

Society of America, Washington, D.C.

Nakamura T. 2005. Post-hydration thermal metamorphism of carbonaceous chondrites. Journal of

Mineralogical and Petrological Sciences 100:260-272.

Nittler L. R., Stroud R. M., Trigo-Rodríguez J. M., De Gregorio B. T., Alexander C. M. O. D.,

Davidson J., Moyano-Cambero C. E., and Tanbakouei S. 2019. A cometary building block in a

primitive asteroidal meteorite. Nature Astronomy 3:659-666.

Ogawa N. O., Nagata T., Kitazato H., and Ohkouchi N. 2010. Ultra sensitive elemental

analyzer/isotope ratio mass spectrometer for stable nitrogen and carbon isotope analyses. In

Earth, life, and isotopes (eds. N. Ohkouchi, I. Tayasu, and K. Koba), pp. 339-353. Kyoto

University Press.

Orthous-Daunay F.-R., Piani L., Flandinet L., Thissen R., Wolters C., Vuitton V., Poch O., Moynier F.,

Sugawara I., and Naraoka H. 2019. Ultraviolet-photon fingerprints on chondritic large organic

molecules. Geochemical Journal 53:21-32.

Patzek M., Hoppe P., Bischoff A., Visser R., and John T. 2020. Hydrogen isotopic composition of CIand CM-like clasts from meteorite breccias – Sampling unknown sources of carbonaceous

chondrite materials. Geochimica et Cosmochimica Acta 272:177-197.

Prince K. C., Avaldi L., Coreno M., Camilloni R., and Simone M. d. 1999. Vibrational structure of

core to Rydberg state excitations of carbon dioxide and dinitrogen oxide. Journal of Physics B:

Atomic, Molecular and Optical Physics 32:2551-2567.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

Quirico E., Bonal L., Beck P., Alexander C. M. O. D., Yabuta H., Nakamura T., Nakato A., Flandinet

L., Montagnac G., Schmitt-Kopplin P., and Herd C. D. K. 2018. Prevalence and nature of

heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter.

Geochimica et Cosmochimica Acta 241:17-37.

Rubin A. E., Zolensky M. E., and Bodnar R. J. 2002. The halite‐bearing Zag and Monahans (1998)

meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on

the H‐chondrite parent body. Meteoritics & Planetary Science 37:125-141.

Salisbury J. W., Walter L. S., Vergo N., and D’Aria D. M. 1991. Infrared (2.1–25 micrometers) spectra

of minerals. John Hopkins University Press, Baltimore.

Schimmelmann A., Qi H., Coplen T. B., Brand W. A., Fong J., Meier-Augenstein W., Kemp H. F.,

Toman B., Ackermann A., and Assonov S. 2016. Organic reference materials for hydrogen,

carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl

esters, glycines, L-valines, polyethylenes, and oils. Analytical Chemistry 88:4294-4302.

Schmitt-Kopplin P., Gabelica Z., Gougeon R. D., Fekete A., Kanawati B., Harir M., Gebefuegi I.,

Eckel G., and Hertkorn N. 2010. High molecular diversity of extraterrestrial organic matter in

Murchison meteorite revealed 40 years after its fall. Proceedings of the National Academy of

Sciences of the United States of America 107:2763-2768.

Scott E. R. D., Taylor G. J., and Keil K. 1993. Origin of ureilite meteorites and implications for

planetary accretion. Geophysical Research Letters 20:415-418.

Tayasu I., Hirasawa R., Ogawa N. O., Ohkouchi N., and Yamada K. 2011. New organic reference

materials for carbon-and nitrogen-stable isotope ratio measurements provided by Center for

Ecological Research, Kyoto University, and Institute of Biogeosciences, Japan Agency for

Marine-Earth Science and Technology. Limnology 12:261-266.

van Aken P. A. and Liebscher B. 2002. Quantification of ferrous/ferric ratios in minerals: new

evaluation schemes of Fe L23electron energy-loss near-edge spectra. Physics and Chemistry

of Minerals 29:188-200.

Vinogradoff V., Le Guillou C., Bernard S., Binet L., Cartigny P., Brearley A. J., and Remusat L. 2017.

Paris vs. Murchison: Impact of hydrothermal alteration on organic matter in CM chondrites.

Geochimica et Cosmochimica Acta 212:234-252.

Visser R., John T., Menneken M., Patzek M., and Bischoff A. 2018. Temperature constraints by Raman

spectroscopy of organic matter in volatile-rich clasts and carbonaceous chondrites. Geochimica

et Cosmochimica Acta 241:38-55.

Vollmer C., Kepaptsoglou D., Leitner J., Busemann H., Spring N. H., Ramasse Q. M., Hoppe P., and

Nittler L. R. 2014. Fluid-induced organic synthesis in the solar nebula recorded in

extraterrestrial dust from meteorites. Proceedings of the National Academy of Sciences of the

United States of America 111:15338-15343.

Warren P. H. and Kallemeyn G. W. 1992. Explosive volcanism and the graphite oxygen fugacity buffer

on the parent asteroid(s) of the ureilite meteorites. Icarus 100:110-126.

754

755

756

757

758

Zolensky M. E., Bodnar R. J., Yurimoto H., Itoh S., Fries M., Steele A., Chan Q. H.-S., Tsuchiyama

A., Kebukawa Y., and Ito M. 2017. The search for and analysis of direct samples of early Solar

System aqueous fluids. Philosophical Transactions of the Royal Society A 375:20150386.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る