リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「太陽系初期進化段階における有機物と鉱物の相互作用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

太陽系初期進化段階における有機物と鉱物の相互作用

平川 尚毅 横浜国立大学 DOI:info:doi/10.18880/00013935

2021.06.17

概要

Evolution of our Solar System proceeded along (1) interstellar gas and submicron scale dusts in a molecular cloud, (2) gravitational contraction of molecular cloud core towards the formation of protostar and proto-solar nebulae, (3) accretion of the gas and dusts to proto-planetary disk, (4) accumulation to planetesimals (10 km size), (5) collision of planetesimals to form meteorite parent bodies (100 km size) and growth to planets (Hayashi et al. 1985; Figure1-1). Materials such as minerals, ice and organic matter were formed and evolved in each different stage. One of the most significant stages for interactions among materials was meteorite parent bodies, which meteorites came from.

Meteorites can be classified into various type and groups. Chondrite is a major meteorite group, they could avoid strong igneous processes in the parent bodies, thus various accreted components originated from molecular cloud and proto-solar nebulae can be observed. Chondrites can be also classified into carbonaceous chondrite, ordinary chondrite, enstatite chondrite and additional other chondrites (Rumuruti-like chondrites and Kakangari-like chondrites) primary based on chemical compositions, oxygen isotopic compositions, bulk stable-isotope anomaly, oxidation state and bulk carbon and nitrogen abundances (Table 1-1; Krot et al. 2014). Carbonaceous, ordinary and enstatite chondrites are additionally classified based on petrologic types (van Schmus and Wood 1967), which reflect the degree of thermal metamorphism and aqueous alteration in the parent bodies (Table 1-1). The least altered or metamorphosed chondrites are classified as type 3. Type 3 chondrites include some carbonaceous chondrites such as CV and CO chondrites, and unequilibrated ordinary chondrites. Type 1 and 2 are aqueously altered chondrites (type 1 was more altered than type 2 chondrites), such as CI, CM and CR chondrites, and thermally metamorphosed chondrites are type 4-6 (lager number means the larger metamorphic degrees). In terms of organic matter, however, there are some evidence of heating even in type 3 chondrites (Quirico et al. 2003, 2009; Bonal et al. 2006, 2007, 2016; Alexander et al. 2007; Busemann et al. 2007; Cody et al. 2008; Kebukawa et al. 2011; Homma et al. 2015), since organic matter is more sensitive to thermal conditions compared with minerals. With increase of metamorphic grade, the amount of organic matter decreased, and the chemical structure gradually changed. Thus, relatively weak thermal processes could have occurred in type 3 chondrites, which could induce the metamorphism of organic matter. Carbonaceous chondrites, especially CI, CM, CR, CV and CO chondrites, and ordinary chondrites with type 3 were focused on in present study to discuss the interactions between organic matter and minerals.

この論文で使われている画像

関連論文

参考文献

Alexander, C.M.O’D., 2017. The origin of inner Solar System water. Phylos. Trans. R. Soc. B-Biol. Sci. A 375: 20150384. http://dx.doi.org/10.1098/rsta.2015.0384

Alexander, C.M.O’D., Barber, D.J., Hutchison, R., 1989. Microstructure of Semarkona and Bishunpur. Geochim. Cosmochim. Acta 53, 3045-3057. https://doi.org/10.1016/0016-7037(89)90180-4

Alexander, C.M.O’D., Bowden, R., Fogel, M.L., 2012. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721-726. https://doi.org/10.1126/science.1223474

Alexander, C.M.O’D., Fogel, M., Yabuta, H., Cody, G.D., 2007. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71, 4380-4403. https://doi.org/10.1016/j.gca.2007.06.052

Alexander, C.M.O’D., Newsome, S.D., Fogel, M.L., Nittler, L.R., Busemann, H., Cody, G.D., 2010. Deuterium enrichments in chondritic macromolecular material-Implications for the origin and evolution of organics, water and asteroids. Geochim. Cosmochim. Acta 74, 4417-4437. https://doi.org/10.1016/j.gca.2010.05.005

Alexander, C.M.O’D., Russell, S.S., Arden, J.W., Ash, R.D., Grady, M.M., Pillinger, C.T., 1998. The origin of chondritic macromolecular organic matter: A carbon and nitrogen isotope study. Meteorit. Planet. Sci. 33, 603-622. https://doi.org/10.1111/j.1945-5100.1998.tb01667.x

Alomon, W., Johns, W., 1975. Petroleum forming reactions: the mechanism and rate of clay catalyzed fatty acid decarboxylation. In: Campos, R., Goñi, J.C, Treibs, A. (eds.), Advances in organic geochemistry, 1975 : proceedings of the 7th International Meeting on Organic Geochemistry, Empresa Nacional Adaro de Investigaciones Mineras, Madrid, pp. 157-171.

Anderson, D. L., 1970. Petrology of the Mantle. Mineral. Soc. Amer. Spec. Pap. 3, 85-93.

Arai, Y., Nagai, S., 1963. Synthesis of Olivine and Acid Solubilities of the Products. Gypsum & Lime, 67, 245-252. https://doi.org/10.11451/mukimate1953.1963.245

Ashworth, J. R., Chambers, A. D., 2000. Symplectic Reaction in Olivine and the Controls of Intergrowth Spacing in Symplectites. J. Petrol. 41, 285-304. https://doi.org/10.1093/petrology/41.2.285

Bardyn, A., Baklouti, D., Cottin, H., Fray, N., Briois, C., Paquette, J., Stenzel, O., Engrand, C., Fischer, H., Hornung, K., Isnard, R., Langevin, Y., Lehto, H., Le Roy, L., Ligier, N., Merouane, S., Modica, P., Orthous-Daunay, F. R., Ryno, J., Schulz, R., Silen, J., Thirkell, L., Varmuza, K., Zaprudin, B., Kissel, J., Hilchenbach, M., 2017. Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta. Mon. Notices Royal Astron. Soc. 469, 712-722. https://doi.org/10.1093/mnras/stx2640

Bischoff, A., 1998. Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration-A review. Meteorit. Planet. Sci. 33, 1113-1122. https://doi.org/10.1111/j.1945-5100.1998.tb01716.x

Bisschop, S.E., Jørgensen, J.K., Bourke, T.L., Bottinelli, S., van Dishoeck, E.F., 2008. An interferometric study of the low-mass protostar IRAS 16293-2422: small scale organic chemistry. Astron. Astrophys. 488, 959-968. https://doi.org/10.1051/0004-6361:200809673

Block, K.A., Trusiak A., Katz, A., Alimova, A., Wei, H., Gottlieb, P., Steiner, J.C., 2015. Exfoliation and intercalation of montmorillonite by small peptides. Appl. Clay Sci. 107, 173-181. https://doi.org/10.1016/j.clay.2015.01.021

Bonal, L., Quirico, E., Bourot-Denise, M., Montagnac, G., 2006. Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim. Cosmochim. Acta 70, 1849-1863. https://doi.org/10.1016/j.gca.2005.12.004

Bonal, L., Bourot-Denise, M., Quirico, E., Montagnac, G., Lewin, E., 2007. Organic matter and metamorphic history of CO chondrites. Geochim. Cosmochim. Acta 71, 1605-1623. https://doi.org/10.1016/j.gca.2006.12.014

Bonal, L., Quirico, E., Flandinet, L., Montagnac, G., 2016. Thermal history of type 3 chondrites from the Antarctic meteorite collection determined by Raman spectroscopy of their polyaromatic carbonaceous matter. Geochim. Cosmochim. Acta 189, 312-337. https://doi.org/10.1016/j.gca.2016.06.017

Brearley, A.J., 2006. The action of water. In: Meteorites and the Early Solar System II (eds. Lauretta, D.S., McSween Jr, H.Y.). University of Arizona Press, Tucson. pp. 587-624.

Brindley, G. W., Hayami, R., 1965. Kinetics and mechanism of formation of forsterite (Mg2SiO4) by solid state reaction of MgO and SiO2. Philosophical Magazine, 12:117, 505-514. https://doi.org/10.1080/14786436508218896

Briggs, R.G., Ertem, G., Ferris, J.P., Greenberg, J.M., Mccain, P.J., Mendoza-Gomez, C. X., Schutte, W., 1992. Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Orig. Life Evol. Biosph. 22, 287-

307. https://doi.org/10.1007/BF01810858

Bu, H., Yuan, P., Liu, H., Liu, D., Zhou, X., 2017. Thermal decomposition of long-chain fatty acids and its derivative in the presence of montmorillonite A thermogravimetric (TG/DTG) investigation. J. Therm. Anal. Calorim. 128, 1661-1669. https://doi.org/10.1007/s10973-016-6022-5

Buchmann, M., Schach, E., Tolosana-Delgado, R., Leißner, T., Astoveza, J., Kern, M., Möckel, R., Ebert, D., Rudolph, M., van den Boogaart, K. G., Peuker, U. A., 2018. Evaluation of Magnetic Separation Efficiency on a Cassiterite-Bearing Skarn Ore by Means of Integrative SEM-Based Image and XRF–XRD Data Analysis. Minerals 2018, 8, 390. https://doi.org/10.3390/min8090390

Bunin, I.Z., Chanturiya, V.A., Anashkina, N.E., 2017. Non-thermal effect of high-voltage nanosecond pulses on kimberlite rock-forming minerals processing. In: Advanced Materials (eds. Parinov, I., Chang, S.H., Jani, M.) Springer Proceedings in Physics 193, pp. 37-53. https://doi.org/10.1007/978-3-319-56062-5_4

Buseck, P.R., Hua, X., 1993. Matrices of carbonaceous chondrite meteorites. Annu. Rev. Earth Planet. Sci. 21, 255-305. https://doi.org/10.1146/annurev.ea.21.050193.001351

Busemann, H., Alexander, C.M.O’D., Nittler, L.R., 2007. Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy. Meteorit. Planet. Sci. 42, 1387-1416. https://doi.org/10.1111/j.1945-5100.2007.tb00581.x

Cai, J.G., Bao Y.J., Yang S.Y., Wang X.X., Fan D.D., Xu J.L., Wang A.P., 2007. Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone. Sci.

China Ser. D-Earth Sci. 50, 765-775. https://doi.org/10.1007/s11430-007-0005-0

Cecilia, C., 2002. Millimeter and infrared observations of deuterated molecules. Planet. Space Sci. 50, 1267-1273. https://doi.org/10.1016/S0032-0633(02)00093-4

Chen, Z., Zeilstra, C., van der Stel, J., Sietsma, J., Yang, Y., 2020. Review and data evaluation for high-temperature reduction of iron oxide particles in suspension. Ironmak. Steelmak., 47, 741-747. https://doi.org/10.1080/03019233.2019.1589755

Cody, G.D., Alexander, C.M.O’D., 2005. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochim. Cosmochim. Acta 69, 1085-1097. https://doi.org/10.1016/j.gca.2004.08.031

Cody, G.D., Alexander, C.M.O’D., Yabuta, H., Kilcoyne, A.L.D., Araki, T., Ade, H., Dera, P., Fogel, M., Militzer, B., Mysen, B.O., 2008. Organic thermometry for chondritic parent bodies. Earth Planet. Sci. Lett. 272, 446-455. https://doi.org/10.1016/j.epsl.2008.05.008

Cody, G.D., Heying E., Alexander, C.M.O’D., Nittler, L.R., Kilcoyne, A.L.D., Sandford, S.A., Stroud, R.M., 2011. Establishing a Molecular Relationship between Chondritic and Cometary Organic Solids. Proc. Natl. Acad. Sci. U.S.A. 108, 19171-19176. https://doi.org/10.1073/pnas.1015913108

Ciesla, F.J., Lauretta, D.S., Cohen, B.A., Hood, L.L., 2003. A nebular origin for chondritic fine-grained phyllosilicates. Science 299, 549-552. https://doi.org/10.1126/science.1079427

Davis, J.B., Stanley, J.P., 1982. Catalytic effect of smectite clays in hydrocarbon generation revealed by pyrolysis-gas chromatography. J. Anal. Appl. Pyrol. 4, 227–240. https://doi.org/10.1016/0165- 2370(82)80033-8

Derenne, S., Robert, F. 2010. Model of Molecular Structure of the Insoluble Organic Matter Isolated from Murchison Meteorite. Meteorit. Planet. Sci. 45, 1461-1475. https://doi.org/10.1111/j.1945- 5100.2010.01122.x

Djomgoue, P., Njopwouo, D., 2013. FT-IR spectroscopy applied for surface clays characterization. J. Surf. Eng. Mater. Adv. Tech. 3, 275-282. http://dx.doi.org/10.4236/jsemat.2013.34037

Dobrica, E., Brearley, A.J., 2020. Amorphous silicates in the matrix of Semarkona: The first evidence for the localized preservation of pristine matrix materials in the most unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 55, 649-668. https://doi.org/10.1111/maps.13458

Doyle, P.M., Jogo, K., Nagashima, K., Krot, A.N., Wakita, S., Ciesla, F.J., Hucheon, I.D., 2015. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Commun. 6, 7444. https://doi.org/10.1038/ncomms8444

Ejima, T., Akasaka, M., Nagao, T., Ohfuji, H., 2013. Oxidation states of Fe and precipitates within olivine from orthopyroxene-olivine-clinopyroxene andesite lava from Kasayama volcano, Hagi, Yamaguchi, Japan. J. Mineral. Petrol. Sci. 108, 25-36. https://doi.org/10.2465/jmps.120621a

Favre, C., Fedele, D., Semenov, D., Parfenov, S., Codella, C., Ceccarelli, C., Bergin, E.A., Chapillon, E., Testi, L., Hersant, F., 2018. First detection of the simplest organic acid in a protoplanetary disk. Astrophys. J. 862, L2-9. https://doi.org/10.3847/2041-8213/aad046

Fuchida, S., Naraoka, H., Masuda, H., 2017. Formation of Diastereoisomeric Piperazine-2,5-dione from DLAlanine in the Presence of Olivine and Water. Orig. Life Evol. Biosph. 43, 83-92. https://doi.org/10.1007/s11084-016-9500-7

Gail, H., Trieloff, M., 2017. Spatial distribution of carbon dust in the early solar nebula and the carbon content of planetesimals. Astron. Astrophys. 606, A16. https://doi.org/10.1051/0004- 6361/201730480

Garvie, L.A.J., Buseck, P.R., 2007. Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites. Meteorit. Planet. Sci. 42, 2111-2117. https://doi.org/10.1111/j.1945-5100.2007.tb01011.x

Giese, C., Ten Kate, I. L., Plumper, O., KING, H. E., Lenting, C., Liu, Y., Tielens, A. G. G., 2019. The evolution of polycyclic aromatic hydrocarbons under simulated inner asteroid conditions. Meteorit. Planet. Sci. 54, 1930–1950. https://doi.org/10.1111/maps.13359

Goesmann, F., Rosenbauer, H., Bredehöft, J.H., Cabane, M., Ehrenfreund, P., Gautier, T., Giri, C., Krüger, H., Roy, L.L., MacDermott, A.J., McKenna-Lawlor, S., Meierhenrich, U.J., Muñoz Caro,

G.M., Raulin, F., Roll, R., Steele, A., Steininger, H., Sternberg, R., Szopa, C., Thiemann, W., Ulamec, S., 2015. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science, 349, 6247. https://doi.org/10.1126/science.aab0689.

Goldschmidt, V. M., The Principles of Distribution of Chemical Elements in Minerals and Rocks. J. Chem. Soc., 655-673. https://doi.org/10.1039/JR9370000655

Grady, M.M., Wright, I.P., Engrand, C., Siljeström, S., 2018. The Rosetta mission and the chemistry of organic species in Comet 67P/Churyumov–Gerasimenko. Elements, 14, 95–100. https://doi.org/10.2138/gselements.14.2.95.

Greenberg, J.M., Mendoza-Gómez, C.X., 1993. Interstellar dust evolution: A reservoir of prebiotic molecules. In: The Chemistry of Life’s Origin (eds. Greenberg, J.M., Mendoza-Gómez, C.X., Pirronello, V.). Kluwer Accademic, Boston. pp. 1–32.

Grimm, R.E., Mcsween, H.Y. Jr., 1989. Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus 82, 244-280. https://doi.org/10.1016/0019-1035(89)90038-9

Hanson, D. R., Young, M., Ryerson, F. J., 1991. Growth and Characterization of Synthetic IronBearing Olivine. Phys. Chem. Minerals, 18, 53-63. https://doi.org/10.1007/BF00199044

Haresnape, J.N., 1948. The use of montmorillonite catalysts in the cracking of petroleum fractions. Clay Miner. Bull. 1 (2), 59-61. https://doi.org/10.1180/claymin.1948.000.2.07

Hayashi, C., Nakazawa, K., Nakagawa, Y., 1985. Formation of the Solar System. In: Protostars and Planets II (eds. Black, D.C., Matthews, M.S.). University of Arizona Press, Tucson. pp. 1100-1153.

Hayatsu, R., Anders, E., 1981. Organic Compounds in Meteorites and Their Origins. In: Topics in Current Chemistv, Vol. 99 (eds. Boschke, F. L.) Springer-Verlag., pp.l-37.

Heller-Kallai, L., Aizenshtat, Z., Miloslavski, I., 1984. The effect of various clay minerals on the thermal decomposition of stearic acid under 'Bulk Flow' conditions. Clay Miner. 19, 779-788. https://doi.org/10.1180/claymin.1984.019.5.08

Hendricks, S. B., 1941. Base exchange of the clay mineral montmorillonite for organic cations and its dependence upon adsorption due to van der Waals forces. J. Phys. Chem. 45, 65-81. https://doi.org/10.1021/j150406a006

Herbst, E., van Dishoeck, E.F., 2009. Complex organic interstellar molecules. Ann. Rev. Astron. Astrophys. 47, 427-480. https://doi.org/10.1146/annurev-astro-082708-101654

Homma, Y., Kouketsu, Y., Kagi, H., Mikouchi, T., Yabuta, H., 2015. Raman spectroscopic thermometry of carbonaceous material in chondrites: four–band fitting analysis and expansion of lower temperature limit. J. Mineral. Petrol. Sci. 110, 276-282. https://doi.org/10.2465/jmps.150713a

Homma, K.A., Okuzumi, S., Nakamoto, T., Ueda, Y., 2019. Rocky Planetesimal Formation Aided by Organics. Astrophys. J. 877, 128. https://doi.org/10.3847/1538-4357/ab1de0

Howard, K.T., Benedix, G.K., Bkand, P.A., Cressay, G., 2010. Modal mineralogy of CV3 chondrites by X-ray diffraction (PSD-XRD). Geochim. Cosmochim. Acta 74, 5084-5097. https://doi.org/10.1016/j.gca.2010.06.014

Howard, K.T., Alexander, C.M.O’D., Dyl, K.A., 2014. PSD-XRD modal mineralogy of type 3.0 CO chondrites: initial asteroidal water mass fractions and implications for CM chondrites. In: Lunar and Planetary Science Conference XXXXV Abstract #1830.

Huss, G.R., Rubin, E.A., Grossman, J.N., 2006. Thermal metamorphism in chondrites. In: Meteorites and the Early Solar System II (eds. Lauretta, D.S., McSween Jr, H.Y.). University of Arizona Press, Tucson. pp.567-586.

Hutchison, R., Alexander, C.M.O’D., Barber, D.J., 1987. The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications. Geochim. Cosmochim. Acta 51, 1875- 1882. https://doi.org/10.1016/0016-7037(87)90178-5

Isobe, H., Yoshizawa, M., 2014. Formation of iron mineral fine particles by acidic hydrothermal alteration experiments of synthetic martian basalt. Journal of Mineral. Petrol. Sci., 109, 62-73. https://doi.org/10.2465/jmps.121207

Ito, K., Sato, H., Kanazawa, H., Kawame, N., Tamada, O., Miyazaki, K., Uehara, S., Iio, Y., Takei, H., Kitazawa, T., Koike, M., Matsushita, Y., Ito, Y., 2003. First Synthesis of Olivine Single Crystal as Large as 250 Carats. J. Cryst. Growth 253, 557-561. https://doi.org/10.1016/S0022- 0248(03)01029-7

Iwakami, Y., Takazono, M., Tsuchiya, T., 1968. Thermal decomposition of hexamethylenetetramine. Bull. Chem. Soc. Jpn. 41, 813-817. https://doi.org/10.1246/bcsj.41.813

Johns, W.D., 1979. Clay mineral catalysis and petroleum generation. Ann. Rev. Earth Planet. Sci. 7, 183-198. https://doi.org/10.1146/annurev.ea.07.050179.001151

Jacquet, E., Robert, F., 2013. Water transport in protoplanetary disks and the hydrogen isotopic composition of Chondrites. Icurus 2, 722-732. https://doi.org/10.1016/j.icarus.2013.01.022

Jerry Shiao, Y.S., Looney, L.W., Remijan, A.J., Snyder, L.E., Friedel, D.N., 2010. First acetic acid survey with CARMA in hot molecular cores. Astrophys. J. 716, 286. https://doi.org/10.1088/0004- 637X/716/1/286 Page 14/21

Jørgensen, J.K., Favre, C., Bisschop, S.E., Bourke, T.L., van Dishoeck, E.F., Schmalzl, M., 2012. Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. Astrophys.

J. Lett. 757, L4. https://doi.org/10.1088/2041-8205/757/1/L4

Kazakos, A., Komarneni, S., Roy, R., 1990. Preparation and Densification of Forsterite (Mg2SiO4) by Nanocomposite Sol-Gel Processing. Matter. Lett. 9: 10, 405-409. https://doi.org/10.1016/0167- 577X(90)90075-W

Kebukawa, Y., Alexander, C.M.O’D., Cody, G.D., 2011. Compositional diversity in insoluble organic matter in type 1, 2 and 3 chondrites as detected by infrared spectroscopy. Geochim. Cosmochim. Acta 75, 3530-3541. https://doi.org/10.1016/j.gca.2011.03.037

Kebukawa, Y., Alexander, C.M.O’D., Cody, G.D., 2019b. Comparison of FT-IR spectra of bulk and acid insoluble organic matter in chondritic meteorites: An implication for missing carbon during demineralization. Meteorit. Planet. Sci., 54, 1632-1641. https://doi.org/10.1111/maps.13302

Kebukawa, Y., Kilcoyne, A.L.D., Cody, G.D., 2013. Exploring the Potential Formation of Organic Solids in Chondrites and comets through Polymerization of Interstellar Formaldehyde. Astrophys. J. 771, 19. https://doi.org/10.1088/0004-637X/771/1/19

Kebukawa, Y., Kobayashi, H., Urayama, N., Baden, N., Kondo, M., Zolensky, M.E., Kobayashi, K., 2019a. Nanoscale infrared imaging analysis of carbonaceous chondrites to understand organicmineral interactions during aqueous alteration. Proc. Natl. Acad. Sci. U.S.A, 116, 753-758. https://doi.org/10.1073/pnas.1816265116

Kebukawa, Y., Nakashima, S., Ishikawa, M., Aizawa, K., Inoue, T., Nakamura-Messenger, K. and Zolensky, M.E., 2010a. Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy. Meteorit. Planet. Sci. 45, 394-405. https://doi.org/10.1111/j.1945-5100.2010.01030.x

Kebukawa, Y., Nakashima, S., Zolensky, M.E., 2010b. Kinetics of organic matter degradation in the Murchison meteorite for the evaluation of parent-body temperature history. Meteorit. Planet. Sci. 45, 99-113. https://doi.org/10.1111/j.1945-5100.2009.01008.x

King, A.J., Schoeld, P.F., Russell, S.S., 2017. Type 1 aqueous alteration in CM carbonaceous chondrites: Implications for the evolution of water-rich asteroids. Meteorit. Planet. Sci. 52, 1197- 1215. https://doi.org/10.1111/maps.12872

Kissel, J., Krueger, F.R., 1987. The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326, 755-760. https://doi.org/10.1038/326755a0

Kitajima, F., Nakamura, T., Takaoka, N., Marue, T., 2002. Evaluating the thermal metamorphism of CM chondrites by using the pyrolytic behavior of carbonaceous macromolecular matter. Geochim. Cosmochim. Acta 66, 163-172. https://doi.org/10.1016/S0016-7037(01)00758-X

Kluger, R., Howe, G.W., Mundle, S.O.C., 2013. Avoiding CO2 in catalysis of decarboxylation. In: Williams, I.H., Williams, N.H. (eds.), Advances in Physical Organic Chemistry. Academic Press, New York, 47, pp. 85-128. https://doi.org/10.1016/B978-0-12-407754-6.00002-8

Kohlstedtand, D. L., Vander Sande, J. B., 1975. An Electron Microscopy Study of Naturally Occurring Oxidation ProducedPrecipitates in Iron-Bearing Olivines. Contrib. Mineral. Petrol., 53, 13-24. https://doi.org/10.1007/BF00402451

Kouchi, A., Kudo, T., Nakano, H., Arakawa, M., Watanabe, N., Sirono, S., Higa, M., Maeno, N., 2002. Rapid growth of asteroids owing to very sticky interstellar organic grains. Astrophys. J. 566, 121- 124. https://doi.org/10.1086/339618

Kracher, A., Keil, K., Kallemeyn, G.W., Wasson, J.T., Clayton, R.N., Huss, G.I., 1985. The Leoville (CV 3) accrecionary breccia. J. Geochem. Res. 90, 123-135. https://doi.org/10.1029/JB090iS01p00123Lancee, R.J., 2014. Characterization and reactivity of olivine and model catalysts for biomass gasification. Ph. D. thesis, Technische Universiteit Eindhoven, https://doi.org/10.6100/IR781405.

Krot, A.N., Keil, K., Scott, E.R.D., Goodrich, C.A., Weisberg, M.K., 2014. Classification of Meteorites and Their Genetic Relationships. In: Treatise on Geochemistry Second Edition Volume 1 (eds. Davis, A.M.) Elsevier Ltd. pp.1-63

Kudo, T., Kouchi, A., Arakawa, M., Nakano, H., 2002. The role of sticky interstellar organic material in the formation of asteroids. Meteorit. Planet. Sci. 37, 1975-1983. https://doi.org/10.1111/j.1945- 5100.2002.tb01178.x

Laine, M., Balan, E., Allard, T., Paineau, E., Jeunesse, P., Mostafavi, M.J.-L., Le, S. 2016. Reaction mechanisms in swelling clays under ionizing radiation: influence of the water amount and of the nature of the clay. RSC Adv. 7, 526-534. https://doi.org/10.1039/C6RA24861F

Lafay, R., Montes-Hernandez, G., Janots, E., Chiriac, R., Findling, N., Toche, F., 2012. Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions. J. Cryst. Growth 347, 62-72. https://doi.org/10.1016/j.jcrysgro.2012.02.040

Lafey, R., Montes-Hernandez, G., Janots, E., Chiriac, R., Findling, N., Toche, F., 2014. Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under highcarbonate alkalinity. Chem. Geol. 368, 63-75. https://doi.org/10.1016 j.chemgeo.2014.01.008

Lafey, R., Fernandez-Martinez, J., Montes-Hernandez, G., Auzende, A.L., Poulain, A., 2016 Dissolutionreprecipitation and self-assembly of serpentine nanoparticles preceding chrysotile formation: Insights into the structure of proto-serpentine. Am. Mineral. 101, 2666-2676. https://doi.org/10.2138/am-2016- 5772

Le Corre, L., Reddy, V., Sanchez, J. A., Dunn, T., Cloutis, E. A., Izawa, M. R. M., Mann, P., Nathues, A., 2015. Exploring exogenic sources for the olivine on Asteroid (4) Vesta. Icarus, 258, 483-499. https://doi.org/10.1016/j.icarus.2015.01.018

Le Guillou, C., Bernard, S., Brearley, A.J., Remusat, L. 2014. Evolution of organic matter in Argueil, Murchicson and Renazzo during parent body aqueous alteration: In situ investigation. Geochim. Cosmochim. Acta 131, 368-392. https://doi.org/10.1016/j.gca.2013.11.020

Liu, H., Yuan, P., Qin, Z., Liu, D., Tan, D., Zhu, J., He, H., 2013. Thermal degradation of organic matter in the interlayer clay–organic complex: a TG-FTIR study on a montmorillonite/12- aminolauric acid system. Appl. Clay Sci. 80, 398-406. https://doi.org/10.1016/j.clay.2013.07.005

Lisabeth, H., Zhu, W., Xing, T., De Andrade, V., 2017. Dissolution-assisted pattern formation during olivine carbonation. Geophys. Res. Lett. 44, 9622-9631. https://doi.org/10.1002/2017GL074393

Luce, R.W., Bartlett, R.W., Parks, G.A., 1972. Dissolution kinetics of magnesium silicates. Geochim. Cosmochim. Acta 36, 35-50. https://ui.adsabs.harvard.edu/abs/1972GeCoA..36...35L/abstract

Maina, E.W., Wanyika, H.J., Gacanja, A.N., 2015. Instrumental characterization of montmorillonite clay by FT-IR and XRD from J.K.U.A.T farm, in the republic of Kenya. Chem. Mater. Res. 7, 43- 49.

Malvoisin, B., Brunet, F., Carlut, J., Rouméjon, S., Cannat, M., 2012. Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. J. Geophys. Res. Solid Earth 117: B04102. https://doi.org/10.1029/2011JB008842

Marrocchi, Y., Bekaert, D.V., Piani, L., 2018. Origin and abundance of water in carbonaceous asteroids. Earth Planet. Sci. Lett. 482, 23-32. https://doi.org/10.1016/j.epsl.2017.10.060 Page 15/21

Mauersberger, R., Henkel, C., Jacq, T., Walmsley, C.M., 1988. Deuterated methanol in Orion. Astron. Astrophys. 194, L1-4.

McAdam, M.M., Sunshine, J.M., Howard, K.T., Alexander, C.M.O’D., McCoy, T.J., Bus, S.J., 2018. Spectral evidence for amorphous silicates in least-processed CO meteorites and their parent bodies. Icarus 306, 32-49. https://doi.org/10.1016/j.icarus.2018.01.024

Mendoza-Gómez, C.X., Greenberg, J.M., 1993. Laboratory simulation of organic grain mantles. Orig. Life Evol. Biospheres 23, 23–28. https://doi.org/10.1007/BF01581987

Mitchell, M. B. D., Jackson, D., James, P. F., 1998. Preparation and characterisation of forsterite (Mg2 SiO4) aerogels. J. Non-Cryst. Solids, 225, 125–129. https://doi.org/10.1016/S0022- 3093(98)00017-9

Michels, L., Fossum, J.O., Rozynek, Z., Hemmen, H., Rustenberg, K., Sobas, P.A., Kalantzopoulos, G.N., Knudsen, K.D., Janek, M., Plivelic, T.S., da Silva, G.J., 2015. Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations. Sci. Rep. 5, 8775. https://doi.org/10.1038/srep08775

Millar, T.J., 2003. Deuterium Fractionation in Interstellar Clouds. Space Sci. Rev. 106, 73. https://doi.org/10.1023/A:1024677318645

Moore, D.E., Rymer, M.J., 2007. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448, 795-797. https://doi.org/10.1038/nature06064

Milliken, T.H., Oblad, A.G., Mills, G.A., 1952. Use of clays as petroleum cracking catalyst. Clays and Clay Technology, Proc. of the First National Conference on Clays and Clay Technology. Dep. of National Resources, State of California Bull. 169, 314-326. https://ui.adsabs.harvard.edu/link_gateway/1952CCM.....1..314M/doi:10.1346/CCMN.1952.001 0127

Mumma, M.J., Charnley, S.B., 2011. The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys., 49, 471-524. https://doi.org/10.1146/annurev-astro081309-130811.

Nagahara, H., Ozawa, K., 2011. Phyllosilicate formation and its role on the formation of organic materials in the early solar nebula. In: Lunar and Planetary Science Conference XXXXII Abstract #2838.

Nagaoka, A., Watanabe, N., Kouchi, A., 2005. H-D substitution in interstellar solid methanol: A key route for D enrichment. Astrophys. J. 624, L29-32. https://doi.org/10.1086/430304

Nakamura, T., 2005. Post-hydration thermal metamorphism of carbonaceous chondrites. J. Miner. Petrol. Sci. 100, 260-272. https://doi.org/10.2465/jmps.100.260

Nakano, H., Kouchi, A., Arakawa, M., Kimura, Y., Kaito, C., Ohno, H., Hondoh, T., 2002. Alteration of interstellar organic materials in meteorites’ parent bodies: a novel route for diamond formation. Proc. Jpn. Acad., Ser. B 78, 277-281. https://doi.org/10.2183/pjab.78.277

Nakano, H., Kouchi, A., Tachibana, S., Tsuchiyama, A., 2003. Evaporation of interstellar organic materials in the solar nebula. Astrophys. J. 592, 1252-1262. https://doi.org/10.1086/375856

Nakano, H., Hirakawa, N., Matsubara, Y., Yamashita, S., Okuchi, T., Asahina, K., Tanaka, R., Suzuki, N., Naraoka, H., Takano, Y., Tachibana, S., Hama, T., Oba, Y., Kimura, Y., Watanabe, N., Kouchi, A., 2020. Interstellar organic matter: A hidden reservoir of water inside the snow line. Si. Rep. 10, 7755. https://doi.org/10.1038/s41598-020-64815-6

Nakato, A., Nakamura, T., Kitajima, F., Noguchi, T., 2008. Evaluation of dehydration mechanism during heating of hydrous asteroids based on mineralogical and chemical analysis of naturally and experimentally heated CM chondrites. Earth Planet. Sci. 60, 855-864. https://doi.org/10.1186/BF03352837

Naraoka, H., Shimoyama, A., Harada, K., 2000. Isotopic evidence from an Antarctic carbonaceous chondrite for two reaction pathways of extraterrestrial PAH formation. Earth Planet. Sci. Lett. 184, 1-7. https://doi.org/10.1016/S0012-821X(00)00316-2.

Naraoka, H., Yamashita, Y., Koga, T., Ishibashi, Y., Mita, H., 2015. Meteoritic organic matter synthesis inferred from aldehydes and ammonia with olivine. In: Astrobiology Science Conference 2015 Abstract #7146.

Nash, W., Smythe, D., Wood, B. J., 2016. Synthetic olivine capsules for use in experiments. Am. Mineral., 101, 2260–2263. https://doi.org/10.2138/am-2016-5549CCBY

Ni, S., Chou, L., Chang, J., 2007. Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceram. Int., 33, 83-88. https://doi.org/10.1016/j.ceramint.2005.07.021

Niida, K., 1977. Olivine Clinopyroxenite in Serpentinized Dunite - Harzburgite Masses of the Kamuikotan Zone, Hokkaido. J. Fac. Sci., Hokkaido Univ., Ser. IV, 17, 517-525.

Nuth III, J.A., Johnson, N.M., Manning, S., 2008. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae. Astrophys. J. 673, 225-228. https://doi.org/10.1086/528741

Oba, Y., Osaka, K., Chigai, T., Kouchi, A., Watanabe, N., 2016. Hydrogen–deuterium substitution in solid ethanol by surface reactions at low temperatures. Mon. Notices Royal Astron. Soc. 462, 689- 695. https://doi.org/10.1093/mnras/stw1714

Oelkers, E.H., Declercq, J., Saldi, G.D., Gislason, S.R., Schott, J., 2018. Olivine dissolution rates: A critical review. Chem. Geol. 500, 1-19. https://doi.org/10.1016/j.chemgeo.2018.10.008

Ootsubo, T., Kawakita, H., Shinnaka, Y., Watanabe, J., Honda, M., 2020. Unidentified infrared emission features in mid-infrared spectrum of comet 21P/Giacobini-Zinner. Icarus, 338, 113450. https://doi.org/10.1016/j.icarus.2019.113450.

Owen, T., Lutz, B.L., de Bergh, C., 1986. Deuterium in the outer Solar System: evidence for two distinct reservoirs. Nature 320, 244-246. https://doi.org/10.1038/320244a0

Parise, B., Castets, A., Herbst, E., Caux, E., Ceccarelli, C., Mukhopadhyay, I., Tielens, A.G.G.M., 2004. First detection of triply-deuterated methanol. Astron. Astrophys. 416, 159-163. https://doi.org/10.1051/0004- 6361:20034490

Pearson, V.K., Sephton, M., Kearsley, A.T., Bland, P.A., Franchi, I.A., Gilmour, I., 2002. Clay mineralorganic matter relationships in the early solar system. Meteorit. Planet. Sci. 37, 1829-1833. https://doi.org/10.1111/j.1945-5100.2002.tb01166.x

Pearson, V.K., Kearsley, A.T., Sephton, M.A., Gilmour, I.G., 2007. The labelling of meteoritic organic material using osmium tetroxidevapour impregnation. Planet. Space Sci. 55, 1310-1318. https://doi.org/10.1016/j.pss.2007.04.005

Piani, L., Robert, F., Remusat, L., 2015. Micron-scale D/H heterogeneity in chondrite matrices: A signature of the pristine solar system water? Earth Planet. Sci. Lett. 415, 154-164. https://doi.org/10.1016/j.epsl.2015.01.039

Plümper, O., Royne, A., Magraso, A., Jamtveit, B., 2012. The interface-scale mechanism of reactioninduced fracturing during serpentinization. Geol. 40, 1103-1106. https://doi.org/10.1130/G33390.1

Postizil, C., Montgomery, W., Sephton, M.A., 2017. Effects of pressure on model compounds of meteorite organic matter. ACS Earth Space Chem. 1, 475-482. https://doi.org/10.1021/acsearthspacechem.7b00053

Putnis, A., 2002. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral. Mag. 66, 689-708. https://doi.org/10.1180/0026461026650056

Quirico, E., Raynal, P.I., Bourot-Denise, M., 2003. Metamorphic grade of organic matter in six unequilibrated ordinary chondrites. Meteorit. Planet. Sci. 38, 795-811. https://doi.org/10.1111/j.1945-5100.2003.tb00043.x

Quirico, E, Montagnac, G., Rouzaud, J.-N., Bonal, L., Bourot-Denise, M., Duber, S., Reynard, B., 2009. Precursor and metamorphic condition effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals. Earth Planet. Sci. Lett. 287, 185-193. https://doi.org/10.1016/j.epsl.2009.07.041

Quirico, E., Bonal, L., Beck, P., Alexander, C.M.O’D., Yabuta, H., Nakamura, T., Nakato, A., Fladndinet, L., Montagnac, G., Schmitt-Kopplin, P., Herd, C.D.K., 2018. Prevalence and nature of heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter. Geochim. Cosmochim. Acta 241, 17-37. https://doi.org/10.1016/j.gca.2018.08.029

Remsat, L., Piani, L., Bernard, S., 2016. Thermal recalcitrance of the organic D-rich component of ordinary chondrites. Earth Planet. Sci. Lett. 435, 36-44. https://doi.org/10.1016/j.epsl.2015.12.009

Rotelli, L., Trigo-Rodríguez, J.M., Moyano-Cambero, C.E., Carota, E., Botta, L., Di Mauro, E., Saladino, R., 2016. The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci. Rep. 6: 38888. https://doi.org/10.1038/srep38888

Rubin, A.E., 2004. Postshock annealing and postannealing shock in equilibrated ordinary chondrites: Implications for the thermal and shock histories of chondritic asteroids. Geochim. Cosmochim. Acta 68, 673-689. https://doi.org/10.1016/S0016-7037(03)00452-6

Rubin, A.E., Trigo-Rodríguez, J.M., Huber, H., Wasson, J.T., 2007. Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Chosmochim. Acta 71, 2361-2382. https://doi.org/10.1016/j.gca.2007.02.008

Sandford, S.A., Aléon, J., Alexander, C.M.O’D., Araki, T., Bajt, S., Baratta, G.A., Borg, J., Bradley, J.P., Brownlee, D.E., Brucato, J.R., Burchell, M.J., Busemann, H., Butterworth, A., Clemett, S. J., Cody, G., Colangeli, L., Cooper, G., D’Hendecourt, L. Djouadi, Z., Dworkin, J. P., Ferrini, G., Fleckenstein, H., Flynn, G.J., Franchi, I.A., Fries, M., Gilles, M.K., Glavin, D.P., Gounelle, M., Grossemy, F., Jacobsen, C., Keller, L.P., Kilcoyne, A.L.D., Leitner, J., Matrajt, G., Meibom, A., Mennella, V., Mostefaoui, S., Nittler, L.R., Palumbo, M.E., Papanastassiou, D.A., Robert, F., Rotundi, A., Snead, C.J., Spencer, M.K., Stadermann, F.J., Steele, A., Stephan, T., Tsou, P., Tyliszczak, T., Westphal, A.J., Wirick, S., Wopenka, B., Yabuta, H., Zare, R.N., Zolensky, M.E., 2006. Organics captured from comet 81P/Wild 2 by the stardust spacecraft. Science, 314, 1720- 1724. DOI: 10.1126/science.1135841.

Sanna, A., Andrésen, J.M., 2012. Bio-oil deoxygenation by catalytic pyrolysis: novel catalysts for the conversion of biomass into densified and deoxygenated bio-oil. ChemSusChem 1-26.

Sayah, A., Habelhames, F., Bahloul, A., Nessark, B., Bonnassieux, Y., Tendelier, D., Joua, M.E., 2018. Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties. J. Electroanal. Chem., 818, 26–34. https://doi.org/10.1016/j.jelechem.2018.04.016

Sekine, Y., Shibuya, T., Postberg, F., Hsu, H., Suzuki, K., Masaki, Y., Kuwatani, T., Mori, M., Hong, P. K., Yoshizaki, M., Tachibana, S., Sirono, S., 2015. High-Temperature Water–Rock Interactions and Hydrothermal Environments in the Chondrite-like Core of Enceladus. Nat. Commun., 6:8604. https://doi.org/10.1038/ncomms9604

Shankland, R.V., 1954. Industrial catalytic cracking. In: Frankenburg, W.G., Rideal, E.K., Komarewsky, V.I. (eds.), Advances in Catalysis and related subjects. Academic Press, New York, pp. 271-434. https://doi.org/10.1016/S0360-0564(08)60393-4

Socrates, G., 2001. Infrared and Raman characteristic group frequencies, third ed. John Wiley & Sons, Chichester. https://doi.org/10.1002/cssc.201200245

Takatori, K., Tomeoka, K., Tsukimura, K., Takeda, H., 1993. Hydrothermal Alteration Experiments of Olivine with Varying Fe Contents: an Attempt to Simulate Aqueous Alteration of the Carbonaceous Chondrites. In: Lunar and Planetary Science Conference XXIV Abstract #1389.

Taquet, V., Ceccarelli, C., Kahane, C., 2012. Formaldehyde and methanol deuteration in protostars: fossils from a past fast high-density Pre-collapse phase. Astrophys. J. Lett. 748, L3. https://doi.org/10.1088/2041- 8205/748/1/L3

Tao, Y., Dreger, Z.A., Gupta, Y.M., 2014. High pressure effects on benzoic acid dimers: vibrational spectroscopy. Vib. Spectrosc. 73, 138-143. https://doi.org/10.1016/j.vibspec.2014.06.002

Tian, M., Liu, B.S., Hammonds, M., Wang, N., Sarre, P.J., Cheung, A.S.-C., 2012. Formation of polycyclic aromatic hydrocarbons from acetylene over nanosized olivine-type silicates. Phys. Chem. Chem. Phys. 14, 6603-6610. https://doi.org/10.1039/C2CP23309F

Tomeoka, K., Mcsween Jr, H. Y., Buseck, P. R., 1989. Mineralogical Alteration of CM Carbonaceous Chondrites: A Review. Proc. NIPR Symp. Antarct. Meteorites, 2, 221-234.

Tomeoka, K., Tanimura, I., 2000. Phyllosilicate-rich chondrule rims in the Vigarano CV3 chondrite: Evidence for parent-body processes. Geochim. Cosmochim. Acta 64, 1971-1988. https://doi.org/10.1016/S0016-7037(00)00332-X

Trejda, M., Nurwita, A., Kryszac, D., 2019. Synthesis of solid acid catalysis for esterification with the assistance of elevated pressure. Microporous Mesoporous Mater. 278, 115-120. https://doi.org/10.1016/j.micromeso.2018.11.009

Trigo-Rodríguez, J.M., Rimola, A., Tanbakouei, S., Soto, V.C., Lee, M., 2019. Accretion of Water in Carbonaceous Chondrites: Current Evidence and Implications for the Delivery of Water to Early Earth. Space Sci. Rev. 215, 18. https://doi.org/10.1007/s11214-019-0583-0

Trigo-Rodríguez, J.M., Rubin, A.E., Wasson, J.T., 2006. Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites. Geochim. Cosmochim. Acta 70, 1271-1290. https://doi.org/10.1016/j.gca.2005.11.009

Tsubokawa, Y., Ishikawa, Y., 2017. Sintering polycrystalline olivine and polycrystalline clinopyroxene containing trace amount of graphite from natural crystals. Earth Planets Space, 69: 128. https://doi.org/10.1186/s40623-017-0717-0

Ueki, K., Inui, M., Matsunaga, K., Okamoto, N., Oshio, K., 2020. Oxidation during Magma Mixing Recorded by Symplectites at Kusatsu–Shirane Volcano, Central Japan. Earth Planets Space, 72:68. https://doi.org/10.1186/s40623-020-01192-4

Ulrich, M., Muñoz, M., Guillot, S., Cathelineau, M., Picard, C., Quesnel, B., Boulvais, P., Couteau, C., 2014. Dissolution-precipitation processes governing the carbonation and silicication of the serpentinite sole of the New Caledonia ophiolite. Contrib. to Mineral. Petrol. 167, 952. https://dx.doi.org/10.1007/s00410-013- 0952-8

Vacher, L. G., Truche, L., Faure, F., Tissandier, L., Mosser-Ruck, R., Marrocchi, Y., 2019. Deciphering the Conditions of Tochilinite and Cronstedtite Formation in CM chondrites from Low Temperature Hydrothermal Experiments. Meteorit. Planet. Sci. 54, 1-20. https://doi.org/10.1111/maps.13317

Varma, R.S., 2002. Clay and clay-supported reagents in organic synthesis. Tetrahedron 58, 1235-1255.

Velvel, M.A., 2009. Dissolution of olivine during natural weathering. Geochim. Cosmochim. Acta 73, 6098- 6113. https://doi.org/10.1016/j.gca.2009.07.024

Vinogradoff, V., Le Guillou, C., Bernard, S., Viennet, J.C., Jaber, M., Remusat, L., 2020. Influence of phyllosilicates on the hydrothermal alteration of organic matter in asteroids: Experimental perspectives. Geochim. Cosmochim. Acta 269, 150-166. https://doi.org/10.1016/j.gca.2019.10.029

Vinogradoff, V., Remusat, L., McLain, H.L., Aponte, J.C., Bernard, S., Danger, G., Dworkin, J.P., Elsila, J.E., Jaber, M., 2020. Impact of phyllosilicates on amino acid formation under asteroidal conditions. ACS Earth Space Chem. 4, 1398-1407. https://doi.org/10.1021/acsearthspacechem.0c00137

Walsh, C., Millar, T.J., Nomura, H., Herbst, E., Weaver, S.W., Aikawa, Y., Laas, J.C., Vasyunin, A.I., 2014. Complex organic molecules in protoplanetary disks. Astron. Astrophys. 563, A33. https://doi.org/10.1051/0004- 6361/201322446

Walsh, C., Loomis, R.A., Öberg, K.I., Kama, M., van ’t Hoff, M.L.R., Millar, T.J., Aikawa, Y., Herbst, E., Weaver, S.L.W., Nomura, H. 2016. First detection of gas-phase methanol in a protoplanetary disk. Astrophys. J. Lett. 823, L10. https://doi.org/10.3847/2041-8205/823/1/L10

Wang, W. B., Shi, Z. M., Wang, X. G., Wang, Z. X., Cao, Z., Fan, W., 2017. The synthesis and properties of high-quality forsterite ceramics using desert drift sands to replace traditional raw materials. J. Ceram. Soc. Japan, 125, 88-94. https://doi.org/10.2109/jcersj2.16268

Watanabe, N., Kouchi, A., 2008. Ice surface reactions: A key to chemical evolution in space. Prog. Surf. Sci. 83, 439-489. https://doi.org/10.1016/j.progsurf.2008.10.001

Wegner, W.W., Ernst, W.G., 1983. Experimentally determined hydration and dehydration reaction rates in the system MgO-SiO2-H2O. Am. J. Sci. 283-A, 151-180.

Wheeler, E. P., 1965. Fayalitic Olivine in Northern Newfoundland-Labrador. Can. Mineral., 8, 339–346.

Yabuta, H., Williams, L.B., Cody, G.D., Alexander, C.M.O'D., Pizzarello, S., 2007. The insoluble carbonaceous material of CM chondrites: A possible source of discrete organic compounds under hydrothermal conditions. Meteorit. Planet. Sci. 42, 37-48. https://doi.org/10.1111/j.1945- 5100.2007.tb00216.x

Yada, K., Iishi, K., 1974. Serpentine minerals hydrothermally synthesized and their microstructures. J. Cryst. Growth 24/25, 627-630. https://doi.org/10.1016/0022-0248(74)90393-5

Yada, K., Iishi, K., 1977. Growth and microstructure of synthetic chrysotile. Am. Mineral. 62, 958-965.

Yamashita, Y., Naraoka, H., 2014. Two homologous series of alkylpyridines in the Murchison meteorite. Geochem. J. 48, 519-525. https://doi.org/10.2343/geochemj.2.0340Vinogradoff, V., Le Guillou, C., Bernard, S., Vinnet, J.C., Jaber, M., Remusat, L., 2020. Influence of phyllosilicates on the hydrothermal alteration of organic matter in asteroids: experimental perspectives. Geochim. Cosmochim. Acta 269, 150-166. https://doi.org/10.1016/j.gca.2019.10.029

Yesiltas, M., Peale, R.E., Unger, M., Sedlmair, J., Hirschmugl, C.J., 2015. Organic and inorganic correlations for Northwest Africa 852 by synchrotron-based Fourier transform infrared microspectroscopy. Meteorit. Planet. Sci. 50, 1684-1696. https://doi.org/10.1111/maps.12498

Yesiltas, M., Kebukawa, Y., 2016. Associations of organic matter with minerals in Tagish Lake meteorite via highspatial resolution synchrotron-based FTIR microspectroscopy. Meteorit. Plaet. Sci. 51, 584-595. https://doi.org/10.1111/maps.12609

Yoder Jr., H. S., Sahama, T. G., 1957. Olivine X-ray Determinative Curve. Am. Mineral. 42, 475-491.

Yokoyama, K., Tiba, T., Chihara, K., 1992. Picrite sill in the Sado Island, Japan. Bull. Natn. Sci. Mus., Tokyo, Ser. C, 18, 1-11.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る