リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Noble gas studies in meteorites: Constraints on the origin of trapped noble gases in primitive CR chondrites and past solar wind fluxes on solar-gas-rich meteorite parent bodies」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Noble gas studies in meteorites: Constraints on the origin of trapped noble gases in primitive CR chondrites and past solar wind fluxes on solar-gas-rich meteorite parent bodies

Obase Tomoya 東北大学

2020.03.25

概要

Noble gases are very rare in meteorites because they are the most volatile elements, they behave as the most incompatible elements, and they hardly take part in any chemical interactions. Because of the scarcity in meteorites, noble gases have been used as one of the most sensitive tracers in cosmochemistry. In general, noble gases in meteorites occur as a mixture of discrete “components”, where a component is defined by having a certain isotopic and elemental composition. Primordial noble gas components that had been originally trapped in meteoritic materials serve as tracers for the accreted materials and the post accretionary processes in the parent body. Solar wind noble gases that had been implanted onto the surface materials of the parent bodies serve as a tracer for the solar activity. In this study, I determined the inventories of primordial noble gas components in primitive CR chondrites and experimentally examined their resistance to aqueous alteration in chapter 2. In chapter 3, I estimated solar wind fluxes in the past that are recorded in solar-gas-rich meteorites using a newly developed estimation model.

In chapter 2, concentrations and isotopic ratios of all the noble gases (He, Ne, Ar, Kr, and Xe) in the primitive Renazzo-type (CR) chondrites Elephant Moraine (EET) 92048, Miller Range (MIL) 090657, Northwest Africa (NWA) 801, and hydrothermally treated MIL 090657 were measured by stepwise heating methods and total melting methods. On the basis of a petrographic classification scheme, the CR chondrites are classified as petrological type-2.7 for EET 92048, type-2.8 for MIL 090657, and type-2.8 for NWA 801, indicating minimal aqueous alteration. NWA 801 contains abundant solar noble gases while EET 92048 and MIL 090657 are solar-gas-free. Major primordial noble gas components in the solar-gas-free EET 92048 and MIL 090657 are Q, HL, Ar-rich, and the water-susceptive He and Ne component. The last one was lost during an aqueous alteration experiment. In terms of the Q-like isotopic compositions and low release temperatures (400ºC – 600ºC), the water-susceptive He and Ne component is similar to that observed in a refractory amorphous interplanetary dust particle (IDP) that may be of cometary origin. I argue that similar materials that host Q-like gases accreted on both the CR chondrite parent body and comets, and CR chondrites may have formed at a greater heliocentric distance. Cosmic-ray exposure ages for the solar-gas-free EET 92048 and MIL 090657 are estimated to be 6.5 ± 0.4 Ma and 6.8 ± 0.4 Ma, respectively, consistent with most CR chondrites that cluster around ~5 - 7 Ma.

The theoretical solar wind evolution models and the observations of young stars resembling our Sun suggest much larger solar wind flux in the past, while the abundance of implanted solar wind noble gases in lunar regolith implies that the mean average solar wind flux in the past up to ~4 Ga has been similar to the present-day flux. In chapter 3, solar wind fluxes in the past are estimated using solar and cosmogenic noble gas compositions in seven solar-gas-rich meteorites based on a newly developed estimation model. Any hint for the higher solar wind flux in the past is not found. I argue that the theoretical models overestimate the past solar wind flux in our solar system. Assuming present-day solar wind flux at the time of solar wind irradiation for the solar-gas-rich meteorites, the past heliocentric distances of the meteorite parent bodies were estimated. Except for the Rumuruti chondrite Mount Prestrud (PRE) 95410, the distances are almost consistent with the present-day distributions for the analogous asteroids and the predicted formation locations, suggesting that the heliocentric distances of the parent bodies of the most solar-gas-rich meteorites have never changed largely after their formation. The estimated short heliocentric distance for PRE 95410 is consistent with the previous study, suggesting inward migration from the asteroid belt regions where the parent body formed. Alternatively, the solar wind flux at the time of solar wind irradiation for PRE 95410 was a few to several times higher than the present-day flux.

この論文で使われている画像

関連論文

参考文献

Airapetian V. S., and Usmanov A. V. 2016. Reconstructing the solar wind from its early history to current epoch. The Astrophysical Journal 817:L24.

Anders E. 1975. Do stony meteorites come from comets? Icarus 24:363–371.

Bischoff A., Scott E. R. D., Metzler K., and Goodrich C. A. 2006. Nature and Origins of Meteoritic Breccias. Meteorites and the Early Solar System II.

Bischoff A., Vogel N., and Roszjar J. 2011. The Rumuruti chondrite group. Geochemistry 71:101–133.

Bottke W. F., Vokrouhlický D., Minton D., Nesvorný D., Morbidelli A., Brasser R., Simonson B., and Levison H. F. 2012. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485:78–81.

Caffee M. W., Goswami J. N., Hohenberg C. M., Marti K., and Reedy R. C. 1988. Irradiation records in meteorites. Meteorites and the Early Solar System.

DeMeo F. E., and Carry B. 2014. Solar System evolution from compositional mapping of the asteroid belt. Nature 505:629–634.

DeMeo F. E., Alexander C. M. O., Walsh K. J., Chapman C. R., and Binzel R. P. 2015. The Compositional Structure of the Asteroid Belt. Asteroids IV.

Desch S. J., Kalyaan A., and Alexander C. M. O. 2018. The Effect of Jupiter’s Formation on the Distribution of Refractory Elements and Inclusions in Meteorites. The Astrophysical Journal Supplement Series 238:11.

Eugster O. 1988. Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr-Kr exposure ages. Geochimica et Cosmochimica Acta 52:1649–1662.

Grimberg A., Baur H., Bühler F., Bochsler P., and Wieler R. 2008. Solar wind helium, neon, and argon isotopic and elemental composition: Data from the metallic glass flown on NASA’s Genesis mission. Geochimica et Cosmochimica Acta 72:626– 645.

Heber V. S., Wieler R., Baur H., Olinger C., Friedmann T. A., and Burnett D. S. 2009. Noble gas composition of the solar wind as collected by the Genesis mission. Geochimica et Cosmochimica Acta 73:7414–7432.

Jarosewich E. 2006. Chemical analyses of meteorites at the Smithsonian Institution: An update. Meteoritics & Planetary Science 41:1381–1382.

Kruijer T. S., Burkhardt C., Budde G., and Kleine T. 2017. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences of the United States of America 114:6712–6716.

Leya I., Neumann S., Wieler R., and Michel R. 2001. The production of cosmogenic nuclides by galactic cosmic-ray particles for 2π exposure geometries. Meteoritics & Planetary Science 36:1547–1561.

Lindsay F. N., Delaney J. S., Herzog G. F., Turrin B. D., Park J., and Swisher C. C. 2015. Rheasilvia provenance of the Kapoeta howardite inferred from ~1 Ga 40Ar/39Ar feldspar ages. Earth and Planetary Science Letters 413:208–213.

Macdougall J. D., and Kothari B. K. 1976. Formation chronology for C2 meteorites. Earth and Planetary Science Letters 33:36–44.

McKay D. S., Swindle T. D., and Greenberg R. 1989. Asteroidal regoliths: what we do not know. Asteroids II.

Mittlefehldt D. W., McCoy T. J., Goodrich C. A. and Kracher A. 1998. Non-chondritic meteorites from asteroids. In Planetary Materials, Reviews in Mineralogy 36.

Mittlefehldt D. W. 2015. Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Geochemistry 75:155–183.

Nakamura T. et al. 2011. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333:1113–6.

Nakashima D., Nakamura T., Sekiya M., and Takaoka N. 2002. Cosmic-ray exposure age and heliocentric distance of the parent body of H chondrites Yamato-75029 and Tsukuba. Antarctic Meteorite Research 15:97.

Nakashima D., Nakamura T., and Okazaki R. 2006. Cosmic-ray exposure age and heliocentric distance of the parent bodies of enstatite chondrites ALH 85119 and MAC 88136. Meteoritics & Planetary Science 41:851–862.

Nakashima D., Nagao K., and Irving A. J. 2018. Noble gases in angrites Northwest Africa 1296, 2999/4931, 4590, and 4801: Evolution history inferred from noble gas signatures. Meteoritics & Planetary Science 53:952–972.

Obase T., Nakashima D., Nakamura T., and Nagao K. Cosmic-ray exposure age and heliocentric distance of the parent body of the Rumuruti chondrite PRE 95410. Meteoritics & Planetary Science (submitted for publication).

Okazaki R., Takaoka N., Nakamura T., and Nagao K. 2000. Cosmic-ray exposure ages of enstatite chondrites. Antarctic Meteorite Research 13:153.

Ott U. 2014. Planetary and pre-solar noble gases in meteorites. Chem. Erde 74:519–544.

Patzer A., and Schultz L. 2001. Noble gases in enstatite chondrites I: Exposure ages, pairing, and weathering effects. Meteoritics & Planetary Science 36:947–961.

Pedroni A. 1989 Die korpuskulare Bestrahlung der Oberflächen von Asteroideneine Studie der Edelgase in den Meteoriten Kapoeta und Fayetteville. Ph.D. dissertation, ETH Zurich.

Pedroni, A., and Begemann, F. 1992. Solar Noble Gases from ACFER 111 Metal Etched in Vacuo. Meteoritics 27:273.

Pognan Q., Garraffo C., Cohen O., and Drake J. J. 2018. The Solar Wind Environment in Time. The Astrophysical Journal 856:53.

Rivkin A. S., Trilling D. E., Thomas C. A., DeMeo F., Spahr T. B., and Binzel R. P. 2007. Composition of the L5 Mars Trojans: Neighbors, not siblings. Icarus 192:434–441.

Schultz L., and Franke L. 2004. Helium, neon, and argon in meteorites: A data collection. Meteoritics & Planetary Science 39:1889–1890.

Schultz L., Weber H. W., and Franke L. 2005. Rumuruti chondrites: Noble gases, exposure ages, pairing, and parent body history. Meteoritics & Planetary Science 40:557–571.

Smith T., Cook D. L., Merchel S., Pavetich S., Rugel G., Scharf A., and Leya I. 2019. The constancy of galactic cosmic rays as recorded by cosmogenic nuclides in iron meteorites. Meteoritics & Planetary Science 54:2951–2976.

Swindle T. D., Garrison D. H., Goswami J. N., Hohenberg C. M., Nichols R. H., and Olinger C. T. 1990. Noble gases in the howardites Bholghati and Kapoeta. Geochimica et Cosmochimica Acta 54:2183–2194.

Trinquier A., Elliott T., Ulfbeck D., Coath C., Krot A. N., and Bizzarro M. 2009. Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk. Science 324:374–376.

Warren P. H. 2011. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters 311:93–100.

Wasson J. T., and Kallemeyn G. W. 1988. Compositions of Chondrites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 325:535–544.

Wieler R., Baur H., Pedroni A., Signer P., and Pellas P. 1989. Exposure history of the regolithic chondrite Fayetteville: I. Solar-gas-rich matrix. Geochimica et Cosmochimica Acta 53:1441–1448.

Wieler R. 2002a. Cosmic-Ray-Produced Noble Gases in Meteorites. Reviews in Mineralogy and Geochemistry 47.

Wieler R. 2002b. Noble gases in the solar system. Reviews in Mineralogy and Geochemistry 47.

Wieler R. 2016. Do lunar and meteoritic archives record temporal variations in the composition of solar wind noble gases and nitrogen? A reassessment in the light of Genesis data. Geochemistry 76:463–480.

Wood B. E., Müller H. R., Zank G. P., Izmodenov V. V., and Linsky J. L. 2004. The heliospheric hydrogen wall and astrospheres. Advances in Space Research 34:66– 73.

Wood, B.E., Linsky, J.L., Gudel, M., 2015. Stellar winds in time. Characterizing Stellar and Exoplanetary Environments. In: Astrophysics and Space Science Library 41.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る