リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma under hypoxia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma under hypoxia

Li, Zan 李, 赞 名古屋大学

2020.04.02

概要

【Introduction】
Hypoxia and acidity provide microenvironment for selection under evolutionary pressure and proliferation in cancer cells. Carbonic anhydrases (CAs) are a superfamily of metalloenzymes present in all life kingdoms, equilibrating the reactions among CO2, bicarbonate and H+. CA9, a membrane-associated α-CA, has been a drug target for various cancers. Whereas iron is essential not only for cancer cells but also for all the lives on earth, little is known on the association among hypoxia, iron metabolism, extracellular acidity and redox regulation. Malignant mesothelioma (MM), an aggressive tumor with poor prognosis, is an intriguing model in that asbestos-associated pathogenesis includes excess iron environment during carcinogenesis. Re-analysis of rat asbestos-induced MM model revealed an inverse association between high CA9 expression and survival. Here we used human MMs to identify the molecular events surrounding CA9 from the viewpoint of iron metabolism.

【Materials and Methods】
Human mesothelioma cell lines, ACC-Meso-1, NCI-H2373, NCI-H2052 and immortalized human mesothelial cell line, MeT-5A were used. Cells were cultured in both of normoxic and hypoxic conditions containing 10% fetal bovine serum under 5% CO2 atmosphere. To evaluate the role of CA9 in mesothelioma cells, CA9 inhibitors, S4 and U104 were dissolved in dimethyl sulfoxide (DMSO) and treated with ACC-Meso-1 cells under hypoxia. Cell viability was accessed either with MTT or WST-1 assay. Iron-metabolism was analyzed by western blotting analyses. Catalytic Fe(II) was detected with a fluorescent turn-on probe, SiRhoNox-1. Cellular ROS levels were evaluated by staining with CM- H2DCFDA and MitoSOX; lipid peroxidation was quantified by incubating with BODIPY C11. Mitochondrial morphology was analyzed by confocal or transmission electron microscopy. To examine the consequence of CA9 inhibition in MM cells, Annexin V- FITC/PI staining and TUNEL assay were performed to evaluate apoptosis; a ferroptosis inhibitor (Fer-1) and an iron chelator, deferoxamine mesylate (DFO) were used to access ferroptosis.

【Results】
1. Hypoxia promotes CA9 overexpression in MM cells with increased intracellular catalytic Fe(II)
CA9 protein levels were significantly (P < 0.05 or P < 0.01) increased in all the three MM cell lines in response to hypoxia and all MM cell lines exhibited higher CA9 protein levels compared with MeT-5A (Fig. 1A). Iron-metabolism was also changed which exhibited decreased protein levels of iron transporters, TFRC and FPN-1(SLC40A1) with increased iron storage proteins, FTL and FTH. Additionally, IRP1/2 proteins were increased in response to hypoxia (Fig. 1B). A significantly (P < 0.001) elevated catalytic Fe(II) signals were detected in lysosomes (P < 0.01) and mitochondria (P < 0.001) in ACC- Meso-1 cells in response to hypoxia (Fig. 1C).

2. CA9-specific inhibitors delay proliferation and block migration of MM cells under hypoxia
CA9-specific inhibitors, S4 or U104 treatment significantly (P < 0.001; both S4 and U104) decreased cell viability of ACC-Meso-1 cells at 48 and 72 h post treatment whereas vehicle treatment (DMSO) showed no effect on proliferation (Fig. 2A). Both S4 and U104 revealed anti-proliferative effects (P < 0.001 and P < 0.01, respectively) on non- carcinomatous mesothelial cells (MeT-5A) though the effects were milder than in ACC- Meso-1 cells (Fig. 2B).

3. CA9 inhibition under hypoxia results in iron overload in lysosomes and mitochondria, inducing oxidative stress and triggering lipid peroxidation in MM cells
CA9 inhibition in ACC-Meso-1 cells showed a dose-dependent decrease in CA9 expression under hypoxia. The protein levels of TFRC and FPN-1 were increased whereas those of FTL and FTH were decreased, consistent with up-regulation of iron-regulatory proteins, IRP1 and IRP2 (Fig. 3A). Furthermore, the level of catalytic Fe(II) (P < 0.01 and P < 0.05, S4 and U104, respectively)(Fig. 3B) was increased in response to CA9 inhibition which was accompanied by oxidative stress and increased lipid peroxidation (Fig. 3C, 3D, 3E), a surrogate markers for ferroptosis. The increased Fe(II) was found in both of lysosomes and mitochondria (P < 0.001) in response to CA9 inhibition in ACC-Meso-1 cells under hypoxia (Fig. 3F).

4. CA9 inhibition under hypoxia leads to mitochondrial fission contributing to autophagy in MM cells
S4-treated ACC-Meso-1 cells under hypoxia exhibited shortened (P < 0.001) mitochondrial length compared with the control group (Fig. 4A). S4-treated ACC-Meso-1 cells also presented diverse abnormities in mitochondria and mitophagy was detected (Fig. 4B). A significant (P < 0.001) increase in merged staining area of Mito and LysoTracker was found in S4-treated ACC-Meso-1 cells (Fig. 4C). Further confirmation of mitophagy was achieved by immunofluorescence staining of LC3B and MitoTracker which displayed a significantly (P < 0.001) increased LC3B and MitoTracker merge staining (Fig. 4D). LAMP-1, another marker for autophagosome and lysosome, was also augmented in response to S4 or U104 treatment accompanied by increased LC3B-II (lipidated form) in ACC-Meso-1 cells under hypoxia for 48 h (Fig. 4E).

5. CA9 inhibition induces both apoptosis and ferroptosis
CA9 inhibition caused significant cell death detected by SYTOX Green at 48 h in ACC- Meso-1 cells under hypoxia (Fig. 5A). Both S4 and U104 induced apoptosis detected by analyses of Annexin V-FITC, TUNEL assay (Fig. 5B, 5C). To elucidate the involvement of ferroptosis, a ferroptotic (Fer-1) inhibitor and an iron chelator (DFO) were co-treated with S4 or U104 in ACC-Meso-1 cells under hypoxia. Fer-1 (3 μM) was significantly effective against S4 and U104 treatment (P < 0.05 and P < 0.01, respectively). DFO at a low concentration (0.5 μM) significantly (P < 0.01) attenuated S4-induced cytotoxic effect (Fig. 5D).

【Conclusion】
CA9 plays a pivotal role in the metabolism of MM cells under hypoxia, providing numerous merits, such as proliferation and migration, where iron homeostasis is maintained for their optimal growth with minimal oxidative cytotoxicity to avoid ferroptosis and apoptosis. Therefore, CA9 is an attractive molecular target for chemotherapy of MM, considering the present dismal therapeutic status. Because CAs have been a drug target for various pathologies, including cancers, glaucoma, obesity and Alzheimer's disease, re-exploration of other pathologies from the viewpoint of catalytic Fe(II) might be fruitful.

この論文で使われている画像

参考文献

[1] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA A Cancer J. Clin. 68 (6) (2018) 394–424.

[2] M. Logozzi, C. Capasso, R. Di Raimo, S. Del Prete, D. Mizzoni, M. Falchi, C.T. Supuran, S. Fais, Prostate cancer cells and exosomes in acidic condition show increased carbonic anhydrase IX expression and activity, J. Enzym. Inhib. Med. Chem. 34 (1) (2019) 272–278.

[3] B. Robinson, R. Lake, Advances in malignant mesothelioma, N. Engl. J. Med. 353 (15) (2005) 1591–1603.

[4] S.H. Chew, S. Toyokuni, Malignant mesothelioma as an oxidative stress-induced cancer: an update, Free Radic. Biol. Med. 86 (2015) 166–178.

[5] A.F. Gualtieri, G.B. Andreozzi, M. Tomatis, F. Turci, Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing mi- nerals with a special attention to mineral fibers, Free Radic. Biol. Med. 133 (2019) 21–37.

[6] L. Jiang, S. Akatsuka, H. Nagai, S.H. Chew, H. Ohara, Y. Okazaki, Y. Yamashita, Y. Yoshikawa, H. Yasui, K. Ikuta, K. Sasaki, Y. Kohgo, S. Hirano, Y. Shinohara, N. Kohyama, T. Takahashi, S. Toyokuni, Iron overload signature in chrysotile-in- duced malignant mesothelioma, J. Pathol. 228 (2012) 366–377.

[7] S. Toyokuni, Iron addiction with ferroptosis-resistance in asbestos-induced me- sothelial carcinogenesis: toward the era of mesothelioma prevention, Free Radic. Biol. Med. 133 (2019) 206–215.

[8] S. Toyokuni, Role of iron in carcinogenesis: cancer as a ferrotoxic disease, Cancer Sci. 100 (1) (2009) 9–16.

[9] H. Nagai, T. Ishihara, W.H. Lee, H. Ohara, Y. Okazaki, K. Okawa, S. Toyokuni, Asbestos surface provides a niche for oxidative modification, Cancer Sci. 102 (2011) 2118–2125.

[10] S. Toyokuni, F. Ito, K. Yamashita, Y. Okazaki, S. Akatsuka, Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis, Free Radic. Biol. Med. 108 (2017) 610–626.

[11] S. Toyokuni, Mechanisms of asbestos-induced carcinogenesis, Nagoya J. Med. Sci. 71 (1–2) (2009) 1–10.

[12] Y. Ohara, S.H. Chew, T. Shibata, Y. Okazaki, K. Yamashita, S. Toyokuni, Phlebotomy as a preventive measure for crocidolite-induced mesothelioma in male rats, Cancer Sci. 109 (2) (2018) 330–339.

[13] H. Nagai, Y. Okazaki, S.H. Chew, N. Misawa, H. Yasui, S. Toyokuni, Deferasirox induces mesenchymal-epithelial transition in crocidolite-induced mesothelial car- cinogenesis in rats, Cancer Prev. Res. 6 (2013) 1222–1230.

[14] L. Jiang, S.H. Chew, K. Nakamura, Y. Ohara, S. Akatsuka, S. Toyokuni, Dual pre- ventive benefits of iron elimination by desferal in asbestos-induced mesothelial carcinogenesis, Cancer Sci. 107 (7) (2016) 908–915.

[15] A. Scherpereel, F. Wallyn, S.M. Albelda, C. Munck, Novel therapies for malignant pleural mesothelioma, Lancet Oncol. 19 (3) (2018) e161–e172.

[16] S. Renvall, J. Niinikoski, Kinetics of oxygen in peritoneal cavity. Effects of chemical peritonitis and intraperitoneally administered colloids in rats, J. Surg. Res. 28 (2) (1980) 132–139.

[17] R.J. Francis, T. Segard, L. Morandeau, Y.C. Lee, M.J. Millward, A. Segal, A.K. Nowak, Characterization of hypoxia in malignant pleural mesothelioma with FMISO PET-CT, Lung Cancer 90 (1) (2015) 55–60.

[18] N. Nabavi, K.L. Bennewith, A. Churg, Y. Wang, C.C. Collins, L. Mutti, Switching off malignant mesothelioma: exploiting the hypoxic microenvironment, Genes Cancer 7 (11–12) (2016) 340–354.

[19] M.C. Kim, S.H. Hwang, N.Y. Kim, H.S. Lee, S. Ji, Y. Yang, Y. Kim, Hypoxia promotes acquisition of aggressive phenotypes in human malignant mesothelioma, BMC Canc. 18 (1) (2018) 819.

[20] A.A. Mujoomdar, T.R. Tilleman, W.G. Richards, R. Bueno, D.J. Sugarbaker, Prevalence of in vitro chemotherapeutic drug resistance in primary malignant pleural mesothelioma: result in a cohort of 203 resection specimens, J. Thorac. Cardiovasc. Surg. 140 (2) (2010) 352–355.

[21] M. Kilic, H. Kasperczyk, S. Fulda, K.M. Debatin, Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance, Oncogene 26 (14) (2007) 2027–2038.

[22] S. Fulda, K.M. Debatin, HIF-1-regulated glucose metabolism: a key to apoptosis resistance? Cell Cycle 6 (7) (2007) 790–792.

[23] L. Schito, G.L. Semenza, Hypoxia-inducible factors: master regulators of cancer progression, Trends Cancer 2 (12) (2016) 758–770.

[24] Y.M. Shah, L. Xie, Hypoxia-inducible factors link iron homeostasis and ery- thropoiesis, Gastroenterology 146 (3) (2014) 630–642.

[25] L. Tacchini, L. Bianchi, A. Bernelli-Zazzera, G. Cairo, Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-tran- scriptional regulation, J. Biol. Chem. 274 (34) (1999) 24142–24146.

[26] Z.M. Qian, X.M. Wu, M. Fan, L. Yang, F. Du, W.H. Yung, Y. Ke, Divalent metal transporter 1 is a hypoxia-inducible gene, J. Cell. Physiol. 226 (6) (2011) 1596–1603.

[27] I. Yanatori, F. Kishi, DMT1 and iron transport, Free Radic. Biol. Med. 133 (2019) 55–63.

[28] B.W. Huang, M. Miyazawa, Y. Tsuji, Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels, Cell. Signal. 26 (12) (2014) 2702–2709.

[29] E.S. Hanson, L.M. Foot, E.A. Leibold, Hypoxia post-translationally activates iron- regulatory protein 2, J. Biol. Chem. 274 (8) (1999) 5047–5052.

[30] S.V. Torti, F.M. Torti, Iron and cancer: more ore to be mined, Nat. Rev. Cancer 13 (5) (2013) 342–355.

[31] K.L. Eales, K.E. Hollinshead, D.A. Tennant, Hypoxia and metabolic adaptation of cancer cells, Oncogenesis 5 (2016) e190.

[32] C.T. Supuran, Carbonic Anhydrases and Metabolism, Metabolites 8 (2) (2018) 25.

[33] S. Banerjee, P.A. Deshpande, On origin and evolution of carbonic anhydrase iso- zymes: a phylogenetic analysis from whole-enzyme to active site, Comput. Biol. Chem. 61 (2016) 121–129.

[34] C.T. Supuran, Carbonic anhydrases: novel therapeutic applications for inhibitors and activators, Nat. Rev. Drug Discov. 7 (2) (2008) 168–181.

[35] C.C. Wykoff, N.J. Beasley, P.H. Watson, K.J. Turner, J. Pastorek, A. Sibtain, G.D. Wilson, H. Turley, K.L. Talks, P.H. Maxwell, C.W. Pugh, P.J. Ratcliffe, A.L. Harris, Hypoxia-inducible expression of tumor-associated carbonic anhydrases, Cancer Res. 60 (24) (2000) 7075–7083.

[36] J. Chiche, K. Ilc, J. Laferriere, E. Trottier, F. Dayan, N.M. Mazure, M.C. Brahimi- Horn, J. Pouyssegur, Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the in- tracellular pH, Cancer Res. 69 (1) (2009) 358–368.

[37] M.Y. Mboge, B.P. Mahon, R. McKenna, S.C. Frost, Carbonic anhydrases: role in pH control and cancer, Metabolites 8 (1) (2018) 19.

[38] C. Ryder, K. McColl, F. Zhong, C.W. Distelhorst, Acidosis promotes Bcl-2 family- mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled re- ceptor Gpr65 signaling to Mek/Erk, J. Biol. Chem. 287 (33) (2012) 27863–27875.

[39] M. Swayampakula, P.C. McDonald, M. Vallejo, E. Coyaud, S.C. Chafe, A. Westerback, G. Venkateswaran, J. Shankar, G. Gao, E.M.N. Laurent, Y. Lou, K.L. Bennewith, C.T. Supuran, I.R. Nabi, B. Raught, S. Dedhar, The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion, Oncogene 36 (45) (2017) 6244–6261.

[40] H.J. Shin, S.B. Rho, D.C. Jung, I.O. Han, E.S. Oh, J.Y. Kim, Carbonic anhydrase IX (CA9) modulates tumor-associated cell migration and invasion, J. Cell Sci. 124 (Pt 7) (2011) 1077–1087.

[41] S.C. Chafe, P.C. McDonald, S. Saberi, O. Nemirovsky, G. Venkateswaran, S. Burugu, D. Gao, A. Delaidelli, A.H. Kyle, J.H.E. Baker, J.A. Gillespie, A. Bashashati, A.I. Minchinton, Y. Zhou, S.P. Shah, S. Dedhar, Targeting hypoxia-induced carbonic anhydrase IX enhances immune-checkpoint blockade locally and systemically, Cancer Immunol. Res. 7 (7) (2019) 1064–1078.

[42] E. Casalone, A. Allione, C. Viberti, B. Pardini, S. Guarrera, M. Betti, I. Dianzani, E. Aldieri, G. Matullo, DNA methylation profiling of asbestos-treated MeT5A cell line reveals novel pathways implicated in asbestos response, Arch. Toxicol. 92 (5) (2018) 1785–1795.

[43] N. Usami, T. Fukui, M. Kondo, T. Taniguchi, T. Yokoyama, S. Mori, K. Yokoi, Y. Horio, K. Shimokata, Y. Sekido, T. Hida, Establishment and characterization of four malignant pleural mesothelioma cell lines from Japanese patients, Cancer Sci. 97 (5) (2006) 387–394.

[44] X. Rao, X. Huang, Z. Zhou, X. Lin, An improvement of the 2∧(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis, Biostat. Bioinforma. Biomath. 3 (3) (2013) 71–85.

[45] S.H. Chew, Y. Okazaki, S. Akatsuka, S. Wang, L. Jiang, Y. Ohara, F. Ito, H. Saya, Y. Sekido, S. Toyokuni, Rheostatic CD44 isoform expression and its association with oxidative stress in human malignant mesothelioma, Free Radic. Biol. Med. 106 (2017) 91–99.

[46] T. Hirayama, H. Tsuboi, M. Niwa, A. Miki, S. Kadota, Y. Ikeshita, K. Okuda, H. Nagasawa, A universal fluorogenic switch for Fe(ii) ion based on N-oxide chemistry permits the visualization of intracellular redox equilibrium shift towards labile iron in hypoxic tumor cells, Chem. Sci. 8 (7) (2017) 4858–4866.

[47] S. Toyokuni, S. Okada, S. Hamazaki, M. Fujioka, J.L. Li, O. Midorikawa, Cirrhosis of the liver induced by cupric nitrilotriacetate in Wistar rats. An experimental model of copper toxicosis, Am. J. Pathol. 134 (6) (1989) 1263–1274.

[48] A.J. Valente, L.A. Maddalena, E.L. Robb, F. Moradi, J.A. Stuart, A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture, Acta Histochem. 119 (3) (2017) 315–326.

[49] L. Jiang, Y. Yamashita, S.H. Chew, S. Akatsuka, S. Ukai, S. Wang, H. Nagai, Y. Okazaki, T. Takahashi, S. Toyokuni, Connective tissue growth factor and β-ca- tenin constitute an autocrine loop for activation in rat sarcomatoid mesothelioma, J. Pathol. 233 (2014) 402–414.

[50] M.I. Koukourakis, A. Giatromanolaki, E. Sivridis, K. Simopoulos, J. Pastorek, C.C. Wykoff, K.C. Gatter, A.L. Harris, Hypoxia-regulated carbonic anhydrase-9 (CA9) relates to poor vascularization and resistance of squamous cell head and neck cancer to chemoradiotherapy, Clin. Cancer Res. 7 (11) (2001) 3399–3403.

[51] B.G. Wouters, J.M. Brown, Cells at intermediate oxygen levels can be more im- portant than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy, Radiat. Res. 147 (5) (1997) 541–550.

[52] Y. Lou, P.C. McDonald, A. Oloumi, S. Chia, C. Ostlund, A. Ahmadi, A. Kyle, U. Auf dem Keller, S. Leung, D. Huntsman, B. Clarke, B.W. Sutherland, D. Waterhouse, M. Bally, C. Roskelley, C.M. Overall, A. Minchinton, F. Pacchiano, F. Carta, A. Scozzafava, N. Touisni, J.Y. Winum, C.T. Supuran, S. Dedhar, Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors, Cancer Res. 71 (9) (2011) 3364–3376.

[53] H.H. Hektoen, A.H. Ree, K.R. Redalen, K. Flatmark, Sulfamate inhibitor S4 influ- ences carbonic anhydrase IX ectodomain shedding in colorectal carcinoma cells, J. Enzym. Inhib. Med. Chem. 31 (5) (2016) 779–786.

[54] E. Svastova, W. Witarski, L. Csaderova, I. Kosik, L. Skvarkova, A. Hulikova, M. Zatovicova, M. Barathova, J. Kopacek, J. Pastorek, S. Pastorekova, Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain, J. Biol. Chem. 287 (5) (2012) 3392–3402.

[55] M. Gao, P. Monian, Q. Pan, W. Zhang, J. Xiang, X. Jiang, Ferroptosis is an autop- hagic cell death process, Cell Res. 26 (9) (2016) 1021–1032.

[56] B.R. Stockwell, J.P. Friedmann Angeli, H. Bayir, A.I. Bush, M. Conrad, S.J. Dixon, S. Fulda, S. Gascon, S.K. Hatzios, V.E. Kagan, K. Noel, X. Jiang, A. Linkermann, M.E. Murphy, M. Overholtzer, A. Oyagi, G.C. Pagnussat, J. Park, Q. Ran, C.S. Rosenfeld, K. Salnikow, D. Tang, F.M. Torti, S.V. Torti, S. Toyokuni, K.A. Woerpel, D.D. Zhang, Ferroptosis: a regulated cell death nexus linking meta- bolism, redox biology, and disease, Cell 171 (2) (2017) 273–285.

[57] W. Hou, Y. Xie, X. Song, X. Sun, M.T. Lotze, H.J. Zeh 3rd, R. Kang, D. Tang, Autophagy promotes ferroptosis by degradation of ferritin, Autophagy 12 (8) (2016) 1425–1428.

[58] S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev, C.E. Gleason, D.N. Patel, A.J. Bauer, A.M. Cantley, W.S. Yang, Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell 149 (5) (2012) 1060–1072.

[59] A.M. van der Bliek, Q. Shen, S. Kawajiri, Mechanisms of mitochondrial fission and fusion, Cold Spring Harb. Perspect. Biol. 5 (6) (2013) a011072.

[60] S. Toyokuni, Iron-induced carcinogenesis: the role of redox regulation, Free Radic. Biol. Med. 20 (1996) 553–566.

[61] S. Toyokuni, Oxidative stress as an iceberg in carcinogenesis and cancer biology, Arch. Biochem. Biophys. 595 (2016) 46–49.

[62] Z.R. Chalmers, C.F. Connelly, D. Fabrizio, L. Gay, S.M. Ali, R. Ennis, A. Schrock, B. Campbell, A. Shlien, J. Chmielecki, F. Huang, Y. He, J. Sun, U. Tabori, M. Kennedy, D.S. Lieber, S. Roels, J. White, G.A. Otto, J.S. Ross, L. Garraway, V.A. Miller, P.J. Stephens, G.M. Frampton, Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden, Genome Med. 9 (1) (2017) 34.

[63] S. Nyholm, G.J. Mann, A.G. Johansson, R.J. Bergeron, A. Graslund, L. Thelander, Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators, J. Biol. Chem. 268 (35) (1993) 26200–26205.

[64] K.R. Olson, K.D. Straub, The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling, Physiology 31 (1) (2016) 60–72.

[65] T. Mukaide, Y. Hattori, N. Misawa, S. Funahashi, L. Jiang, T. Hirayama, H. Nagasawa, S. Toyokuni, Histological detection of catalytic ferrous iron with the selective turn-on fluorescent probe RhoNox-1 in a Fenton reaction-based rat renal carcinogenesis model, Free Radic. Res. 48 (2014) 990–995.

[66] T. Hirayama, H. Nagasawa, Chemical tools for detecting Fe ions, J. Clin. Biochem. Nutr. 60 (1) (2017) 39–48.

[67] T. Hirayama, Fluorescent probes for the detection of catalytic Fe(II) ion, Free Radic. Biol. Med. 133 (2019) 38–45.

[68] J.P. Liuzzi, F. Aydemir, H. Nam, M.D. Knutson, R.J. Cousins, Zip 14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells, Proc. Natl. Acad. Sci. U. S. A. 103 (37) (2006) 13612–13617.

[69] S. Tandy, M. Williams, A. Leggett, M. Lopez-Jimenez, M. Dedes, B. Ramesh, S.K. Srai, P. Sharp, Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells, J. Biol. Chem. 275 (2) (2000) 1023–1029.

[70] H. Drakesmith, E. Nemeth, T. Ganz, Ironing out ferroportin, Cell Metabol. 22 (5) (2015) 777–787.

[71] M. Razi, E.Y. Chan, S.A. Tooze, Early endosomes and endosomal coatomer are re- quired for autophagy, J. Cell Biol. 185 (2) (2009) 305–321.

[72] Y. Ikeda, A. Shirakabe, Y. Maejima, P. Zhai, S. Sciarretta, J. Toli, M. Nomura, K. Mihara, K. Egashira, M. Ohishi, M. Abdellatif, J. Sadoshima, Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress, Circ. Res. 116 (2) (2015) 264–278.

[73] Q. Zheng, Y. Zhao, J. Guo, S. Zhao, C. Fei, C. Xiao, D. Wu, L. Wu, X. Li, C. Chang, Iron overload promotes mitochondrial fragmentation in mesenchymal stromal cells from myelodysplastic syndrome patients through activation of the AMPK/MFF/ Drp1 pathway, Cell Death Dis. 9 (5) (2018) 515.

[74] L. Galluzzi, I. Vitale, S.A. Aaronson, J.M. Abrams, D. Adam, P. Agostinis, E.S. Alnemri, L. Altucci, I. Amelio, D.W. Andrews, M. Annicchiarico-Petruzzelli, A.V. Antonov, E. Arama, E.H. Baehrecke, N.A. Barlev, N.G. Bazan, F. Bernassola, M.J.M. Bertrand, K. Bianchi, M.V. Blagosklonny, K. Blomgren, C. Borner, P. Boya, C. Brenner, M. Campanella, E. Candi, D. Carmona-Gutierrez, F. Cecconi, F.K. Chan, N.S. Chandel, E.H. Cheng, J.E. Chipuk, J.A. Cidlowski, A. Ciechanover, G.M. Cohen, M. Conrad, J.R. Cubillos-Ruiz, P.E. Czabotar, V. D'Angiolella, T.M. Dawson, V.L. Dawson, V. De Laurenzi, R. De Maria, K.M. Debatin, R.J. DeBerardinis, M. Deshmukh, N. Di Daniele, F. Di Virgilio, V.M. Dixit, S.J. Dixon, C.S. Duckett, B.D. Dynlacht, W.S. El-Deiry, J.W. Elrod, G.M. Fimia, S. Fulda, A.J. Garcia-Saez, A.D. Garg, C. Garrido, E. Gavathiotis, P. Golstein, E. Gottlieb, D.R. Green, L.A. Greene, H. Gronemeyer, A. Gross, G. Hajnoczky, J.M. Hardwick, I.S. Harris, M.O. Hengartner, C. Hetz, H. Ichijo, M. Jaattela, B. Joseph, P.J. Jost, P.P. Juin, W.J. Kaiser, M. Karin, T. Kaufmann, O. Kepp, A. Kimchi, R.N. Kitsis, D.J. Klionsky, R.A. Knight, S. Kumar, S.W. Lee, J.J. Lemasters, B. Levine, A. Linkermann, S.A. Lipton, R.A. Lockshin, C. Lopez-Otin, S.W. Lowe, T. Luedde, E. Lugli, M. MacFarlane, F. Madeo, M. Malewicz, W. Malorni, G. Manic, J.C. Marine, S.J. Martin, J.C. Martinou, J.P. Medema, P. Mehlen, P. Meier, S. Melino, E.A. Miao, J.D. Molkentin, U.M. Moll, C. Munoz-Pinedo, S. Nagata, G. Nunez, A. Oberst, M. Oren, M. Overholtzer, M. Pagano, T. Panaretakis, M. Pasparakis, J.M. Penninger, D.M. Pereira, S. Pervaiz, M.E. Peter, M. Piacentini, P. Pinton, J.H.M. Prehn, H. Puthalakath, G.A. Rabinovich, M. Rehm, R. Rizzuto, C.M.P. Rodrigues, D.C. Rubinsztein, T. Rudel, K.M. Ryan, E. Sayan, L. Scorrano, F. Shao, Y. Shi, J. Silke, H.U. Simon, A. Sistigu, B.R. Stockwell, A. Strasser, G. Szabadkai, S.W.G. Tait, D. Tang, N. Tavernarakis, A. Thorburn, Y. Tsujimoto, B. Turk, T. Vanden Berghe, P. Vandenabeele, M.G. Vander Heiden, A. Villunger, H.W. Virgin, K.H. Vousden, D. Vucic, E.F. Wagner, H. Walczak, D. Wallach, Y. Wang, J.A. Wells, W. Wood, J. Yuan, Z. Zakeri, B. Zhivotovsky, L. Zitvogel, G. Melino, G. Kroemer, Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018, Cell Death Differ. 25 (3) (2018) 486–541.

[75] S. Fossati, P. Giannoni, M.E. Solesio, S.L. Cocklin, E. Cabrera, J. Ghiso, A. Rostagno, The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain, Neurobiol. Dis. 86 (2016) 29–40.

参考文献をもっと見る