リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Polarized view on protoplanetary disks : grain dynamics and alignment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Polarized view on protoplanetary disks : grain dynamics and alignment

森, 智宏 東京大学 DOI:10.15083/0002004720

2022.06.22

概要

The study of planet/planetesimal formation has been attracted special interest for half a century to investigate how the solar system and exoplanets with various prop- erties do form in our galaxy. The birthplace of planets or planetesimals is believed to be protoplanetary disks, which are inevitably formed as a consequence of the angular momentum conservation. To establish the formation scenario, a number of theoretical and observational works regarding the disk structure, dynamics, and grain properties have been conducted.

 Theoretically, a plausible pathway of terrestrial planets or planetesimals is the collisional growth of dust grains in protoplanetary disks. However, there are sev- eral barriers, which prevents dust grains from growing into planetesimals: Dust grains that have nonzero electrical charge rarely stick to each other due to the repul- sive force (charge barrier). Grain collisions do not lead to only grain growth but also rebounds or fragmentation (bouncing barrier and fragmentation barrier). Rapid in- ward drifting due to gas aerodynamic drag quickly removes the dust grains from the disks (Radial drift barrier). These barriers make the planetesimal formation scenario terrifically complicated.

 Recent enhancements of observational quality in sensitivity and spatial resolu- tion have provided us a wealth of information for disk structures and grain prop- erties. One of the most crucial insights obtained on the observations is that disks commonly have substructures such as ring, gap, spiral and so on. These various structures possibly capture the critical step of planet formation and provide solu- tions to tackle the proposed barriers above. However, the formation mechanisms for such substructures are also highly uncertain. It is because they are thought to invoke complex and various physics regarding gas-grain interactions, which are tightly de- pendent on grain sizes. Thus, observational constraints on grain sizes and moreover grain dynamics are essential for better understandings of planetesimal formation.

 To tackle the difficulties, we conduct continuum polarization observations at mil- limeter wavelengths of disks. The polarized emission is believed to originate from a combination of grain alignment and scattering. Previously proposed sources that can align grains in disks are magnetic fields, radiative gradients, and gas flow di- rected on grains. The thermal emission from elongated dust grains aligned with the sources can be observed as polarized emissions. The other mechanism, self- scattering, is scattering-induced polarization where dust grains of sizes compara- ble to the wavelengths scatter the thermal dust emissions. The relative importance of these processes is sensitive to grain sizes, shape and response to above external forces acting on grains. This is invaluable information to explore the planetesimal formation. Nevertheless, it is largely unclear (1) which origin dominates, (2) whether just one or multiple origins contribute to the polarization and (3) how large and elon- gated the grains are. To address the questions, we investigate the origins of polarized emission detected on two disks around HL Tau and AS 209.

 First, we conduct detailed modeling for the polarized emission of the HL Tau disk. Polarization features obtained on the HL Tau disk in Band 3 are as follows. (1) Elliptical polarization pattern and (2) uniform polarization fraction in the azimuthal directions. In previous studies, the origin of the polarization was concluded to orig- inate from thermal emission of grains aligned by a radiative gradient in the disk (Kataoka et al., 2017; Stephens et al., 2017). However, Yang et al. (2019) pointed out that the radiative alignment predicts the circular pattern and strong polarization variations in the azimuthal directions, both of which are incompatible with (1) and (2). Alternatively, gas-flow alignment, where aspherical grains aligned by gas-flow with their long axes parallel to the flow, can produce the elliptical pattern. How- ever, it also predicts strong azimuthal polarization variations, which is incompatible with (2). To solve the problem, we perform semi-analytical and radiative transfer modeling that includes the contributions from scattered emission as well as thermal emission of the aligned grains. As a result, we find that the combination of the gas- flow alignment and scattering can reproduce the features (1) and (2), whereas the radiative alignment + scattering cannot reproduce both the features. This result is surprising because the gas-flow alignment has been believed to occur when the ve- locity of the gas-flow on grains is supersonic while that in disks is subsonic. This raises a question regarding our understanding of alignment processes.

 Next, we present 870 µm ALMA polarization observation toward the Class II pro- toplanetary disk around AS 209. We successfully detect the polarized emission and find that the polarization orientations and fractions have distinct characteristics be- tween the inner and outer regions. In the inner region, the polarization orientations are parallel to the minor axis of the disk, which is consistent with the self-scattering model. This indicates the presence of an order of 100 micron-sized grains in the region. In the outer region, we detect ∼1.0% polarization and find that the polariza- tion orientations are almost in the azimuthal directions. Moreover, the polarization orientations have systematic angular deviations from the azimuthal directions with ∆θ ∼ 4.°5 ± 1.°6. The pattern is consistent with a model that radially drifting dust grains are aligned by the gas flow against the dust grains. We consider possible sce- narios of the grain dynamics at the AS 209 ring which can reproduce the polarization pattern. However, the directions of the observed angular deviations are opposite to what is predicted under the fact that the disk rotates clockwise. This poses a ques- tion in our understandings of the alignment processes and/or grain dynamics in protoplanetary disks.

参考文献

Aikawa, Y. et al. (May 2002). “Warm molecular layers in protoplanetary disks”. In: Astronomy and Astrophysics 386, pp. 622–632. DOI: 10.1051/0004-6361: 20020037. arXiv: astro-ph/0202060 [astro-ph].

Akeson, R. L. and J. E. Carlstrom (Dec. 1997). “Magnetic Field Structure in Protostellar Envelopes”. In: The Astrophysical Journal 491(1), pp. 254–266. DOI: 10.1086/304949.

Alexander, R. D., C. J. Clarke, and J. E. Pringle (June 2006a). “Photoevap- oration of protoplanetary discs - I. Hydrodynamic models”. In: Monthly Notice of Royal Astronomical Society 369(1), pp. 216–228. DOI: 10.1111/j. 1365-2966.2006.10293.x. arXiv: astro-ph/0603253 [astro-ph].

Alexander, R. D., C. J. Clarke, and J. E. Pringle (June 2006b). “Photoevap- oration of protoplanetary discs - II. Evolutionary models and observable properties”. In: Monthly Notice of Royal Astronomical Society 369(1), pp. 229–239. DOI: 10.1111/j.1365-2966.2006.10294.x. arXiv: astro-ph/0603254 [astro-ph].

ALMA Partnership et al. (July 2015). “The 2014 ALMA Long Baseline Cam- paign: First Results from High Angular Resolution Observations toward the HL Tau Region”. In: The Astrophysical Journal Letters 808(1), L3, p. L3. DOI: 10.1088/2041-8205/808/1/L3. arXiv: 1503.02649 [astro-ph.SR].

Alves, F. O. et al. (Aug. 2018). “Magnetic field in a young circumbinary disk”. In: Astronomy and Astrophysics 616, A56, A56. DOI: 10.1051/0004-6361/ 201832935. arXiv: 1805.00494 [astro-ph.SR].

Alves, João F., Charles J. Lada, and Elizabeth A. Lada (Jan. 2001). “Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight”. In: Nature 409(6817), pp. 159–161.

Andre, Philippe and Thierry Montmerle (Jan. 1994). “From T Tauri Stars to Protostars: Circumstellar Material and Young Stellar Objects in the rho Ophiuchi Cloud”. In: The Astrophysical Journal 420, p. 837. DOI: 10.1086/ 173608.

Andrews, Sean M. and Jonathan P. Williams (Oct. 2005). “Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective”. In: The Astro- physical Journal 631(2), pp. 1134–1160. DOI: 10.1086/432712. arXiv: astro- ph/0506187 [astro-ph].

Andrews, Sean M. and Jonathan P. Williams (Apr. 2007). “High-Resolution Submillimeter Constraints on Circumstellar Disk Structure”. In: The Astro- physical Journal 659(1), pp. 705–728. DOI: 10.1086/511741. arXiv: astro- ph/0610813 [astro-ph].

Andrews, Sean M. et al. (Aug. 2009). “Protoplanetary Disk Structures in Ophi- uchus”. In: The Astrophysical Journal 700(2), pp. 1502–1523. DOI: 10.1088/ 0004-637X/700/2/1502. arXiv: 0906.0730 [astro-ph.EP].

Andrews, Sean M. et al. (Nov. 2010). “Protoplanetary Disk Structures in Ophi- uchus. II. Extension to Fainter Sources”. In: The Astrophysical Journal 723(2), pp. 1241–1254. DOI: 10.1088/0004-637X/723/2/1241. arXiv: 1007.5070 [astro-ph.SR].

Andrews, Sean M. et al. (May 2011). “Resolved Images of Large Cavities in Protoplanetary Transition Disks”. In: The Astrophysical Journal 732(1), 42, p. 42. DOI: 10.1088/0004-637X/732/1/42. arXiv: 1103.0284 [astro-ph.GA].

Andrews, Sean M. et al. (July 2013). “The Mass Dependence between Pro- toplanetary Disks and their Stellar Hosts”. In: The Astrophysical Journal 771(2), 129, p. 129. DOI: 10.1088/0004-637X/771/2/129. arXiv: 1305.5262 [astro-ph.SR].

Andrews, Sean M. et al. (Apr. 2016). “Ringed Substructure and a Gap at 1 au in the Nearest Protoplanetary Disk”. In: The Astrophysical Journal Letters 820(2), L40, p. L40. DOI: 10.3847/2041- 8205/820/2/L40. arXiv: 1603.09352 [astro-ph.EP].

Anglada, Guillem et al. (June 2007). “Proper Motions of the Jets in the Region of HH 30 and HL/XZ Tau: Evidence for a Binary Exciting Source of the HH 30 Jet”. In: The Astronomical Journal 133(6), pp. 2799–2814. DOI: 10 . 1086/517493. arXiv: astro-ph/0703155 [astro-ph].

Ansdell, M. et al. (Sept. 2016). “ALMA Survey of Lupus Protoplanetary Disks. I. Dust and Gas Masses”. In: The Astrophysical Journal 828(1), 46, p. 46. DOI: 10.3847/0004-637X/828/1/46. arXiv: 1604.05719 [astro-ph.EP].

Ansdell, M. et al. (May 2017). “An ALMA Survey of Protoplanetary Disks in the σ Orionis Cluster”. In: The Astronomical Journal 153(5), 240, p. 240. DOI: 10.3847/1538-3881/aa69c0. arXiv: 1703.08546 [astro-ph.EP].

Ansdell, Megan, Jonathan P. Williams, and Lucas A. Cieza (June 2015). “A SCUBA-2 850-micron Survey of Circumstellar Disks in the λ Orionis Clus- ter”. In: The Astrophysical Journal 806(2), 221, p. 221. DOI: 10.1088/0004- 637X/806/2/221. arXiv: 1505.00262 [astro-ph.EP].

Avenhaus, Henning et al. (Feb. 2014). “Structures in the Protoplanetary Disk of HD142527 Seen in Polarized Scattered Light”. In: The Astrophysical Jour- nal 781(2), 87, p. 87. DOI: 10.1088/0004-637X/781/2/87. arXiv: 1311.7088 [astro-ph.SR].

Avenhaus, Henning et al. (Aug. 2018). “Disks around T Tauri Stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS Polarimetric Imaging of Eight Prominent T Tauri Disks”. In: The Astrophysical Journal 863(1), 44, p. 44. DOI: 10.3847/1538-4357/aab846. arXiv: 1803.10882 [astro-ph.SR].

Bacciotti, Francesca et al. (Oct. 2018). “ALMA Observations of Polarized Emis- sion toward the CW Tau and DG Tau Protoplanetary Disks: Constraints on Dust Grain Growth and Settling”. In: The Astrophysical Journal Letters 865(2), L12, p. L12. DOI: 10.3847/2041-8213/aadf87. arXiv: 1809.02559 [astro-ph.SR].

Bae, Jaehan, Zhaohuan Zhu, and Lee Hartmann (Dec. 2017). “On the Forma- tion of Multiple Concentric Rings and Gaps in Protoplanetary Disks”. In: The Astrophysical Journal 850(2), 201, p. 201. DOI: 10 . 3847 / 1538 - 4357 / aa9705. arXiv: 1706.03066 [astro-ph.EP].

Bai, Xue-Ning and James M. Stone (May 2013). “Wind-driven Accretion in Protoplanetary Disks. I. Suppression of the Magnetorotational Instabil- ity and Launching of the Magnetocentrifugal Wind”. In: The Astrophysical Journal 769(1), 76, p. 76. DOI: 10 . 1088 / 0004 - 637X / 769 / 1 / 76. arXiv: 1301.0318 [astro-ph.EP].

Bai, Xue-Ning and James M. Stone (Nov. 2014). “Magnetic Flux Concentra- tion and Zonal Flows in Magnetorotational Instability Turbulence”. In: The Astrophysical Journal 796(1), 31, p. 31. DOI: 10.1088/0004-637X/796/ 1/31. arXiv: 1409.2512 [astro-ph.HE].

Balbus, Steven A. and John F. Hawley (July 1991). “A Powerful Local Shear Instability in Weakly Magnetized Disks. I. Linear Analysis”. In: The Astro- physical Journal 376, p. 214. DOI: 10.1086/170270.

Barenfeld, Scott A. et al. (Aug. 2016). “ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association”. In: The Astrophysical Journal 827(2), 142, p. 142. DOI: 10 .3847 / 0004 - 637X/ 827 / 2 / 142. arXiv: 1605 . 05772 [astro-ph.EP].

Barge, P. and J. Sommeria (Mar. 1995). “Did planet formation begin inside persistent gaseous vortices?” In: Astronomy and Astrophysics 295, pp. L1– L4. arXiv: astro-ph/9501050 [astro-ph].

Beckwith, Steven V. W. and Anneila I. Sargent (Nov. 1991). “Particle Emissiv- ity in Circumstellar Disks”. In: The Astrophysical Journal 381, p. 250. DOI: 10.1086/170646.

Birnstiel, T., C. P. Dullemond, and F. Brauer (Aug. 2009). “Dust retention in protoplanetary disks”. In: Astronomy and Astrophysics 503(1), pp. L5–L8. DOI: 10.1051/0004-6361/200912452. arXiv: 0907.0985 [astro-ph.EP].

Birnstiel, T., C. P. Dullemond, and F. Brauer (Apr. 2010). “Gas- and dust evo- lution in protoplanetary disks”. In: Astronomy and Astrophysics 513, A79, A79. DOI: 10.1051/0004-6361/200913731. arXiv: 1002.0335 [astro-ph.EP].

Birnstiel, Tilman et al. (Dec. 2018). “The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA Maps of Protoplan- etary Disks in Terms of a Dust Model”. In: The Astrophysical Journal Letters 869(2), L45, p. L45. DOI: 10.3847/2041-8213/aaf743. arXiv: 1812.04043 [astro-ph.SR].

Blandford, R. D. and D. G. Payne (June 1982). “Hydromagnetic flows from accretion disks and the production of radio jets.” In: Monthly Notice of Royal Astronomical Society 199, pp. 883–903. DOI: 10.1093/mnras/199.4. 883.

Blum, J. and G. Wurm (Sept. 2008). “The growth mechanisms of macroscopic bodies in protoplanetary disks.” In: Annual Review of Astronomy and Astro- physics 46, pp. 21–56. DOI: 10.1146/annurev.astro.46.060407.145152.

Boehler, Y. et al. (Feb. 2018). “The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity”. In: The As- trophysical Journal 853(2), 162, p. 162. DOI: 10.3847/1538- 4357/aaa19c. arXiv: 1712.08845 [astro-ph.EP].

Bohren, Craig F. and Donald R. Huffman (1983). Absorption and scattering of light by small particles.

Bok, Bart J. (1948). “Dimensions and Masses of Dark Nebulae”. In: Centennial Symposia, December 1946. Harvard Observatory Monographs, No. 7. Contri- butions on Interstellar Matter, Electronic and Computational Devices, Eclipsing Binaries, The Gaseous Envelope of the Earth. Cambridge, MA: Harvard Obser- vatory, 1948., p.53. Vol. 7, p. 53.

Bok, Bart J., Carolyn S. Cordwell, and Richard H. Cromwell (Jan. 1971). “Dark Nebulae, Globules and Protostars”. In: Dark nebulae, Globules and Proto- stars. Ed. by Beverly T. Lynds, p. 33.

Bouvier, J. and I. Appenzeller (Feb. 1992). “A magnitude-limited spectro- scopic and photometric survey of rho OphiuchusX-ray sources.” In: As- tronomy and Astrophysics Supplement Series 92, pp. 481–516.

Brandenburg, Axel et al. (June 1995). “Dynamo-generated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow”. In: The Astro- physical Journal 446, p. 741. DOI: 10.1086/175831.

Brauer, F., C. P. Dullemond, and Th. Henning (Mar. 2008). “Coagulation, frag- mentation and radial motion of solid particles in protoplanetary disks”. In: Astronomy and Astrophysics 480(3), pp. 859–877. DOI: 10.1051/0004- 6361:20077759. arXiv: 0711.2192 [astro-ph].

Canovas, H. et al. (Aug. 2013). “Near-infrared imaging polarimetry of HD 142527”. In: Astronomy and Astrophysics 556, A123, A123. DOI: 10.1051/ 0004-6361/201321924. arXiv: 1306.6379 [astro-ph.SR].

Carpenter, John M., Luca Ricci, and Andrea Isella (May 2014). “An ALMA Continuum Survey of Circumstellar Disks in the Upper Scorpius OB As- sociation”. In: The Astrophysical Journal 787(1), 42, p. 42. DOI: 10 . 1088 / 0004-637X/787/1/42. arXiv: 1404.0387 [astro-ph.SR].

Carrasco-González, Carlos et al. (Apr. 2016). “The VLA View of the HL Tau Disk: Disk Mass, Grain Evolution, and Early Planet Formation”. In: The Astrophysical Journal Letters 821(1), L16, p. L16. DOI: 10.3847/2041-8205/ 821/1/L16. arXiv: 1603.03731 [astro-ph.SR].

Carrasco-González, Carlos et al. (Sept. 2019). “The Radial Distribution of Dust Particles in the HL Tau Disk from ALMA and VLA Observations”. In: The Astrophysical Journal 883(1), 71, p. 71. DOI: 10.3847/1538- 4357/ ab3d33. arXiv: 1908.07140 [astro-ph.EP].

Casassus, Simon et al. (Jan. 2013). “Flows of gas through a protoplanetary gap”. In: Nature 493(7431), pp. 191–194. DOI: 10.1038/nature11769. arXiv: 1305.6062 [astro-ph.GA].

Chiang, E. I. and P. Goldreich (Nov. 1997). “Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks”. In: The Astrophysical Jour- nal 490(1), pp. 368–376. DOI: 10.1086/304869. arXiv: astro-ph/9706042 [astro-ph].

Chiang, E. I. et al. (Feb. 2001). “Spectral Energy Distributions of Passive T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with Infrared Space Observatory LWS Observations”. In: The Astrophysical Journal 547(2), pp. 1077–1089. DOI: 10.1086/318427. arXiv: astro-ph/0009428 [astro-ph].

Cho, Jungyeon and A. Lazarian (Nov. 2007). “Grain Alignment and Polarized Emission from Magnetized T Tauri Disks”. In: The Astrophysical Journal 669(2), pp. 1085–1097. DOI: 10 .1086 / 521805. arXiv: astro- ph/ 0611280 [astro-ph].

Cieza, Lucas et al. (Sept. 2007). “The Spitzer c2d Survey of Weak-Line T Tauri Stars. II. New Constraints on the Timescale for Planet Building”. In: The Astrophysical Journal 667(1), pp. 308–328. DOI: 10 . 1086 / 520698. arXiv: 0706.0563 [astro-ph].

Cieza, Lucas A. et al. (Dec. 2017). “ALMA Observations of Elias 2-24: A Proto- planetary Disk with Multiple Gaps in the Ophiuchus Molecular Cloud”. In: The Astrophysical Journal Letters 851(2), L23, p. L23. DOI: 10.3847/2041- 8213/aa9b7b. arXiv: 1711.06905 [astro-ph.EP].

Clampin, M. et al. (July 2003). “Hubble Space Telescope ACS Coronagraphic Imaging of the Circumstellar Disk around HD 141569A”. In: The Astro- nomical Journal 126(1), pp. 385–392. DOI: 10.1086/375460. arXiv: astro- ph/0303605 [astro-ph].

Clarke, C. J. et al. (Oct. 2018). “High-resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au”. In: The Astrophysical Journal Letters 866(1), L6, p. L6. DOI: 10.3847/2041-8213/aae36b. arXiv: 1809.08147 [astro-ph.EP].

Coudé, Simon et al. (June 2019). “The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region”. In: The Astrophysical Journal 877(2), 88, p. 88. DOI: 10 . 3847 / 1538 - 4357 / ab1b23. arXiv: 1904 . 07221 [astro-ph.GA].

Cox, Erin G. et al. (Mar. 2018). “ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud”. In: The Astrophysical Journal 855(2), 92, p. 92. DOI: 10.3847/1538-4357/aaacd2. arXiv: 1802.00449 [astro-ph.SR].

Cudlip, W. et al. (Sept. 1982). “Far infrared polarimetry of W51A and M42”. In: Monthly Notice of Royal Astronomical Society 200, pp. 1169–1173. DOI: 10.1093/mnras/200.4.1169.

Dartois, E., A. Dutrey, and S. Guilloteau (Feb. 2003). “Structure of the DM Tau Outer Disk: Probing the vertical kinetic temperature gradient”. In: Astronomy and Astrophysics 399, pp. 773–787. DOI: 10.1051/0004- 6361: 20021638.

Das, Indrajit and Joseph C. Weingartner (Apr. 2016). “Alignment of inter- stellar grains by mechanical torques: suprathermally rotating Gaussian random spheres”. In: Monthly Notice of Royal Astronomical Society 457(2), pp. 1958–1987. DOI: 10.1093/mnras/stw146. arXiv: 1602.04775 [astro-ph.GA]. Davis Leverett, Jr. and Jesse L. Greenstein (Sept. 1951). “The Polarization of Starlight by Aligned Dust Grains.” In: The Astrophysical Journal 114, p. 206. DOI: 10.1086/145464.

Dent, W. R. F. et al. (Jan. 2019). “Submillimetre dust polarization and opacity in the HD163296 protoplanetary ring system”. In: Monthly Notice of Royal Astronomical Society 482(1), pp. L29–L33. DOI: 10 .1093 / mnrasl/ sly181. arXiv: 1809.09185 [astro-ph.EP].

Dipierro, G. et al. (Apr. 2018). “Rings and gaps in the disc around Elias 24 re- vealed by ALMA”. In: Monthly Notice of Royal Astronomical Society 475(4), pp. 5296–5312. DOI: 10.1093/mnras/sty181. arXiv: 1801.05812 [astro-ph.EP].

Dipierro, Giovanni et al. (July 2015). “Dust trapping by spiral arms in grav- itationally unstable protostellar discs”. In: Monthly Notice of Royal Astro- nomical Society 451(1), pp. 974–986. DOI: 10 .1093 / mnras/ stv970. arXiv: 1504.08099 [astro-ph.SR].

Dong, Ruobing, Joan R. Najita, and Sean Brittain (Aug. 2018). “Spiral Arms in Disks: Planets or Gravitational Instability?” In: The Astrophysical Journal 862(2), 103, p. 103. DOI: 10.3847/1538-4357/aaccfc. arXiv: 1806.05183 [astro-ph.SR].

Dong, Ruobing et al. (July 2017). “Multiple Disk Gaps and Rings Generated by a Single Super-Earth”. In: The Astrophysical Journal 843(2), 127, p. 127. DOI: 10.3847/1538-4357/aa72f2. arXiv: 1705.04687 [astro-ph.EP].

Draine, B. T. (Jan. 2003). “Interstellar Dust Grains”. In: Annual Review of As- tronomy and Astrophysics 41, pp. 241–289. DOI: 10.1146/annurev.astro. 41.011802.094840. arXiv: astro-ph/0304489 [astro-ph].

Draine, B. T. (Jan. 2006). “On the Submillimeter Opacity of Protoplanetary Disks”. In: The Astrophysical Journal 636(2), pp. 1114–1120. DOI: 10.1086/ 498130. arXiv: astro-ph/0507292 [astro-ph].

Dullemond, C. P. et al. (Feb. 2012). RADMC-3D: A multi-purpose radiative trans- fer tool. ascl: 1202.015.

Espaillat, C. et al. (Dec. 2007a). “On the Diversity of the Taurus Transitional Disks: UX Tauri A and LkCa 15”. In: The Astrophysical Journal Letters 670(2), pp. L135–L138. DOI: 10.1086/524360. arXiv: 0710.2892 [astro-ph].

Espaillat, C. et al. (July 2010). “Unveiling the Structure of Pre-transitional Disks”. In: The Astrophysical Journal 717(1), pp. 441–457. DOI: 10 . 1088 / 0004-637X/717/1/441. arXiv: 1005.2365 [astro-ph.SR].

Espaillat, Catherine et al. (Aug. 2007b). “Probing the Dust and Gas in the Transitional Disk of CS Cha with Spitzer”. In: The Astrophysical Journal Letters 664(2), pp. L111–L114. DOI: 10 . 1086 / 520879. arXiv: 0707 . 0019 [astro-ph].

Espaillat, Catherine et al. (Aug. 2008). “Confirmation of a Gapped Primordial Disk around LkCa 15”. In: The Astrophysical Journal Letters 682(2), p. L125. DOI: 10.1086/591270. arXiv: 0807.2291 [astro-ph].

Favre, Cécile et al. (Jan. 2019). “Gas Density Perturbations Induced by One or More Forming Planets in the AS 209 Protoplanetary Disk as Seen with ALMA”. In: The Astrophysical Journal 871(1), 107, p. 107. DOI: 10 . 3847 / 1538-4357/aaf80c.

Fedele, D. et al. (Feb. 2010). “Timescale of mass accretion in pre-main-sequence stars”. In: Astronomy and Astrophysics 510, A72, A72. DOI: 10.1051/0004- 6361/200912810. arXiv: 0911.3320 [astro-ph.SR].

Fedele, D. et al. (Apr. 2017). “ALMA unveils rings and gaps in the proto- planetary system <ASTROBJ>HD 169142</ASTROBJ>: signatures of two giant protoplanets”. In: Astronomy and Astrophysics 600, A72, A72. DOI: 10.1051/0004-6361/201629860. arXiv: 1702.02844 [astro-ph.SR].

Fedele, D. et al. (Feb. 2018). “ALMA continuum observations of the proto- planetary disk AS 209. Evidence of multiple gaps opened by a single planet”. In: Astronomy and Astrophysics 610, A24, A24. DOI: 10.1051/0004- 6361/201731978. arXiv: 1711.05185 [astro-ph.EP].

Ferreira, J., C. Dougados, and S. Cabrit (July 2006). “Which jet launching mechanism(s) in T Tauri stars?” In: Astronomy and Astrophysics 453(3), pp. 785–796. DOI: 10 . 1051 / 0004 - 6361 : 20054231. arXiv: astro - ph /0604053 [astro-ph].

Fromang, S. and R. P. Nelson (Oct. 2006). “Global MHD simulations of strat- ified and turbulent protoplanetary discs. I. Model properties”. In: Astron- omy and Astrophysics 457(1), pp. 343–358. DOI: 10 . 1051 / 0004 - 6361 : 20065643. arXiv: astro-ph/0606729 [astro-ph].

Fukagawa, Misato et al. (Apr. 2004). “Spiral Structure in the Circumstellar Disk around AB Aurigae”. In: The Astrophysical Journal Letters 605(1), pp. L53– L56. DOI: 10.1086/420699.

Fukagawa, Misato et al. (Jan. 2006). “Near-Infrared Images of Protoplanetary Disk Surrounding HD 142527”. In: The Astrophysical Journal Letters 636(2), pp. L153–L156. DOI: 10.1086/500128.

Fukagawa, Misato et al. (Dec. 2013). “Local Enhancement of the Surface Den- sity in the Protoplanetary Ring Surrounding HD 142527”. In: Publications of the Astronomical Society of Japan 65, L14, p. L14. DOI: 10.1093/pasj/65.6.L14. arXiv: 1309.7400 [astro-ph.SR].

Gaia Collaboration et al. (Aug. 2018). “Gaia Data Release 2. The celestial ref- erence frame (Gaia-CRF2)”. In: Astronomy and Astrophysics 616, A14, A14. DOI: 10.1051/0004-6361/201832916.

Gammie, Charles F., Stuart L. Shapiro, and Jonathan C. McKinney (Feb. 2004). “Black Hole Spin Evolution”. In: The Astrophysical Journal 602(1), pp. 312–319. DOI: 10.1086/380996. arXiv: astro-ph/0310886 [astro-ph].

Garufi, A. et al. (Dec. 2013). “Small vs. large dust grains in transitional disks: do different cavity sizes indicate a planet?. SAO 206462 (HD 135344B) in polarized light with VLT/NACO”. In: Astronomy and Astrophysics 560, A105, A105. DOI: 10 . 1051 / 0004 - 6361 / 201322429. arXiv: 1311 . 4195 [astro-ph.EP].

Girart, J. M. et al. (Apr. 2018). “Resolving the Polarized Dust Emission of the Disk around the Massive Star Powering the HH 80-81 Radio Jet”. In: The Astrophysical Journal Letters 856(2), L27, p. L27. DOI: 10.3847/2041- 8213/aab76b. arXiv: 1803.06165 [astro-ph.SR].

Gold, T. (Jan. 1952). “The alignment of galactic dust”. In: Monthly Notice of Royal Astronomical Society 112, p. 215. DOI: 10.1093/mnras/112.2.215.

Goldreich, Peter and William R. Ward (Aug. 1973). “The Formation of Plan- etesimals”. In: The Astrophysical Journal 183, pp. 1051–1062. DOI: 10.1086/ 152291.

Gorti, U., C. P. Dullemond, and D. Hollenbach (Nov. 2009). “Time Evolution of Viscous Circumstellar Disks due to Photoevaporation by Far-Ultraviolet, Extreme-Ultraviolet, and X-ray Radiation from the Central Star”. In: The Astrophysical Journal 705(2), pp. 1237–1251. DOI: 10.1088/0004-637X/705/ 2/1237. arXiv: 0909.1836 [astro-ph.SR].

Gorti, U. and D. Hollenbach (Jan. 2009). “Photoevaporation of Circumstellar Disks By Far-Ultraviolet, Extreme-Ultraviolet and X-Ray Radiation from the Central Star”. In: The Astrophysical Journal 690(2), pp. 1539–1552. DOI: 10.1088/0004-637X/690/2/1539. arXiv: 0809.1494 [astro-ph].

Grady, C. A. et al. (Jan. 2013). “Spiral Arms in the Asymmetrically Illumi- nated Disk of MWC 758 and Constraints on Giant Planets”. In: The As- trophysical Journal 762(1), 48, p. 48. DOI: 10.1088/0004- 637X/762/1/48. arXiv: 1212.1466 [astro-ph.SR].

Greene, Thomas P. et al. (Oct. 1994). “Further Mid-Infrared Study of the rho Ophiuchi Cloud Young Stellar Population: Luminosities and Masses of Pre–Main-Sequence Stars”. In: The Astrophysical Journal 434, p. 614. DOI: 10.1086/174763.

Guilloteau, S. et al. (May 2011). “A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial vari- ations of the dust properties”. In: Astronomy and Astrophysics 529, A105, A105. DOI: 10.1051/0004-6361/201015209. arXiv: 1103.1296 [astro-ph.GA].

Gutermuth, R. A. et al. (Feb. 2008). “Spitzer Observations of NGC 1333: A Study of Structure and Evolution in a Nearby Embedded Cluster”. In: The Astrophysical Journal 674(1), pp. 336–356. DOI: 10.1086/524722. arXiv: 0710.1860 [astro-ph].

Güttler, C. et al. (Apr. 2010). “The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments”. In: Astronomy and Astrophysics 513, A56, A56. DOI: 10.1051/0004-6361/200912852. arXiv: 0910.4251 [astro-ph.EP].

Guzmán, Viviana V. et al. (Dec. 2018). “The Disk Substructures at High Angu- lar Resolution Program (DSHARP). VIII. The Rich Ringed Substructures in the AS 209 Disk”. In: The Astrophysical Journal Letters 869(2), L48, p. L48. DOI: 10.3847/2041-8213/aaedae. arXiv: 1812.04046 [astro-ph.SR].

Haisch Karl E., Jr., Elizabeth A. Lada, and Charles J. Lada (June 2001). “Disk Frequencies and Lifetimes in Young Clusters”. In: The Astrophysical Journal Letters 553(2), pp. L153–L156. DOI: 10 . 1086 / 320685. arXiv: astro- ph/ 0104347 [astro-ph].

Harris, Robert J. et al. (July 2018). “ALMA Observations of Polarized 872 µm Dust Emission from the Protostellar Systems VLA 1623 and L1527”. In: The Astrophysical Journal 861(2), 91, p. 91. DOI: 10.3847/1538- 4357/ aac6ec. arXiv: 1805.08792 [astro-ph.SR].

Harrison, Rachel E. et al. (May 2019). “Dust Polarization in Four Protoplane- tary Disks at 3 mm: Further Evidence of Multiple Origins”. In: The Astro- physical Journal Letters 877(1), L2, p. L2. DOI: 10.3847/2041-8213/ab1e46. arXiv: 1905.06266 [astro-ph.SR].

Hartmann, Lee et al. (Mar. 1998). “Accretion and the Evolution of T Tauri Disks”. In: The Astrophysical Journal 495(1), pp. 385–400. DOI: 10 . 1086 / 305277.

Hayashi, C. (Jan. 1981). “Formation of the planets”. In: Fundamental Problems in the Theory of Stellar Evolution. Ed. by D. Sugimoto, D. Q. Lamb, and D. N. Schramm. Vol. 93. IAU Symposium, pp. 113–126.

Henning, T. and R. Stognienko (July 1996). “Dust opacities for protoplane- tary accretion disks: influence of dust aggregates.” In: Astronomy and As- trophysics 311, pp. 291–303.

Hernández, Jesús et al. (Dec. 2007). “Spitzer Observations of the Orion OB1 Association: Disk Census in the Low-Mass Stars”. In: The Astrophysical Journal 671(2), pp. 1784–1799. DOI: 10 . 1086 / 522882. arXiv: 0709 . 0912 [astro-ph].

Hillenbrand, Lynne A. (Nov. 2005). “Observational Constraints on Dust Disk Lifetimes: Implications for Planet Formation”. In: arXiv e-prints, astro- ph/0511083, astro–ph/0511083. arXiv: astro-ph/0511083 [astro-ph].

Hiltner, W. A. (Feb. 1949). “Polarization of Radiation from Distant Stars by the Interstellar Medium”. In: Nature 163(4138), p. 283. DOI: 10 . 1038 / 163283a0.

Hoang, Thiem, Jungyeon Cho, and A. Lazarian (Jan. 2018). “Alignment of Ir- regular Grains by Mechanical Torques”. In: The Astrophysical Journal 852(2), 129, p. 129. DOI: 10.3847/1538-4357/aa9edc. arXiv: 1704.02256 [astro-ph.GA].

Hoang, Thiem and A. Lazarian (July 2008). “Radiative torque alignment: es- sential physical processes”. In: Monthly Notice of Royal Astronomical Society 388(1), pp. 117–143. DOI: 10.1111/j.1365- 2966.2008.13249.x. arXiv: 0707.3645 [astro-ph].

Hollenbach, David et al. (June 1994). “Photoevaporation of Disks around Massive Stars and Application to Ultracompact H II Regions”. In: The As- trophysical Journal 428, p. 654. DOI: 10.1086/174276.

Huang, Jane et al. (Jan. 2018a). “CO and Dust Properties in the TW Hya Disk from High-resolution ALMA Observations”. In: The Astrophysical Journal 852(2), 122, p. 122. DOI: 10.3847/1538-4357/aaa1e7. arXiv: 1801.03948 [astro-ph.SR].

Huang, Jane et al. (Dec. 2018b). “The Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of Annular Substruc- tures”. In: The Astrophysical Journal Letters 869(2), L42, p. L42. DOI: 10 . 3847/2041-8213/aaf740. arXiv: 1812.04041 [astro-ph.EP].

Hughes, A. Meredith et al. (Oct. 2009). “Stringent Limits on the Polarized Submillimeter Emission from Protoplanetary Disks”. In: The Astrophysical Journal 704(2), pp. 1204–1217. DOI: 10 . 1088 / 0004 - 637X / 704 / 2 / 1204. arXiv: 0909.1345 [astro-ph.SR].

Hughes, A. Meredith et al. (Apr. 2013). “Interferometric Upper Limits on Mil- limeter Polarization of the Disks around DG Tau, GM Aur, and MWC 480”. In: The Astronomical Journal 145(4), 115, p. 115. DOI: 10.1088/0004- 6256/145/4/115. arXiv: 1302.4745 [astro-ph.SR].

Hull, Charles L. H. and Richard L. Plambeck (June 2015). “The 1.3mm Full- Stokes Polarization System at CARMA”. In: Journal of Astronomical In- strumentation 4, 1550005, p. 1550005. DOI: 10.1142/S2251171715500051. arXiv: 1506.04771 [astro-ph.IM].

Hull, Charles L. H. et al. (June 2018). “ALMA Observations of Polarization from Dust Scattering in the IM Lup Protoplanetary Disk”. In: The Astro- physical Journal 860(1), 82, p. 82. DOI: 10.3847/1538-4357/aabfeb. arXiv: 1804.06269 [astro-ph.SR].

Isella, Andrea, John M. Carpenter, and Anneila I. Sargent (Aug. 2009). “Struc- ture and Evolution of Pre-main-sequence Circumstellar Disks”. In: The Astrophysical Journal 701(1), pp. 260–282. DOI: 10.1088/0004-637X/701/ 1/260. arXiv: 0906.2227 [astro-ph.SR].

Isella, Andrea, John M. Carpenter, and Anneila I. Sargent (May 2010). “Inves- tigating Planet Formation in Circumstellar Disks: CARMA Observations of Ry Tau and Dg Tau”. In: The Astrophysical Journal 714(2), pp. 1746–1761. DOI: 10.1088/0004-637X/714/2/1746. arXiv: 1003.4318 [astro-ph.SR].

Isella, Andrea et al. (Dec. 2010). “Millimeter Imaging of MWC 758: Probing the Disk Structure and Kinematics”. In: The Astrophysical Journal 725(2), pp. 1735–1741. DOI: 10.1088/0004-637X/725/2/1735. arXiv: 1010.3016 [astro-ph.SR].

Isella, Andrea et al. (Dec. 2016). “Ringed Structures of the HD 163296 Pro- toplanetary Disk Revealed by ALMA”. In: Physical Review Letters 117(25), 251101, p. 251101. DOI: 10.1103/PhysRevLett.117.251101.

Jin, Sheng et al. (Feb. 2016). “Modeling Dust Emission of HL Tau Disk Based on Planet-Disk Interactions”. In: The Astrophysical Journal 818(1), 76, p. 76. DOI: 10.3847/0004-637X/818/1/76. arXiv: 1601.00358 [astro-ph.EP].

Johansen, A., A. Youdin, and H. Klahr (June 2009). “Zonal Flows and Long- lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence”. In: The Astrophysical Journal 697(2), pp. 1269–1289. DOI: 10 .1088 / 0004 - 637X/697/2/1269. arXiv: 0811.3937 [astro-ph].

Johansen, Anders et al. (Aug. 2007). “Rapid planetesimal formation in tur- bulent circumstellar disks”. In: Nature 448(7157), pp. 1022–1025. DOI: 10. 1038/nature06086. arXiv: 0708.3890 [astro-ph].

Kanagawa, Kazuhiro D. et al. (June 2015). “Mass Estimates of a Giant Planet in a Protoplanetary Disk from the Gap Structures”. In: The Astrophysical Journal Letters 806(1), L15, p. L15. DOI: 10.1088/2041-8205/806/1/L15. arXiv: 1505.04482 [astro-ph.EP].

Kanagawa, Kazuhiro D. et al. (June 2016). “Mass constraint for a planet in a protoplanetary disk from the gap width”. In: Publications of the Astro- nomical Society of Japan 68(3), 43, p. 43. DOI: 10.1093/pasj/psw037. arXiv: 1603.03853 [astro-ph.EP].

Kataoka, Akimasa, Satoshi Okuzumi, and Ryo Tazaki (Mar. 2019). “Millimeter- wave Polarization Due to Grain Alignment by the Gas Flow in Protoplan- etary Disks”. In: The Astrophysical Journal Letters 874(1), L6, p. L6. DOI: 10.3847/2041-8213/ab0c9a. arXiv: 1903.03529 [astro-ph.EP].

Kataoka, Akimasa et al. (Aug. 2015). “Millimeter-wave Polarization of Pro- toplanetary Disks due to Dust Scattering”. In: The Astrophysical Journal 809(1), 78, p. 78. DOI: 10.1088/0004-637X/809/1/78. arXiv: 1504.04812 [astro-ph.EP].

Kataoka, Akimasa et al. (Mar. 2016a). “Grain Size Constraints on HL Tau with Polarization Signature”. In: The Astrophysical Journal 820(1), 54, p. 54. DOI: 10.3847/0004-637X/820/1/54. arXiv: 1507.08902 [astro-ph.EP].

Kataoka, Akimasa et al. (Nov. 2016b). “Submillimeter Polarization Observa- tion of the Protoplanetary Disk around HD 142527”. In: The Astrophysical Journal Letters 831(2), L12, p. L12. DOI: 10.3847/2041-8205/831/2/L12. arXiv: 1610.06318 [astro-ph.EP].

Kataoka, Akimasa et al. (July 2017). “The Evidence of Radio Polarization Induced by the Radiative Grain Alignment and Self-scattering of Dust Grains in a Protoplanetary Disk”. In: The Astrophysical Journal Letters 844(1), L5, p. L5. DOI: 10.3847/2041-8213/aa7e33. arXiv: 1707.01612 [astro-ph.EP].

Kirchschlager, Florian, Gesa H. M. Bertrang, and Mario Flock (Sept. 2019). “Intrinsic polarization of elongated porous dust grains”. In: Monthly No- tice of Royal Astronomical Society 488(1), pp. 1211–1219. DOI: 10 . 1093 / mnras/stz1763. arXiv: 1906.10699 [astro-ph.EP].

Kitamura, Yoshimi et al. (Dec. 2002). “Investigation of the Physical Properties of Protoplanetary Disks around T Tauri Stars by a 1 Arcsecond Imaging Survey: Evolution and Diversity of the Disks in Their Accretion Stage”. In: The Astrophysical Journal 581(1), pp. 357–380. DOI: 10.1086/344223.

Klahr, H. Hubertus and Thomas Henning (July 1997). “Particle-Trapping Ed- dies in Protoplanetary Accretion Disks”. In: Icarus 128(1), pp. 213–229. DOI: 10.1006/icar.1997.5720.

Kudoh, Takahiro and Kazunari Shibata (Feb. 1997). “Magnetically Driven Jets from Accretion Disks. II. Nonsteady Solutions and Comparison with Steady Solutions”. In: The Astrophysical Journal 476(2), pp. 632–648. DOI: 10.1086/303635.

Kusaka, T., T. Nakano, and C. Hayashi (Dec. 1970). “Growth of Solid Particles in the Primordial Solar Nebula”. In: Progress of Theoretical Physics 44(6), pp. 1580–1595. DOI: 10.1143/PTP.44.1580.

Kwon, Woojin, Leslie W. Looney, and Lee G. Mundy (Nov. 2011). “Resolving the Circumstellar Disk of HL Tauri at Millimeter Wavelengths”. In: The Astrophysical Journal 741(1), 3, p. 3. DOI: 10.1088/0004- 637X/741/1/3. arXiv: 1107.5275 [astro-ph.SR].

Lada, C. J., M. Margulis, and D. Dearborn (Oct. 1984). “The formation and early dynamical evolution of bound stellar systems.” In: The Astrophysical Journal 285, pp. 141–152. DOI: 10.1086/162485.

Lada, Charles J. et al. (Mar. 2006). “Spitzer Observations of IC 348: The Disk Population at 2-3 Million Years”. In: The Astronomical Journal 131(3), pp. 1574– 1607. DOI: 10.1086/499808. arXiv: astro-ph/0511638 [astro-ph].

Larson, Richard B. (Jan. 1969). “Numerical calculations of the dynamics of collapsing proto-star”. In: Monthly Notice of Royal Astronomical Society 145, p. 271. DOI: 10.1093/mnras/145.3.271.

Lay, O. P., J. E. Carlstrom, and R. E. Hills (Nov. 1997). “Constraints on the HL Tauri Protostellar Disk from Millimeter- and Submillimeter-Wave In- terferometry”. In: The Astrophysical Journal 489(2), pp. 917–927. DOI: 10 . 1086/304815.

Lazarian, A. and B. T. Draine (July 1999). “Nuclear Spin Relaxation within Interstellar Grains”. In: The Astrophysical Journal Letters 520(1), pp. L67– L70. DOI: 10.1086/312137. arXiv: astro-ph/9903235 [astro-ph].

Lazarian, A. and Michael Efroimsky (Mar. 1999). “Inelastic dissipation in a freely rotating body: application to cosmic dust alignment”. In: Monthly Notice of Royal Astronomical Society 303(4), pp. 673–684. DOI: 10.1046/j. 1365-8711.1999.02235.x. arXiv: astro-ph/9811040 [astro-ph].

Lazarian, A. and Thiem Hoang (Nov. 2007). “Subsonic Mechanical Align- ment of Irregular Grains”. In: The Astrophysical Journal Letters 669(2), pp. L77– L80. DOI: 10.1086/523849. arXiv: 0707.3805 [astro-ph].

Lee, Chin-Fei et al. (Feb. 2018). “ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks”. In: The Astrophysical Journal 854(1), 56, p. 56. DOI: 10.3847/1538-4357/aaa769. arXiv: 1801.03802 [astro-ph.GA].

Lee, H. M. and B. T. Draine (Mar. 1985). “Infrared extinction and polarization due to partially aligned spheroidal grains : models for the dust toward the BN object.” In: The Astrophysical Journal 290, pp. 211–228. DOI: 10.1086/ 162974.

Lee, Nicholas, Jonathan P. Williams, and Lucas A. Cieza (Aug. 2011). “Pro- toplanetary Disk Masses in IC348: A Rapid Decline in the Population of Small Dust Grains After 1 Myr”. In: The Astrophysical Journal 736(2), 135, p. 135. DOI: 10 . 1088 / 0004 - 637X / 736 / 2 / 135. arXiv: 1105 . 2046 [astro-ph.SR].

Li, Aigen and B. T. Draine (June 2001). “Infrared Emission from Interstel- lar Dust. II. The Diffuse Interstellar Medium”. In: The Astrophysical Jour- nal 554(2), pp. 778–802. DOI: 10.1086/323147. arXiv: astro-ph/0011319 [astro-ph].

Li, Dan et al. (Nov. 2016). “An Ordered Magnetic Field in the Protoplanetary Disk of AB Aur Revealed by Mid-infrared Polarimetry”. In: The Astrophys- ical Journal 832(1), 18, p. 18. DOI: 10.3847/0004- 637X/832/1/18. arXiv: 1609.02493 [astro-ph.EP].

Lin, D. N. C. and J. Papaloizou (Apr. 1980). “On the structure and evolution of the primordial solar nebula”. In: Monthly Notice of Royal Astronomical Society 191, pp. 37–48. DOI: 10.1093/mnras/191.1.37.

Liu, Hauyu Baobab (June 2019). “The Anomalously Low (Sub)Millimeter Spectral Indices of Some Protoplanetary Disks May Be Explained By Dust Self-scattering”. In: The Astrophysical Journal Letters 877(2), L22, p. L22. DOI: 10.3847/2041-8213/ab1f8e. arXiv: 1904.00333 [astro-ph.SR].

Liu, Yao et al. (Nov. 2017). “The properties of the inner disk around HL Tau: Multi-wavelength modeling of the dust emission”. In: Astronomy and As- trophysics 607, A74, A74. DOI: 10 . 1051 / 0004 - 6361 / 201629786. arXiv: 1708.03238 [astro-ph.EP].

Long, Feng et al. (Dec. 2018). “Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region”. In: The Astrophysical Journal 869(1), 17, p. 17. DOI: 10.3847/1538-4357/aae8e1. arXiv: 1810.06044 [astro-ph.SR].

Looney, Leslie W., Lee G. Mundy, and W. J. Welch (Jan. 2000). “Unveiling the Circumstellar Envelope and Disk: A Subarcsecond Survey of Circum- stellar Structures”. In: The Astrophysical Journal 529(1), pp. 477–498. DOI: 10.1086/308239. arXiv: astro-ph/9908301 [astro-ph].

Luhman, K. L. and G. H. Rieke (Nov. 1999). “Low-Mass Star Formation and the Initial Mass Function in the ρ Ophiuchi Cloud Core”. In: The Astro- physical Journal 525(1), pp. 440–465. DOI: 10.1086/307891. arXiv: astro- ph/9905286 [astro-ph].

Lumbreras, Alba M. and Luis A. Zapata (Apr. 2014). “SMA Submillimeter Observations of HL Tau: Revealing a Compact Molecular Outflow”. In: The Astronomical Journal 147(4), 72, p. 72. DOI: 10.1088/0004-6256/147/ 4/72. arXiv: 1401.0455 [astro-ph.GA].

Lynden-Bell, D. and J. E. Pringle (Sept. 1974). “The evolution of viscous discs and the origin of the nebular variables.” In: Monthly Notice of Royal Astro- nomical Society 168, pp. 603–637. DOI: 10.1093/mnras/168.3.603.

Lyra, Wladimir and Min-Kai Lin (Sept. 2013). “Steady State Dust Distribu- tions in Disk Vortices: Observational Predictions and Applications to Tran- sitional Disks”. In: The Astrophysical Journal 775(1), 17, p. 17. DOI: 10.1088/ 0004-637X/775/1/17. arXiv: 1307.3770 [astro-ph.EP].

Mannings, Vincent and James P. Emerson (Mar. 1994). “Dust in discs around T Tauri stars : grain growth ?” In: Monthly Notice of Royal Astronomical Society 267, pp. 361–378. DOI: 10.1093/mnras/267.2.361.

Mathis, J. S., W. Rumpl, and K. H. Nordsieck (Oct. 1977). “The size distribu- tion of interstellar grains.” In: The Astrophysical Journal 217, pp. 425–433. DOI: 10.1086/155591.

McMullin, J. P. et al. (Oct. 2007). “CASA Architecture and Applications”. In: Astronomical Data Analysis Software and Systems XVI. Ed. by R. A. Shaw, F. Hill, and D. J. Bell. Vol. 376. Astronomical Society of the Pacific Confer- ence Series, p. 127.

Min, M., J. W. Hovenier, and A. de Koter (Mar. 2005). “Modeling optical prop- erties of cosmic dust grains using a distribution of hollow spheres”. In: Astronomy and Astrophysics 432(3), pp. 909–920. DOI: 10.1051/0004-6361: 20041920. arXiv: astro-ph/0503068 [astro-ph].

Miotello, A. et al. (Oct. 2016). “Determining protoplanetary disk gas masses from CO isotopologues line observations”. In: Astronomy and Astrophysics 594, A85, A85. DOI: 10.1051/0004- 6361/201628159. arXiv: 1605.07780 [astro-ph.SR].

Miotello, A. et al. (Mar. 2017). “Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion?” In: Astronomy and Astrophysics 599, A113, A113. DOI: 10 . 1051 / 0004 - 6361 / 201629556. arXiv: 1612 . 01538 [astro-ph.SR].

Miotello, A. et al. (Nov. 2018). “Probing the protoplanetary disk gas surface density distribution with 13CO emission”. In: Astronomy and Astrophysics 619, A113, A113. DOI: 10.1051/0004-6361/201833595. arXiv: 1809.00482 [astro-ph.SR].

Mittal, Tushar and Eugene Chiang (Jan. 2015). “Fast Modes and Dusty Horse- shoes in Transitional Disks”. In: The Astrophysical Journal Letters 798(1), L25, p. L25. DOI: 10 . 1088 / 2041 - 8205 / 798 / 1 / L25. arXiv: 1412 . 2135 [astro-ph.EP].

Miyake, Kotaro and Yoshitsugu Nakagawa (Nov. 1993). “Effects of Particle Size Distribution on Opacity Curves of Protoplanetary Disks around T Tauri Stars”. In: Icarus 106(1), pp. 20–41. DOI: 10.1006/icar.1993.1156.

Mundy, Lee G. et al. (June 1996). “Imaging the HL Tauri Disk at lambda = 2.7 Millimeters with the BIMA Array”. In: The Astrophysical Journal Letters 464, p. L169. DOI: 10.1086/310117.

Muto, T. et al. (Apr. 2012). “Discovery of Small-scale Spiral Structures in the Disk of SAO 206462 (HD 135344B): Implications for the Physical State of the Disk from Spiral Density Wave Theory”. In: The Astrophysical Journal Letters 748(2), L22, p. L22. DOI: 10.1088/2041- 8205/748/2/L22. arXiv: 1202.6139 [astro-ph.EP].

Muzerolle, James et al. (Jan. 2010). “A Spitzer Census of Transitional Proto- planetary Disks with AU-scale Inner Holes”. In: The Astrophysical Journal 708(2), pp. 1107–1118. DOI: 10 . 1088 / 0004 - 637X / 708 / 2 / 1107. arXiv: 0911.2704 [astro-ph.SR].

Nagai, H. et al. (June 2016). “ALMA Science Verification Data: Millimeter Continuum Polarimetry of the Bright Radio Quasar 3C 286”. In: The As- trophysical Journal 824(2), 132, p. 132. DOI: 10.3847/0004-637X/824/2/132. arXiv: 1605.00051 [astro-ph.GA].

Natta, A., L. Testi, and S. Randich (June 2006). “Accretion in the ρ-Ophiuchi pre-main sequence stars”. In: Astronomy and Astrophysics 452(1), pp. 245–252. DOI: 10 . 1051 / 0004 - 6361 : 20054706. arXiv: astro - ph / 0602618 [astro-ph].

Natta, A. et al. (Mar. 2004). “A search for evolved dust in Herbig Ae stars”. In: Astronomy and Astrophysics 416, pp. 179–186. DOI: 10.1051/0004- 6361: 20035620. arXiv: astro-ph/0311624 [astro-ph].

Natta, A. et al. (Jan. 2007). “Dust in Protoplanetary Disks: Properties and Evo- lution”. In: Protostars and Planets V. Ed. by Bo Reipurth, David Jewitt, and Klaus Keil, p. 767. arXiv: astro-ph/0602041 [astro-ph].

Öberg, Karin I. et al. (Dec. 2011). “The Ionization Fraction in the DM Tau Protoplanetary Disk”. In: The Astrophysical Journal 743(2), 152, p. 152. DOI: 10.1088/0004-637X/743/2/152. arXiv: 1109.2578 [astro-ph.GA].

Ohashi, Satoshi and Akimasa Kataoka (Oct. 2019). “Radial variations in grain sizes and dust scale heights in the protoplanetary disk around HD 163296 revealed by ALMA polarization observation”. In: arXiv e-prints, arXiv:1910.12868, arXiv:1910.12868. arXiv: 1910.12868 [astro-ph.EP].

Ohashi, Satoshi et al. (Sept. 2018). “Two Different Grain Size Distributions within the Protoplanetary Disk around HD 142527 Revealed by ALMA Polarization Observation”. In: The Astrophysical Journal 864(1), 81, p. 81. DOI: 10.3847/1538-4357/aad632. arXiv: 1807.10776 [astro-ph.EP].

Okuzumi, Satoshi (June 2009). “Electric Charging of Dust Aggregates and its Effect on Dust Coagulation in Protoplanetary Disks”. In: The Astrophysical Journal 698(2), pp. 1122–1135. DOI: 10 . 1088 / 0004 - 637X / 698 / 2 / 1122. arXiv: 0901.2886 [astro-ph.EP].

Okuzumi, Satoshi and Ryo Tazaki (June 2019). “Nonsticky Ice at the Origin of the Uniformly Polarized Submillimeter Emission from the HL Tau Disk”. In: The Astrophysical Journal 878(2), 132, p. 132. DOI: 10.3847/1538-4357/ ab204d. arXiv: 1904.03869 [astro-ph.EP].

Okuzumi, Satoshi et al. (Apr. 2011a). “Electrostatic Barrier Against Dust Growth in Protoplanetary Disks. I. Classifying the Evolution of Size Distribution”. In: The Astrophysical Journal 731(2), 95, p. 95. DOI: 10.1088/0004- 637X/ 731/2/95. arXiv: 1009.3199 [astro-ph.EP].

Okuzumi, Satoshi et al. (Apr. 2011b). “Electrostatic Barrier Against Dust Growth in Protoplanetary Disks. II. Measuring the Size of the “Frozen” Zone”. In: The Astrophysical Journal 731(2), 96, p. 96. DOI: 10.1088/0004-637X/731/ 2/96. arXiv: 1009.3101 [astro-ph.EP].

Okuzumi, Satoshi et al. (June 2012). “Rapid Coagulation of Porous Dust Ag- gregates outside the Snow Line: A Pathway to Successful Icy Planetesimal Formation”. In: The Astrophysical Journal 752(2), 106, p. 106. DOI: 10.1088/ 0004-637X/752/2/106. arXiv: 1204.5035 [astro-ph.EP].

Owen, J. E. et al. (Jan. 2010). “Radiation-hydrodynamic models of X-ray and EUV photoevaporating protoplanetary discs”. In: Monthly Notice of Royal Astronomical Society 401(3), pp. 1415–1428. DOI: 10.1111/j.1365- 2966. 2009.15771.x. arXiv: 0909.4309 [astro-ph.SR].

Pattle, Kate et al. (Sept. 2017). “The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament”. In: The Astrophysical Journal 846(2), 122, p. 122. DOI: 10.3847/1538-4357/aa80e5. arXiv: 1707.05269 [astro-ph.GA].

Pérez, Laura M. et al. (Nov. 2012). “Constraints on the Radial Variation of Grain Growth in the AS 209 Circumstellar Disk”. In: The Astrophysical Jour- nal Letters 760(1), L17, p. L17. DOI: 10.1088/2041-8205/760/1/L17. arXiv: 1210.5252 [astro-ph.SR].

Pérez, Laura M. et al. (Mar. 2014). “Large-scale Asymmetries in the Transi- tional Disks of SAO 206462 and SR 21”. In: The Astrophysical Journal Let- ters 783(1), L13, p. L13. DOI: 10 . 1088 / 2041 - 8205 / 783 / 1 / L13. arXiv: 1402.0832 [astro-ph.SR].

Pérez, Laura M. et al. (Sept. 2016). “Spiral density waves in a young pro- toplanetary disk”. In: Science 353(6307), pp. 1519–1521. DOI: 10 . 1126 / science.aaf8296. arXiv: 1610.05139 [astro-ph.GA].

Piétu, V. et al. (Dec. 2006). “Resolving the inner dust disks surrounding LkCa 15 and MWC 480 at mm wavelengths”. In: Astronomy and Astrophysics 460(3), pp. L43–L47. DOI: 10.1051/0004- 6361:20065968. arXiv: astro-ph/0610200 [astro-ph].

Piétu, V. et al. (Apr. 2014). “Faint disks around classical T Tauri stars: Small but dense enough to form planets”. In: Astronomy and Astrophysics 564, A95, A95. DOI: 10.1051/0004-6361/201322388. arXiv: 1402.5312 [astro-ph.EP].

Pinilla, P., M. Benisty, and T. Birnstiel (Sept. 2012). “Ring shaped dust ac- cumulation in transition disks”. In: Astronomy and Astrophysics 545, A81, A81. DOI: 10.1051/0004-6361/201219315. arXiv: 1207.6485 [astro-ph.EP].

Pinte, C. et al. (Jan. 2016). “Dust and Gas in the Disk of HL Tauri: Surface Density, Dust Settling, and Dust-to-gas Ratio”. In: The Astrophysical Journal 816(1), 25, p. 25. DOI: 10.3847/0004-637X/816/1/25. arXiv: 1508.00584 [astro-ph.SR].

Planck Collaboration et al. (Apr. 2015). “Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust”. In: As- tronomy and Astrophysics 576, A104, A104. DOI: 10 . 1051 / 0004 - 6361 / 201424082. arXiv: 1405.0871 [astro-ph.GA].

Planck Collaboration et al. (Dec. 2016). “Planck intermediate results. XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap”. In: Astronomy and Astrophysics 596, A105, A105. DOI: 10.1051/0004-6361/201628636. arXiv: 1604.01029 [astro-ph.GA].

Pohl, A. et al. (Aug. 2016). “Investigating dust trapping in transition disks with millimeter-wave polarization”. In: Astronomy and Astrophysics 593, A12, A12. DOI: 10 . 1051 / 0004 - 6361 / 201628637. arXiv: 1607 . 00387 [astro-ph.EP].

Pollack, James B. et al. (Feb. 1994). “Composition and Radiative Properties of Grains in Molecular Clouds and Accretion Disks”. In: The Astrophysical Journal 421, p. 615. DOI: 10.1086/173677.

Purcell, E. M. (July 1979). “Suprathermal rotation of interstellar grains.” In: The Astrophysical Journal 231, pp. 404–416. DOI: 10.1086/157204.

Rebull, L. M., S. C. Wolff, and S. E. Strom (Feb. 2004). “Stellar Rotation in Young Clusters: The First 4 Million Years”. In: The Astronomical Journal 127(2), pp. 1029–1051. DOI: 10.1086/380931.

Regály, Zs. et al. (Jan. 2012). “Possible planet-forming regions on submil- limetre images”. In: Monthly Notice of Royal Astronomical Society 419(2), pp. 1701–1712. DOI: 10.1111/j.1365-2966.2011.19834.x. arXiv: 1109.6177 [astro-ph.SR].

Ricci, L. et al. (Mar. 2010). “Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths”. In: As- tronomy and Astrophysics 512, A15, A15. DOI: 10.1051/0004-6361/200913403. arXiv: 0912.3356 [astro-ph.EP].

Ricci, L. et al. (Apr. 2012). “The effect of local optically thick regions in the long-wave emission of young circumstellar disks”. In: Astronomy and As- trophysics 540, A6, A6. DOI: 10.1051/0004-6361/201118296. arXiv: 1202.1802 [astro-ph.GA].

Robitaille, Thomas P. et al. (Apr. 2007). “Interpreting Spectral Energy Dis- tributions from Young Stellar Objects. II. Fitting Observed SEDs Using a Large Grid of Precomputed Models”. In: The Astrophysical Journal Sup- plement Series 169(2), pp. 328–352. DOI: 10 . 1086 / 512039. arXiv: astro- ph/0612690 [astro-ph].

Rodmann, J. et al. (Jan. 2006). “Large dust particles in disks around T Tauri stars”. In: Astronomy and Astrophysics 446(1), pp. 211–221. DOI: 10.1051/ 0004-6361:20054038. arXiv: astro-ph/0509555 [astro-ph].

Rosenfeld, Katherine A. et al. (Sept. 2013a). “A Spatially Resolved Vertical Temperature Gradient in the HD 163296 Disk”. In: The Astrophysical Jour- nal 774(1), 16, p. 16. DOI: 10.1088/0004-637X/774/1/16. arXiv: 1306.6475 [astro-ph.SR].

Rosenfeld, Katherine A. et al. (Oct. 2013b). “The Structure of the Evolved Cir- cumbinary Disk around V4046 Sgr”. In: The Astrophysical Journal 775(2), 136, p. 136. DOI: 10 . 1088 / 0004 - 637X / 775 / 2 / 136. arXiv: 1308 . 4358 [astro-ph.SR].

Ruden, S. P. and D. N. C. Lin (Sept. 1986). “The Global Evolution of the Primordial Solar Nebula”. In: The Astrophysical Journal 308, p. 883. DOI: 10.1086/164559.

Ruden, Steven P. and James B. Pollack (July 1991). “The Dynamical Evolution of the Protosolar Nebula”. In: The Astrophysical Journal 375, p. 740. DOI: 10.1086/170239.

Sadavoy, Sarah I. et al. (June 2018a). “Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623”. In: The Astrophysical Journal 859(2), 165, p. 165. DOI: 10.3847/1538-4357/aac21a. arXiv: 1804.05968 [astro-ph.SR].

Sadavoy, Sarah I. et al. (Dec. 2018b). “Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. II. IRAS 16293-2422”. In: The As- trophysical Journal 869(2), 115, p. 115. DOI: 10.3847/1538- 4357/aaef81. arXiv: 1811.03104 [astro-ph.GA].

Sargent, A. I. and S. V. W. Beckwith (Nov. 1991). “The Molecular Structure around HL Tauri”. In: The Astrophysical Journal Letters 382, p. L31. DOI: 10.1086/186207.

Shakura, N. I. and R. A. Sunyaev (June 1973). “Reprint of 1973A&amp;A. 24..337S. Black holes in binary systems. Observational appearance.” In: Astronomy and Astrophysics 500, pp. 33–51.

Sicilia-Aguilar, Aurora et al. (Feb. 2006). “Disk Evolution in Cep OB2: Results from the Spitzer Space Telescope”. In: The Astrophysical Journal 638(2), pp. 897–919. DOI: 10.1086/498085.

Simon, Jacob B. and Philip J. Armitage (Mar. 2014). “Efficiency of Particle Trapping in the Outer Regions of Protoplanetary Disks”. In: The Astro- physical Journal 784(1), 15, p. 15. DOI: 10 . 1088 / 0004 - 637X / 784 / 1 / 15. arXiv: 1402.1489 [astro-ph.SR].

Stephens, Ian W. et al. (Oct. 2014). “Spatially resolved magnetic field structure in the disk of a T Tauri star”. In: Nature 514(7524), pp. 597–599. DOI: 10. 1038/nature13850. arXiv: 1409.2878 [astro-ph.GA].

Stephens, Ian W. et al. (Dec. 2017). “ALMA Reveals Transition of Polarization Pattern with Wavelength in HL Tau’s Disk”. In: The Astrophysical Journal 851(1), 55, p. 55. DOI: 10 . 3847 / 1538 - 4357 / aa998b. arXiv: 1710 . 04670 [astro-ph.SR].

Stepinski, Tomasz F. (Mar. 1998). “The Solar Nebula as a Process-An Analytic Model”. In: Icarus 132(1), pp. 100–112. DOI: 10.1006/icar.1998.5893.

Strom, Karen M. et al. (May 1989). “Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building”. In: The Astronomical Journal 97, p. 1451. DOI: 10 .1086/115085.

Sung, Hwankyung, John R. Stauffer, and Michael S. Bessell (Oct. 2009). “A Spitzer View of the Young Open Cluster NGC 2264”. In: The Astronomical Journal 138(4), pp. 1116–1136. DOI: 10 . 1088 / 0004 - 6256 / 138 / 4 / 1116. arXiv: 0906.3072 [astro-ph.SR].

Suzuki, Takeru K. and Shu-ichiro Inutsuka (Apr. 2014). “Magnetohydrody- namic Simulations of Global Accretion Disks with Vertical Magnetic Fields”. In: The Astrophysical Journal 784(2), 121, p. 121. DOI: 10.1088/0004-637X/ 784/2/121. arXiv: 1309.6916 [astro-ph.EP].

Takahashi, Sanemichi Z. and Shu-ichiro Inutsuka (Oct. 2014). “Two-component Secular Gravitational Instability in a Protoplanetary Disk: A Possible Mech- anism for Creating Ring-like Structures”. In: The Astrophysical Journal 794(1), 55, p. 55. DOI: 10.1088/0004-637X/794/1/55. arXiv: 1312.6870 [astro-ph.EP].

Tamura, Motohide, J. H. Hough, and Saeko S. Hayashi (July 1995). “1 Mil- limeter Polarimetry of Young Stellar Objects: Low-Mass Protostars and T Tauri Stars”. In: The Astrophysical Journal 448, p. 346. DOI: 10.1086/175965.

Tamura, Motohide et al. (Nov. 1999). “First Detection of Submillimeter Polar- ization from T Tauri Stars”. In: The Astrophysical Journal 525(2), pp. 832– 836. DOI: 10.1086/307953.

Tazaki, Ryo, Alexandre Lazarian, and Hideko Nomura (Apr. 2017). “Radia- tive Grain Alignment In Protoplanetary Disks: Implications for Polari- metric Observations”. In: The Astrophysical Journal 839(1), 56, p. 56. DOI: 10.3847/1538-4357/839/1/56. arXiv: 1701.02063 [astro-ph.EP].

Tazzari, M. et al. (Apr. 2016). “Multiwavelength analysis for interferomet- ric (sub-)mm observations of protoplanetary disks. Radial constraints on the dust properties and the disk structure”. In: Astronomy and Astrophysics 588, A53, A53. DOI: 10.1051/0004- 6361/201527423. arXiv: 1512.05679 [astro-ph.GA].

Testi, L. et al. (June 2001). “Constraints on Properties of the Protoplanetary Disks around UX Orionis and CQ Tauri”. In: The Astrophysical Journal 554(2), pp. 1087–1094. DOI: 10 .1086 / 321406. arXiv: astro- ph/ 0102473 [astro-ph].

Testi, L. et al. (May 2003). “Large grains in the disk of CQ Tau”. In: Astronomy and Astrophysics 403, pp. 323–328. DOI: 10 . 1051 / 0004 - 6361 : 20030362. arXiv: astro-ph/0303420 [astro-ph].

Testi, L. et al. (Jan. 2014). “Dust Evolution in Protoplanetary Disks”. In: Pro- tostars and Planets VI. Ed. by Henrik Beuther et al., p. 339. DOI: 10.2458/ azu_uapress_9780816531240-ch015. arXiv: 1402.1354 [astro-ph.SR].

Tominaga, Ryosuke T., Shu-ichiro Inutsuka, and Sanemichi Z. Takahashi (Jan. 2018). “Non-linear development of secular gravitational instability in pro- toplanetary disks”. In: Publications of the Astronomical Society of Japan 70(1), 3, p. 3. DOI: 10.1093/pasj/psx143. arXiv: 1711.05948 [astro-ph.EP].

Tripathi, Anjali et al. (Aug. 2017). “A millimeter Continuum Size-Luminosity Relationship for Protoplanetary Disks”. In: The Astrophysical Journal 845(1), 44, p. 44. DOI: 10.3847/1538-4357/aa7c62. arXiv: 1706.08977 [astro-ph.EP].

Tsukagoshi, Takashi et al. (Oct. 2016). “A Gap with a Deficit of Large Grains in the Protoplanetary Disk around TW Hya”. In: The Astrophysical Journal Letters 829(2), L35, p. L35. DOI: 10.3847/2041- 8205/829/2/L35. arXiv: 1605.00289 [astro-ph.SR].

Vaillancourt, John E. (Sept. 2006). “Placing Confidence Limits on Polariza- tion Measurements”. In: Publications of the Astronomical Society of the Pacific 118(847), pp. 1340–1343. DOI: 10.1086/507472. arXiv: astro-ph/0603110 [astro-ph].

van der Marel, Nienke et al. (June 2013). “A Major Asymmetric Dust Trap in a Transition Disk”. In: Science 340(6137), pp. 1199–1202. DOI: 10.1126/ science.1236770. arXiv: 1306.1768 [astro-ph.EP].

van Terwisga, S. E. et al. (Aug. 2018). “V1094 Scorpii: A rare giant multi- ringed disk around a T Tauri star”. In: Astronomy and Astrophysics 616, A88, A88. DOI: 10 . 1051 / 0004 - 6361 / 201832862. arXiv: 1805 . 03221 [astro-ph.SR].

Wada, Koji et al. (Sept. 2009). “Collisional Growth Conditions for Dust Ag- gregates”. In: The Astrophysical Journal 702(2), pp. 1490–1501. DOI: 10 . 1088/0004-637X/702/2/1490.

Wada, Koji et al. (Aug. 2011). “The Rebound Condition of Dust Aggregates Revealed by Numerical Simulation of Their Collisions”. In: The Astrophys- ical Journal 737(1), 36, p. 36. DOI: 10.1088/0004-637X/737/1/36.

Warren, Stephen G. and Richard E. Brandt (July 2008). “Optical constants of ice from the ultraviolet to the microwave: A revised compilation”. In: Journal of Geophysical Research (Atmospheres) 113(D14), D14220, p. D14220. DOI: 10.1029/2007JD009744.

Weidenschilling, S. J. (July 1977a). “Aerodynamics of solid bodies in the solar nebula.” In: Monthly Notice of Royal Astronomical Society 180, pp. 57–70. DOI: 10.1093/mnras/180.1.57.

Weidenschilling, S. J. (Sept. 1977b). “The Distribution of Mass in the Plan- etary System and Solar Nebula”. In: Astrophysics and Space Science 51(1), pp. 153–158. DOI: 10.1007/BF00642464.

Welch, Wm. J. et al. (Sept. 2000). “High-Resolution, Wide-Field Imaging of the HL Tauri Environment in 13CO (1-0)”. In: The Astrophysical Journal 540(1), pp. 362–371. DOI: 10.1086/309290.

Whipple, F. L. (Jan. 1972). “On certain aerodynamic processes for asteroids and comets”. In: From Plasma to Planet. Ed. by Aina Elvius, p. 211.

White, Russel J. and Lynne A. Hillenbrand (Dec. 2004). “On the Evolution- ary Status of Class I Stars and Herbig-Haro Energy Sources in Taurus- Auriga”. In: The Astrophysical Journal 616(2), pp. 998–1032. DOI: 10.1086/ 425115. arXiv: astro-ph/0408244 [astro-ph].

Williams, Jonathan P. and William M. J. Best (June 2014). “A Parametric Mod- eling Approach to Measuring the Gas Masses of Circumstellar Disks”. In: The Astrophysical Journal 788(1), 59, p. 59. DOI: 10.1088/0004-637X/788/ 1/59. arXiv: 1312.0151 [astro-ph.EP].

Williams, Jonathan P. et al. (Oct. 2013). “A SCUBA-2 850-µm survey of pro- toplanetary discs in the σ Orionis cluster”. In: Monthly Notice of Royal As- tronomical Society 435(2), pp. 1671–1679. DOI: 10 . 1093 / mnras/ stt1407. arXiv: 1307.7174 [astro-ph.GA].

Wilner, D. J. et al. (May 2000). “VLA Imaging of the Disk Surrounding the Nearby Young Star TW Hydrae”. In: The Astrophysical Journal Letters 534(1), pp. L101–L104. DOI: 10.1086/312642. arXiv: astro-ph/0005019 [astro-ph]. Wilner, D. J. et al. (June 2005). “Toward Planetesimals in the Disk around TW Hydrae: 3.5 Centimeter Dust Emission”. In: The Astrophysical Journal Letters 626(2), pp. L109–L112. DOI: 10 . 1086 / 431757. arXiv: astro- ph/ 0506644 [astro-ph].

Winston, E. et al. (Nov. 2007). “A Combined Spitzer and Chandra Survey of Young Stellar Objects in the Serpens Cloud Core”. In: The Astrophysi- cal Journal 669(1), pp. 493–518. DOI: 10 .1086 / 521384. arXiv: 0707 .2537 [astro-ph].

Wolf, Sebastian and H. Klahr (Oct. 2002). “Large-Scale Vortices in Protoplan- etary Disks: On the Observability of Possible Early Stages of Planet For- mation”. In: The Astrophysical Journal Letters 578(1), pp. L79–L82. DOI: 10. 1086/344501. arXiv: astro-ph/0209002 [astro-ph].

Wolk, Scott J. and Frederick M. Walter (May 1996). “A Search for Protoplane- tary Disks Around Naked T Tauri Stars”. In: The Astronomical Journal 111, p. 2066. DOI: 10.1086/117942.

Yang, Haifeng et al. (Mar. 2016). “Inclination-induced polarization of scat- tered millimetre radiation from protoplanetary discs: the case of HL Tau”. In: Monthly Notice of Royal Astronomical Society 456(3), pp. 2794–2805. DOI: 10.1093/mnras/stv2633. arXiv: 1507.08353 [astro-ph.SR].

Yang, Haifeng et al. (Nov. 2017). “Scattering-produced (sub)millimetre po- larization in inclined discs: optical depth effects, near-far side asymmetry and dust settling”. In: Monthly Notice of Royal Astronomical Society 472(1), pp. 373–388. DOI: 10.1093/mnras/stx1951. arXiv: 1705.05432 [astro-ph.SR].

Yang, Haifeng et al. (Feb. 2019). “Does HL Tau disc polarization in ALMA band 3 come from radiatively aligned grains?” In: Monthly Notice of Royal Astronomical Society 483(2), pp. 2371–2381. DOI: 10.1093/mnras/sty3263. arXiv: 1811.11897 [astro-ph.SR].

Youdin, Andrew N. and Jeremy Goodman (Feb. 2005). “Streaming Instabili- ties in Protoplanetary Disks”. In: The Astrophysical Journal 620(1), pp. 459–469. DOI: 10.1086/426895. arXiv: astro-ph/0409263 [astro-ph].

Youdin, Andrew N. and Frank H. Shu (Nov. 2002). “Planetesimal Formation by Gravitational Instability”. In: The Astrophysical Journal 580(1), pp. 494–505. DOI: 10.1086/343109. arXiv: astro-ph/0207536 [astro-ph]. Zapata, Luis A. et al. (Jan. 2012). “Millimeter Multiplicity in DR21(OH): Out-flows, Molecular Cores, and Envelopes”. In: The Astrophysical Journal 744(2), 86, p. 86. DOI: 10.1088/0004-637X/744/2/86. arXiv: 1109.3153 [astro-ph.GA].

Zapata, Luis A. et al. (Jan. 2015a). “Kinematics of the Outflow from the Young Star DG Tau B: Rotation in the Vicinities of an Optical Jet”. In: The Astro- physical Journal 798(2), 131, p. 131. DOI: 10.1088/0004-637X/798/2/131. arXiv: 1411.0173 [astro-ph.SR].

Zapata, Luis A. et al. (Sept. 2015b). “Origin and Kinematics of the Eruptive Flow from XZ Tau Revealed by ALMA”. In: The Astrophysical Journal Let- ters 811(1), L4, p. L4. DOI: 10.1088/2041- 8205/811/1/L4. arXiv: 1509.00316 [astro-ph.SR].

Zhang, Shangjia et al. (Dec. 2018). “The Disk Substructures at High Angu- lar Resolution Project (DSHARP). VII. The Planet-Disk Interactions In- terpretation”. In: The Astrophysical Journal Letters 869(2), L47, p. L47. DOI: 10.3847/2041-8213/aaf744. arXiv: 1812.04045 [astro-ph.EP].

Zhu, Zhaohuan and James M. Stone (Nov. 2014). “Dust Trapping by Vortices in Transitional Disks: Evidence for Non-ideal Magnetohydrodynamic Ef- fects in Protoplanetary Disks”. In: The Astrophysical Journal 795(1), 53, p. 53. DOI: 10.1088/0004-637X/795/1/53. arXiv: 1405.2790 [astro-ph.SR].

Zhu, Zhaohuan et al. (Apr. 2014). “Particle Concentration at Planet-induced Gap Edges and Vortices. I. Inviscid Three-dimensional Hydro Disks”. In: The Astrophysical Journal 785(2), 122, p. 122. DOI: 10 . 1088 / 0004 - 637X/ 785/2/122. arXiv: 1308.0648 [astro-ph.EP].

Zhu, Zhaohuan et al. (June 2019). “One Solution to the Mass Budget Problem for Planet Formation: Optically Thick Disks with Dust Scattering”. In: The Astrophysical Journal Letters 877(2), L18, p. L18. DOI: 10.3847/2041-8213/ ab1f8c. arXiv: 1904.02127 [astro-ph.EP].

Zsom, A. et al. (Apr. 2010). “The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing bar- rier”. In: Astronomy and Astrophysics 513, A57, A57. DOI: 10.1051/0004- 6361/200912976. arXiv: 1001.0488 [astro-ph.EP].

Zsom, A. et al. (Oct. 2011). “The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. III. Sedimentation driven coagula- tion inside the snowline”. In: Astronomy and Astrophysics 534, A73, A73. DOI: 10.1051/0004-6361/201116515. arXiv: 1107.5198 [astro-ph.EP].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る