リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Antimicrobial-resistant bacteria isolated from urban rodents and house shrews in Vietnam and Indonesia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Antimicrobial-resistant bacteria isolated from urban rodents and house shrews in Vietnam and Indonesia

レ フィ ホアン 東京大学 DOI:10.15083/0002006391

2023.03.24

概要






















フィ

ホアン

LE HUY HOANG

薬剤耐性菌の出現は、ヒトの医療現場や獣医療分野で治療薬の選択制限が生じ、世界的に重
要な問題となっている。ヒトや家畜、コンパニオンアニマルに抗菌剤が使用されることで出現
した薬剤耐性菌が環境中へ拡散し薬剤耐性菌に感染した小型哺乳類(げっ歯類およびスンク
ス)の報告が複数ある。これら小型哺乳類は環境中にある薬剤耐性菌の汚染状況を示す指標と
なり、さらに環境中の薬剤耐性菌がヒトを含む哺乳類へ感染するリスクの指標にも成り得る。
ヒトや家畜から発生した薬剤耐性菌の市中における汚染状況を把握することは、今後の拡散防
止策を考える上で重要である。そこで本研究では、抗菌剤の使用方法および使用量が懸念され
ているベトナムおよびインドネシアにおいて、薬剤耐性菌の汚染度および蔓延状況を明らかに
することを目的として、市中に生息する小型哺乳類が保有する薬剤耐性菌の調査解析を行って
いた。
第1章では、ベトナム、ハノイ市の病院、市場、集荷場において、ベトナム国立衛生疫学研
究所の協力のもと 144 匹の小型哺乳類を捕獲し、薬剤耐性大腸菌の分離後、薬剤耐性解析およ
び薬剤耐性遺伝子検出を行った結果、病院からは 45.2%(14/31)、市場 41.9%(36/86)、集荷
場 33.3%(9/27)、計 59 薬剤耐性大腸菌分離株を獲得していた。アンピシリン耐性菌が最も
多く 79.7%(47/59)、次いでテトラサイクリン耐性菌 78%(46/59)であった。このうち、
作用機序の異なる3種類以上の抗菌剤に対する耐性を有する多剤耐性菌は 71.2%(42/59)と
報告していた。薬剤耐性遺伝子検出でもアンピシリンを含むβラクタム耐性遺伝子の検出率が
69.5%(41/59)、テトラサイクリン耐性遺伝子が 74.6%(44/59)で高かった。加えて、基
質特異性拡張型βラクタマーゼ(ESBL)産生大腸菌が4株、コリスチン耐性大腸菌も5株検出
していた。小型哺乳類からコリスチン耐性大腸菌が報告されるのは本研究が初めてとなる。ま
た、駆除を目的として病院で捕獲される小型哺乳類の数が多く、その多剤耐性菌保有率も高
く、院内でのヒトへの感染拡大が懸念され、衛生面の改善を強く求める結果となっていた。
次に第2章では、ベトナムの調査と同様の調査をインドネシア、ボゴール市内の市場で実施
し、87 匹から 20 株の薬剤耐性大腸菌を獲得した。ベトナムの結果同様にアンピシリン耐性菌
(75%: 15/20)とテトラサイクリン耐性菌(85%: 17/20)が多く、多剤耐性菌は 40%
(8/20)であった。薬剤耐性遺伝子検出もβラクタム耐性遺伝子の検出率が 75%(15/20)、
テトラサイクリン耐性遺伝子が 85%(17/20)で高かった。一方、プラスミドを介した薬剤耐

性菌である ESBL 産生大腸菌とコリスチン耐性大腸菌の検出は見られなかった。インドネシア
における小型哺乳類が保有する薬剤耐性菌の研究報告は 1988 年以来実施されておらず約 30
年ぶりの研究となり大変貴重なデータとなっていた。また、多剤耐性菌が増加しており、環境
中の薬剤耐性菌の汚染が広がっている結果となっていた。
第3章では、これまでの検体を用いて病原性細菌の調査を行い、ベトナム検体から下痢病原
性大腸菌2株、サルモネラ菌0株、黄色ブドウ球菌8株が分離され、インドネシア検体から下
痢病原性大腸菌0株、サルモネラ菌4株、黄色ブドウ球菌16株が分離されていた。遺伝子検
出の結果、下痢病原性大腸菌は腸管凝集接着性大腸菌と腸管侵入性大腸菌に分類された。性状
解析では、サルモネラ菌は全て薬剤感受性株で、ベトナムから分離された1株がメチシリン耐
性黄色ブドウ球菌と分類された。
これまで小型哺乳類を対象とした調査では標的病原菌が絞られて報告されていたが、本研究
では3章を通して大腸菌(ESBL 産生菌、コリスチン 耐性菌を含む)、サルモネラ属菌、黄色
ブドウ球菌と複数の薬剤耐性菌の調査を実施したことで、薬剤耐性菌の由来(ヒト、家畜、コ
ンパニオンアニマルなど)を多角的に推察することができる点が重要であった。今後は、本研
究と同様に同一調査地域から複数の薬剤耐性菌を調査し、多くのデータを回収する疫学手法が
主軸となっていくと思われる。また、環境中に拡散している薬剤耐性大腸菌が小型哺乳類に感
染することからヒトへ感染するリスクも十分に考えられるため、小型哺乳類を薬剤耐性菌汚染
調査の指標にしたことはとても興味深く、今後も薬剤耐性菌の疫学調査に活用されることが期
待される。最後に今後の課題として、小型哺乳類が保有する薬剤耐性菌分離による浸淫調査だ
けでなく、定量的に保菌量を調べ、小型哺乳類の薬剤耐性菌増幅動物としての役割を明らかに
することの必要性を提言していた。ヒトの死因が 2050 年には癌を超えて、薬剤耐性菌が原因
となると予測されているデータもあり、これらの研究成果は学術上かつ地球規模での公衆衛生
対策上寄与するところが少なくない。よって、審査委員一同は本論文が博士(農学)の学位論
文として価値のあるものと認めた。

この論文で使われている画像

参考文献

1.

Bennett, P.M., Plasmid encoded antibiotic resistance: acquisition and transfer of

antibiotic resistance genes in bacteria. British journal of pharmacology, 2008. 153

Suppl 1: p. S347-S357.

2.

Lorenz, M.G. and W. Wackernagel, Bacterial gene transfer by natural genetic

transformation in the environment. Microbiological reviews, 1994. 58(3): p. 563-602.

3.

Clokie, M.R., et al., Phages in nature. Bacteriophage, 2011. 1(1): p. 31-45.

4.

Colavecchio, A., et al., Bacteriophages Contribute to the Spread of Antibiotic

Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family – A

Review. Frontiers in Microbiology, 2017. 8: p. 1108-1108.

5.

Gillings, M., et al., The evolution of class 1 integrons and the rise of antibiotic

resistance. Journal of bacteriology, 2008. 190(14): p. 5095-5100.

6.

Philippon, A., G. Paul, and P. Nevot, Mechanism of enzymatic resistance to beta-lactam

antibiotics. La Presse médicale, 1986. 15(46): p. 2290-6.

7.

Shaw, W.V., D.W. Bentley, and L. Sands, Mechanism of Chloramphenicol Resistance

in Staphylococcus epidermidis. Journal of bacteriology, 1970. 104(3): p. 1095-1105.

8.

Ramirez, M.S. and M.E. Tolmasky, Aminoglycoside modifying enzymes. Drug

resistance updates : reviews and commentaries in antimicrobial and anticancer

chemotherapy, 2010. 13(6): p. 151-171.

9.

DeMarco, C.E., et al., Efflux-related resistance to norfloxacin, dyes, and biocides in

bloodstream isolates of Staphylococcus aureus.

Antimicrobial agents and

chemotherapy, 2007. 51(9): p. 3235-3239.

10.

Møller, T.S.B., et al., Relation between tetR and tetA expression in tetracycline

resistant Escherichia coli. BMC microbiology, 2016. 16: p. 39-39.

82

11.

Munita, J.M. and C.A. Arias, Mechanisms of Antibiotic Resistance. Microbiology

spectrum, 2016. 4(2): p. 10.1128/microbiolspec.VMBF-0016-2015.

12.

Flensburg, J. and O. SkÖLd, Massive overproduction of dihydrofolate reductase in

bacteria as a response to the use of trimethoprim. European Journal of Biochemistry,

1987. 162(3): p. 473-476.

13.

Tomlinson, J.H., et al., A target-protection mechanism of antibiotic resistance at atomic

resolution: insights into FusB-type fusidic acid resistance. Scientific Reports, 2016. 6:

p. 19524.

14.

WHO, The world health report 2007 - A safer future: global public health security in

the 21st century

15.

Singer, A.C., et al., Review of Antimicrobial Resistance in the Environment and Its

Relevance to Environmental Regulators. Frontiers in microbiology, 2016. 7: p. 17281728.

16.

Le-Minh, N., et al., Fate of antibiotics during municipal water recycling treatment

processes. Water Research, 2010. 44(15): p. 4295-323.

17.

Kraemer, S.A., A. Ramachandran, and G.G. Perron, Antibiotic Pollution in the

Environment: From Microbial Ecology to Public Policy. Microorganisms, 2019. 7(6):

p. 180.

18.

Gelband, H., et al., The State of the World’s Antibiotics 2015. Wound Healing Southern

Africa, 2015. 8: p. 30-34.

19.

Chee-Sanford, J.C., et al., Occurrence and diversity of tetracycline resistance genes in

lagoons and groundwater underlying two swine production facilities. Applied and

environmental microbiology, 2001. 67(4): p. 1494-1502.

83

20.

Hayes, J.R., et al., Multiple-antibiotic resistance of Enterococcus spp. isolated from

commercial

poultry

production

environments.

Applied

and

environmental

microbiology, 2004. 70(10): p. 6005-6011.

21.

Manyi-Loh, C., et al., Antibiotic Use in Agriculture and Its Consequential Resistance

in Environmental Sources: Potential Public Health Implications. Molecules (Basel,

Switzerland), 2018. 23(4): p. 795.

22.

WHO, High levels of antibiotic resistance found worldwide, new data shows. 2018.

23.

Centres for Disease Control and Prevention, US Department of Health and Human

Services. Antibiotic resistance threats in the United States. Atlanta. 2013.

24.

ECDC/EMEA, The bacterial challenge: time to react. Stockholm: European Center for

Disease Prevention and Control. 2009.

25.

WHO, Global Report on Surveillance: Antimicrobial Resistance. 2014. p. 1-7.

26.

WHO, Antimicrobial resistance in Viet Nam. Available from:

https://www.who.int/vietnam/health-topics/antimicrobial-resistance.

27.

Van, T.D., et al., Antibiotic susceptibility and molecular epidemiology of Acinetobacter

calcoaceticus-baumannii complex strains isolated from a referral hospital in northern

Vietnam. Journal of global antimicrobial resistance, 2014. 2(4): p. 318-321.

28.

Phu, V., et al., Burden of Hospital Acquired Infections and Antimicrobial Use in

Vietnamese Adult Intensive Care Units. PloS one, 2016. 11: p. e0147544.

29.

Parathon, H., et al., Progress towards antimicrobial resistance containment and control

in Indonesia. BMJ (Clinical research edition), 2017. 358: p. j3808-j3808.

30.

Lestari, E.S., et al., Antimicrobial resistance among commensal isolates of Escherichia

coli and Staphylococcus aureus in the Indonesian population inside and outside

hospitals. European Journal of Clinical Microbiology & Infectious Diseases, 2007.

27(1): p. 45.

84

31.

Mendes, R., et al., Regional Resistance Surveillance Program Results for Twelve AsiaPacific Nations (2011). Antimicrobial agents and chemotherapy, 2013. 57: p. 57215726.

32.

Xu, Y., et al., Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during

2000-2012 in Asia. Journal of thoracic disease, 2015. 7: p. 376-85.

33.

Karuniawati, A., Y. Saharman, and D. Lestari, Detection of Carbapenemase Encoding

Genes in Enterobacteriace, Pseudomonas aeruginosa, and Acinetobacter baumanii

Isolated from Patients at Intensive Care Unit Cipto Mangunkusumo Hospital in 2011.

Acta medica Indonesiana, 2013. 45: p. 101-6.

34.

O’Neill, J., Antimicrobial Resistance: Tackling a crisis for the health and wealth of

nations. 2014.

35.

WHO, Global action plan on antimicrobial resistance. 2015.

36.

US CDC, Combating Antimicrobial Resistance in Vietnam. 2018; Available from:

https://www.cdc.gov/drugresistance/solutions-initiative/stories/tracking-resistance-invietnam.html.

37.

WHO, FAO, OEI, Country progress in the implementation of the global action plan on

antimicrobial resistance: WHO, FAO and OIE launch global tripartite database. 2017.

38.

WHO, Antimicrobial resistance: global report on surveillance 2014.

39.

Furness, L., et al., Wild small mammals as sentinels for the environmental transmission

of antimicrobial resistance. Environmental research, 2016. 154: p. 28-34.

40.

Argudín, M.A., et al., Bacteria from Animals as a Pool of Antimicrobial Resistance

Genes. Antibiotics (Basel, Switzerland), 2017. 6(2): p. 12.

41.

Literak, I., et al., Highly Variable Patterns of Antimicrobial Resistance in Commensal

Escherichia coli Isolates from Pigs, Sympatric Rodents, and Flies. Microbial Drug

Resistance, 2009. 15(3): p. 229-237.

85

42.

Kozak, G.K., et al., Antimicrobial resistance in Escherichia coli isolates from swine

and wild small mammals in the proximity of swine farms and in natural environments

in Ontario, Canada. Applied and Environmental Microbiology, 2009. 75(3): p. 559-66.

43.

Rolland, R.M., et al., Antibiotic-resistant bacteria in wild primates: increased

prevalence in baboons feeding on human refuse. Applied and Environmental

Microbiology, 1985. 49(4): p. 791.

44.

Literak, I., et al., Reservoirs of antibiotic-resistant Enterobacteriaceae among animals

sympatric to humans in Senegal: extended-spectrum beta-lactamases in bacteria in a

black rat (Rattus rattus). African Journal of Microbiology Research, 2009. 3: p. 751754.

45.

Guenther, S., C. Ewers, and L.H. Wieler, Extended-Spectrum Beta-Lactamases

Producing E. coli in Wildlife, yet Another Form of Environmental Pollution? Frontiers

in microbiology, 2011. 2: p. 246-246.

46.

Himsworth, C.G., et al., Prevalence and characteristics of Escherichia Coli and

Salmonella spp. in the feces of wild urban norway and black rats (Rattus norvegicus

and Rattus rattus) from an inner-city neighborhood of Vancouver, Canada. Journal of

Wildlife Diseases, 2015. 51(3): p. 589-600.

47.

Hamidi, K., How do Rodents Play Role in Transmission of Foodborne Diseases?

Nutrition & Food Science International Journal, 2018. 6: p. e555683.

48.

Blanco Crivelli, X., et al., Detection and characterization of enteropathogenic and

Shiga toxin-producing Escherichia coli strains in Rattus spp. from Buenos Aires.

Frontiers in Microbiology, 2018. 9: p. 199.

49.

Hoelzer, K., A.I. Moreno Switt, and M. Wiedmann, Animal contact as a source of

human non-typhoidal salmonellosis. Veterinary research, 2011. 42(1): p. 34-34.

86

50.

Healing, T.D., Salmonella in rodents: a risk to man? CDR (London, England : Review)

1991. 1(10): p. R114-6.

51.

Yokoyama, E., et al., Prevalence and genetic properties of Salmonella enterica serovar

typhimurium definitive phage type 104 isolated from Rattus norvegicus and Rattus

rattus house rats in Yokohama City, Japan. Applied and environmental microbiology,

2007. 73(8): p. 2624-2630.

52.

Meerburg, B.G., et al., Presence of Salmonella and Campylobacter spp. in wild small

mammals on organic farms. Applied and environmental microbiology, 2006. 72(1): p.

960-962.

53.

Singh, S.P., M.S. Sethi, and V.D. Sharma, The occurrence of salmonellae in rodent,

shrew, cockroach and ant. The International Journal of Zoonoses, 1980. 7(1): p. 58-61.

54.

Shimi, A., M. Keyhani, and K. Hedayati, Studies on salmonellosis in the house mouse,

Mus musculus. LabAnimal, 1979. 13(1): p. 33-4.

55.

Phan, T., et al., Prevalence of Salmonella spp. in Rice-Field Rats in the Mekong Delta,

Vietnam. Journal of Veterinary Epidemiology, 2005. 9: p. 85-88.

56.

Ribas, A., et al., Rodents as a Source of Salmonella Contamination in Wet Markets in

Thailand. Vector borne and zoonotic diseases (Larchmont, N.Y.), 2016. 16(8): p. 537540.

57.

Hilton, A.C., R.J. Willis, and S.J. Hickie, Isolation of Salmonella from urban wild

brown rats (Rattus norvegicus) in the West Midlands, UK. International Journal of

Environmental Research and Public Health, 2002. 12(2): p. 163-8.

58.

Gómez Villafañe, I., et al., Assessment of the risks of rats (Rattus norvegicus) and

opossums (Didelphis albiventris) in different poultry-rearing areas in Argentina.

Brazilian Journal of Microbiology (2004), 2004. 35: p. 359-363.

87

59.

Gorski, L., et al., Prevalence, distribution, and diversity of Salmonella enterica in a

major produce region of California. Applied and Environmental Microbiology, 2011.

77(8): p. 2734-48.

60.

Paterson, G.K., E.M. Harrison, and M.A. Holmes, The emergence of mecC methicillinresistant Staphylococcus aureus. Trends in Microbiology, 2014. 22(1): p. 42-7.

61.

Mrochen, D.M., et al., Wild rodents and shrews are natural hosts of Staphylococcus

aureus. International Journal of Medical Microbiology, 2018. 308(6): p. 590-597.

62.

Peacock, S.J. and G.K. Paterson, Mechanisms of Methicillin Resistance in

Staphylococcus aureus. Annual Review of Biochemistry, 2015. 84: p. 577-601.

63.

Couto, I., et al., Ubiquitous presence of a mecA homologue in natural isolates of

Staphylococcus sciuri. Microbial Drug Resistance, 1996. 2(4): p. 377-91.

64.

Schnellmann, C., et al., Presence of new mecA and mph(C) variants conferring

antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and

after clinic admission. Journal of Clinical Microbiology, 2006. 44(12): p. 4444-54.

65.

Loncaric, I., et al., Identification and characterization of methicillin-resistant

Staphylococcus aureus (MRSA) from Austrian companion animals and horses.

Veterinary Microbiology, 2014. 168(2-4): p. 381-7.

66.

Vincze, S., et al., Alarming proportions of methicillin-resistant Staphylococcus aureus

(MRSA) in wound samples from companion animals, Germany 2010-2012. PLoS One,

2014. 9(1): p. e85656.

67.

Fitzgerald, J.R., Livestock-associated Staphylococcus aureus: origin, evolution and

public health threat. Trends in Microbiology, 2012. 20(4): p. 192-8.

68.

Porrero, M.C., et al., Methicillin resistant Staphylococcus aureus (MRSA) carriage in

different free-living wild animal species in Spain. The Veterinary Journal, 2013. 198(1):

p. 127-30.

88

69.

Bown, K.J., et al., The common shrew (Sorex araneus): a neglected host of tick-borne

infections? Vector-Borne and Zoonotic Diseases, 2011. 11(7): p. 947-53.

70.

Van de Giessen, A.W., et al., Occurrence of methicillin-resistant Staphylococcus

aureus in rats living on pig farms. Preventive Veterinary Medicine, 2009. 91(2-4): p.

270-3.

71.

Himsworth, C.G., et al., Carriage of methicillin-resistant Staphylococcus aureus by

wild urban Norway rats (Rattus norvegicus). PLoS One, 2014. 9(2): p. e87983.

72.

Ge, J., et al., Methicillin-resistant Staphylococcus aureus among urban rodents, house

shrews, and patients in Guangzhou, Southern China. BMC Veterinary Research, 2019.

15(1): p. 260.

73.

Burriel, A.R., S.K. Kritas, and V. Kontos, Some microbiological aspects of rats

captured alive at the port city of Piraeus, Greece. International Journal of

Environmental Research and Public Health, 2008. 18(2): p. 159-64.

74.

Guenther, S., et al., Is fecal carriage of extended-spectrum-β-lactamase-producing

Escherichia coli in urban rats a risk for public health? Antimicrobial agents and

chemotherapy, 2013. 57(5): p. 2424-2425.

75.

Guenther, S., et al., Frequent combination of antimicrobial multiresistance and

extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus

norvegicus) in Berlin, Germany. PLoS One, 2012. 7(11): p. e50331.

76.

Nhung, N.T., et al., High levels of antimicrobial resistance among escherichia coli

isolates from livestock farms and synanthropic rats and shrews in the Mekong Delta of

Vietnam. Applied and Environmental Microbiology, 2015. 81(3): p. 812-20.

77.

Rothenburger, J., et al., Environmental Factors and Zoonotic Pathogen Ecology in

Urban Exploiter Species. EcoHealth, 2017. 14: p. 630-641.

89

78.

Duong, H.A., et al., Occurrence, fate and antibiotic resistance of fluoroquinolone

antibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere, 2008. 72(6):

p. 968-73.

79.

Harada, K., [Antibiotic Residue in Environmental Water in Vietnam]. Yakugaku Zasshi,

2018. 138(3): p. 271-275.

80.

Le, Q.P., et al., Characteristics of Extended-Spectrum β-Lactamase–Producing

Escherichia coli in Retail Meats and Shrimp at a Local Market in Vietnam. Foodborne

Pathogens and Disease, 2015. 12(8): p. 719-725.

81.

Nguyen, D.P., et al., Dissemination of Extended-Spectrum β-Lactamase- and AmpC βLactamase-Producing Escherichia coli within the Food Distribution System of Ho Chi

Minh City, Vietnam. BioMed research international, 2016. 2016: p. 8182096-8182096.

82.

Nguyen, V.T., et al., Limited contribution of non-intensive chicken farming to ESBLproducing Escherichia coli colonization in humans in Vietnam: an epidemiological and

genomic analysis. Journal of Antimicrobial Chemotherapy, 2019. 74(3): p. 561-570.

83.

Liu, Y.Y., et al., Emergence of plasmid-mediated colistin resistance mechanism MCR1 in animals and human beings in China: a microbiological and molecular biological

study. The Lancet Infectious Diseases, 2016. 16(2): p. 161-8.

84.

Gharaibeh, M.H. and S.Q. Shatnawi, An overview of colistin resistance, mobilized

colistin resistance genes dissemination, global responses, and the alternatives to

colistin: A review. Veterinary world, 2019. 12(11): p. 1735-1746.

85.

Yamamoto, Y., et al., Wide dissemination of colistin-resistant Escherichia coli with the

mobile resistance gene mcr in healthy residents in Vietnam. Journal of Antimicrobial

Chemotherapy, 2019. 74(2): p. 523-524.

90

86.

Trung, N.V., et al., Zoonotic Transmission of mcr-1 Colistin Resistance Gene from

Small-Scale Poultry Farms, Vietnam. Emerging infectious diseases, 2017. 23(3): p.

529-532.

87.

Yasuda, S., et al., Phylogeographic patterning of mtDNA in the widely distributed

harvest mouse (Micromys minutus) suggests dramatic cycles of range contraction and

expansion during the mid- to late Pleistocene. Canadian Journal of Zoology, 2005. 83:

p. 1411-1420.

88.

Choo, J.M., L.E.X. Leong, and G.B. Rogers, Sample storage conditions significantly

influence faecal microbiome profiles. Scientific Reports, 2015. 5: p. 16350.

89.

Vandepitte, J., et al., Basic laboratory procedures in clinical bacteriology. 2003, WHO:

Geneva. p. 37-54.

90.

Molina, F., et al., Improved detection of Escherichia coli and coliform bacteria by

multiplex PCR. BMC Biotechnology, 2015. 15: p. 48.

91.

CLSI, Performance standards for antimicrobial susceptibility testing; 21st

informational supplement. CLSI/NCCLS M100S-S21. 2011, Wayne, PA.: Clinical and

Laboratory Standards Institute.

92.

Kaur, J., et al., Modified Double Disc Synergy Test to Detect ESBL Production in

Urinary Isolates of Escherichia coli and Klebsiella pneumoniae. Journal of clinical and

diagnostic research : JCDR, 2013. 7(2): p. 229-233.

93.

Wang, M., et al., Plasmid-mediated quinolone resistance in clinical isolates of

Escherichia coli from Shanghai, China. Antimicrobial agents and chemotherapy, 2003.

47(7): p. 2242-2248.

94.

Pitout, J.D.D., A. Hossain, and N.D. Hanson, Phenotypic and molecular detection of

CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. Journal of

clinical microbiology, 2004. 42(12): p. 5715-5721.

91

95.

Xavier, B.B., et al., Identification of a novel plasmid-mediated colistin-resistance gene,

mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance, 2016. 21(27): p.

30280.

96.

Gakuya, F.M., et al., Antimicrobial susceptibility and plasmids from Escherichia coli

isolated from rats. East African Medical Journal, 2001. 78(10): p. 518-22.

97.

Saputra, S., et al., Antimicrobial resistance in clinical Escherichia coli isolated from

companion animals in Australia. Veterinary Microbiology, 2017. 211: p. 43-50.

98.

The GARP-Vietnam National Working Group, Situation analysis. Antibiotic use and

resistance in Vietnam. 2010.

99.

Carrique-Mas, J.J., et al., Antimicrobial Usage in Chicken Production in the Mekong

Delta of Vietnam. Zoonoses and Public Health, 2015. 62(s1): p. 70-78.

100.

Ho, P., et al., Clonal diversity of CTX-M-producing, multidrug-resistant Escherichia

coli from rodents. Journal of medical microbiology, 2015. 64(185‐190).

101.

Ewers, C., et al., Extended-spectrum β-lactamase-producing and AmpC-producing

Escherichia coli from livestock and companion animals, and their putative impact on

public health: a global perspective. Clinical Microbiology and Infection, 2012. 18(7):

p. 646-655.

102.

Nakayama, T., et al., Wide dissemination of extended-spectrum β-lactamase-producing

Escherichia coli in community residents in the Indochinese peninsula. Infection and

Drug Resistance, 2015. 8: p. 1-5.

103.

Allen, S.E., et al., Antimicrobial resistance in generic Escherichia coli isolates from

wild small mammals living in swine farm, residential, landfill, and natural

environments in Southern Ontario, Canada. Applied and Environmental Microbiology,

2011. 77(3): p. 882-888.

92

104.

Bajpai, T., et al., Prevalence of TEM, SHV, and CTX-M beta-lactamase genes in the

urinary isolates of a tertiary care hospital. Avicenna Journal of Medicine, 2017. 7(1):

p. 12-16.

105.

Hooper, D.C. and G.A. Jacoby, Mechanisms of drug resistance: quinolone resistance.

Annals of the New York Academy of Sciences, 2015. 1354: p. 12-31.

106.

Kurnia, R., et al., Molecular detection of genes encoding resistance to tetracycline and

determination of plasmid-mediated resistance to quinolones in avian pathogenic

Escherichia coli in Sukabumi, Indonesia. Veterinary World, 2018. 11: p. 1581-1586.

107.

Singleton, G., et al., Rodent Outbreaks : Ecology and Impacts. 2010: International Rice

Research Institute. 289.

108.

Graves, S.R., et al., Antibiotic-resistance patterns of enteric bacteria of wild mammals

on the Krakatau islands and west Java, Indonesia. Philosophical Transactions of the

Royal Society of London. Series B, Biological Sciences, 1988. 322(1211): p. 339-53.

109.

React groups, Antibiotic Use in Food Animals: Indonesia Overview. 2018.

110.

Usui, M., et al., Antimicrobial Susceptibility of Indicator Bacteria Isolated from

Chickens in Southeast Asian Countries (Vietnam, Indonesia and Thailand). The Journal

of Veterinary Medical Science, 2014. 76(5): p. 685-692.

111.

Maria Fatima, P., et al., Prevalence of Mcr-1 Colistin Resistance Gene in Escherichia

Coli Along Broiler Meat Supply Chain in Indonesia. Biotropia, 2019. 26(2): p. 143-153.

112.

Sudarwanto, M.B., et al., CTX-M producing Escherichia coli isolated from cattle feces

in Bogor slaughterhouse, Indonesia. Asian Pacific Journal of Tropical Biomedicine,

2016. 6(7): p. 605-608.

113.

Kallau, N.H.G., et al., Detection of multi-drug resistant (MDR) Escherichia coli and tet

gene prevalence at a pig farm in Kupang , Indonesia. Journal of Advanced Veterinary

and Animal Research, 2018. 5(4): p. 388-396.

93

114.

Linacre, A. and J. Lee, Species determination: the role and use of the cytochrome b

gene. Methods in molecular biology (Clifton, N.J.), 2005. 297: p. 45-52.

115.

Subekti, D.S., et al., Prevalence of enterotoxigenic Escherichia coli (ETEC) in

hospitalized acute diarrhea patients in Denpasar, Bali, Indonesia. Journal of Advanced

Veterinary and Animal Research, 2003. 47(2): p. 399-405.

116.

Nkogwe, C., et al., Frequency of detection of Escherichia coli, Salmonella spp., and

Campylobacter spp. in the faeces of wild rats (Rattus spp.) in Trinidad and Tobago.

Veterinary Medicine International, 2011. 2011: p. 686923.

117.

Diarra, M.S., et al., Impact of feed supplementation with antimicrobial agents on

growth performance of broiler chickens, Clostridium perfringens and enterococcus

counts, and antibiotic resistance phenotypes and distribution of antimicrobial

resistance determinants in Escherichia coli isolates. Applied and environmental

microbiology, 2007. 73(20): p. 6566-6576.

118.

Gilliver, M.A., et al., Enterobacteria: Antibiotic Resistance Found in Wild Rodents.

Nature, 1999. 401: p. 233-4.

119.

Duerink, D.O., et al., Determinants of carriage of resistant Escherichia coli in the

Indonesian population inside and outside hospitals. Journal of Antimicrobial

Chemotherapy, 2007. 60(2): p. 377-384.

120.

Hadi, U., et al., Survey of antibiotic use of individuals visiting public healthcare

facilities in Indonesia. International Journal of Infectious Diseases, 2008. 12(6): p. 622629.

121.

Fletcher, S., Understanding the contribution of environmental factors in the spread of

antimicrobial resistance. Environmental health and preventive medicine, 2015. 20(4):

p. 243-252.

94

122.

Valdezate, S., et al., Resistance gene pool to co-trimoxazole in non-susceptible

Nocardia strains. Frontiers in Microbiology, 2015. 6(376).

123.

Rahman, H., et al., Genotypic and Antibiotic Resistance Patterns of blaTEM, blaCTX

and blaSHV Producing Klebsiella pneumoniae Isolates in Abdul Moeloek Hospital,

Lampung, Indonesia. IOSR Journal of Dental and Medical Sciences 2017. 16: p. 6-11.

124.

Kristianingtyas, L., et al., Genetic Identification of bla ctx-M Gene and bla tem Gene

on Extended Spectrum Beta Lactamase (ESBL) Producing Escherichia Coli from Dogs.

The Indian veterinary journal, 2020. 97: p. 17-21.

125.

Gomes, T.A.T., et al., Diarrheagenic Escherichia coli. Brazilian journal of

microbiology, 2016. 47 (Suppl 1): p. 3-30.

126.

Nataro, J.P. and J.B. Kaper, Diarrheagenic Escherichia coli. Clinical Microbiology

Reviews, 1998. 11(1): p. 142.

127.

Scavia, G., et al., Enteroaggregative Escherichia coli associated with a foodborne

outbreak of gastroenteritis. Journal of Medical Microbiology, 2008. 57(9): p. 11411146.

128.

Pai, M., et al., An epidemic of diarrhoea in south India caused by enteroaggregative

Escherichia coli. Indian Journal of Medical Research, 1997. 106: p. 7-12.

129.

Itoh, Y., et al., Laboratory investigation of enteroaggregative Escherichia coli O

untypeable:H10 associated with a massive outbreak of gastrointestinal illness. Journal

of Clinical Microbiology, 1997. 35(10): p. 2546.

130.

Cobeljić, M., et al., Enteroaggregative Escherichia coli associated with an outbreak of

diarrhoea in a neonatal nursery ward. Epidemiology and infection, 1996. 117(1): p.

11-16.

95

131.

Blanco Crivelli, X., et al., Synanthropic rodents as possible reservoirs of shigatoxigenic

Escherichia coli strains. Frontiers in cellular and infection microbiology, 2012. 2: p.

134-134.

132.

Stanaway, J.D., et al., The global burden of non-typhoidal salmonella invasive disease:

a systematic analysis for the Global Burden of Disease Study 2017. The Lancet

Infectious Diseases, 2019. 19(12): p. 1312-1324.

133.

Andino, A. and I. Hanning, Salmonella enterica: survival, colonization, and virulence

differences among serovars. TheScientificWorldJournal, 2015. 2015: p. 520179520179.

134.

WHO, Foodborne diseases burden epidemiology reference group 2007-2015. 2015.

135.

Kadariya, J., T.C. Smith, and D. Thapaliya, Staphylococcus aureus and staphylococcal

food-borne disease: an ongoing challenge in public health. BioMed research

international, 2014. 2014: p. 827965-827965.

136.

Murray, R.J., Recognition and management of Staphylococcus aureus toxin-mediated

disease. Internal Medicine Journal, 2005. 35(s2): p. S106-S119.

137.

Scallan, E., et al., Factors associated with seeking medical care and submitting a stool

sample in estimating the burden of foodborne illness. Foodborne Pathogen and

Diseases, 2006. 3(4): p. 432-8.

138.

Dayan, G.H., et al., Staphylococcus aureus: the current state of disease,

pathophysiology and strategies for prevention. Expert Review of Vaccines, 2016.

15(11): p. 1373-1392.

139.

Holmes, N.E. and B.P. Howden, What's new in the treatment of serious MRSA

infection? Current Opinion in Infectious Diseases, 2014. 27(6): p. 471-8.

96

140.

Pathmanathan, S.G., et al., Simple and rapid detection of Salmonella strains by direct

PCR amplification of the hilA gene. Journal of medical microbiology, 2003. 52: p. 7736.

141.

McClure, J.-A., et al., Novel multiplex PCR assay for detection of the staphylococcal

virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination

of methicillin-susceptible from -resistant staphylococci. Journal of clinical

microbiology, 2006. 44(3): p. 1141-1144.

142.

Nguyen, T.D., T.T. Vo, and H. Vu-Khac, Virulence factors in Escherichia coli isolated

from calves with diarrhea in Vietnam. Journal of Veterinary Science, 2011. 12(2): p.

159-164.

143.

Sary, K., et al., Antimicrobial Resistance and Virulence Gene Profiles Among

Escherichia coli Isolates from Retail Chicken Carcasses in Vietnam. Foodborne

Pathogens and Disease, 2019. 16: p. 298-306.

144.

Trung, N.V., et al., Colonization of Enteroaggregative Escherichia coli and Shiga

toxin-producing Escherichia coli in chickens and humans in southern Vietnam. BMC

microbiology, 2016. 16(1): p. 208-208.

145.

Lapuz, R., et al., The role of roof rats ( Rattus rattus) in the spread of Salmonella

Enteritidis and S. Infantis contamination in layer farms in eastern Japan. Epidemiology

and infection, 2008. 136(9): p. 1235-1243.

146.

Webster, J.P. and D.W. Macdonald, Parasites of wild brown rats (Rattus norvegicus)

on UK farms. Parasitology, 1995. 111(3): p. 247-255.

147.

Schulz, D., et al., Laboratory Mice Are Frequently Colonized with Staphylococcus

aureus and Mount a Systemic Immune Response-Note of Caution for In vivo Infection

Experiments. Frontiers in cellular and infection microbiology, 2017. 7: p. 152-152.

97

148.

Jay-Russell, M. and M. Doyle, Food Safety Risks from Wildlife: Challenges in

Agriculture, Conservation, and Public Health. 2016.

149.

Van Nguyen, K., et al., Staphylococcus aureus nasopharyngeal carriage in rural and

urban northern Vietnam. Transactions of The Royal Society of Tropical Medicine and

Hygiene, 2014. 108(12): p. 783-790.

150.

Lina,

G.,

et

al.,

Involvement

of

Panton-Valentine

Leukocidin—Producing

Staphylococcus aureus in Primary Skin Infections and Pneumonia. Clinical Infectious

Diseases, 1999. 29(5): p. 1128-1132.

151.

Koizumi, N., et al., Molecular epidemiology of Leptospira interrogans in Rattus

norvegicus in Hanoi, Vietnam. Acta Tropica, 2019. 194: p. 204-208.

152.

Hotta, K., et al., Prevalence and phylogenetic analysis of Orientia tsutsugamushi in

small mammals in Hanoi, Vietnam. Vector-Borne and Zoonotic Diseases, 2016. 16(2):

p. 96-102.

153.

Zhang, Y.-Z., et al., Hantaviruses in rodents and humans, Inner Mongolia Autonomous

Region, China. Emerging infectious diseases, 2009. 15(6): p. 885-891.

154.

Panchalingam, S., et al., Diagnostic microbiologic methods in the GEMS-1 case/control

study. Clinical Infectious Diseases, 2012. 55 Suppl 4: p. S294-302.

155.

Toma, C., et al., Multiplex PCR assay for identification of human diarrheagenic

Escherichia coli. Journal of clinical microbiology, 2003. 41(6): p. 2669-2671.

156.

Nguyen, K., et al., Antibiotic use and resistance in emerging economies: A situation

analysis for Viet Nam. BMC public health, 2013. 13: p. 1158.

157.

Biedenbach, D.J., et al., Antimicrobial susceptibility and extended-spectrum betalactamase rates in aerobic gram-negative bacteria causing intra-abdominal infections

in Vietnam: report from the Study for Monitoring Antimicrobial Resistance Trends

98

(SMART 2009–2011). Diagnostic Microbiology and Infectious Disease, 2014. 79(4): p.

463-467.

158.

Kusumaningrum, H., Suliantari, and R. Dewanti-Hariyadi, Multidrug resistance among

different serotypes of Salmonella isolates from fresh products in Indonesia.

International Food Research Journal, 2012. 19: p. 57-63.

99

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る