リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「On a singular limit of the Kobayashi–Warren–Carter energy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

On a singular limit of the Kobayashi–Warren–Carter energy

Giga, Yoshikazu Okamoto, Jun Sakakibara, Koya Uesaka, Masaaki 北海道大学

2022.06.09

概要

By introducing a new topology, a representation formula of the Gamma limit of the Kobayashi–Warren–Carter energy is given in a multi-dimensional domain. A key step is to study the Gamma limit of a single-well Modica–Mortola functional. The convergence introduced here is called the sliced graph convergence, which is finer than conventional L1 convergence, and the problem is reduced to a one-dimensional setting by a slicing argument.

この論文で使われている画像

参考文献

[AHM] M. Alfaro, D. Hilhorst, H. Matano, The singular limit of the Allen–Cahn equation and the FitzHugh–Nagumo system. J. Differential Equations 245, no. 2 (2008), 505–565.

[AFP] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.

[AT] L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990), no. 8, 999–1036.

[AT2] L. Ambrosio and V. M. Tortorelli, On the approximation of free discontinuity prob- lems. Boll. Un. Mat. Ital. B (7) 6 (1992), no. 1, 105–123.

[AF] J.-P. Aubin and H. Frankowska, Set-valued analysis. Modern Birkh¨auser Classics. Birkh¨auser Boston, Inc., Boston, MA, 2009.

[BMR] J.-F. Babadjian, V. Millot and R. Rodiac, On the convergence of critical points of the Ambrosio–Tortorelli functional. Lecture at the workshop “Free boundary problems and related evolution equations” organized by G. Bellettini et al., Erwin Schr¨odinger Institute, Feb. 21–25, 2022, Vienna.

[BLM] M. Bonnivard, A. Lemenant and V. Millot, On a phase field approximation of the planar Steiner problem: Existence, regularity, and asymptotic of minimizers. Interfaces Free Bound. 20 (2018), no. 1, 69–106.

[BL] L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics. J. Differential Equations 90 (1991), no. 2, 211–237.

[XC] X. Chen, Generation and propagation of interfaces for reaction-diffusion equations. J. Differential Equations 96 (1992), no. 1, 116–141.

[CFHP1] R. Cristoferi, I. Fonseca, A. Hagerty and C. Popovici, A homogenization result in the gradient theory of phase transitions. Interfaces Free Bound. 21 (2019), no. 3, 367–408.

[CFHP2] R. Cristoferi, I. Fonseca, A. Hagerty and C. Popovici, Erratum to: A homogeniza- tion result in the gradient theory of phase transitions. Interfaces Free Bound. 22 (2020), no. 2, 245–250.

[ELM] Y. Epshteyn, C. Liu, and M. Mizuno, Motion of grain boundaries with dynamic lattice misorientations and with triple junctions drag. SIAM J. Math. Anal. 53 (2021), 3072–3097.

[ESS] L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45 (1992), no. 9, 1097–1123.

[Fe] H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wis- senschaften, Band 153 Springer-Verlag New York Inc., New York, 1969.

[FL] I. Fonseca and P. Liu, The weighted Ambrosio–Tortorelli approximation scheme. SIAM J. Math. Anal. 49 (2017), 4491–4520.

[FLS] G. A. Francfort, N. Q. Le and S. Serfaty, Critical points of Ambrosio–Tortorelli converge to critical points of Mumford–Shah in the one-dimensional Dirichlet case. ESAIM Control Optim. Calc. Var. 15 (2009), no. 3, 576–598.

[FMa] G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimiza- tion problem. J. Mech. Phys. Solids 46 (1998), no. 8, 1319–1342.

[GaSp] A. Garroni and E. Spadaro, Derivation of surface tension of grain boundaries in polycystals. Lecture at the workshop “Free boundary problems and related evolu- tion equations” organized by G. Bellettini et al., Erwin Schr¨odinger Institute, Feb. 21–25, 2022, Vienna.

[Gia] A. Giacomini, Ambrosio–Tortorelli approximation of quasi-static evolution of brit- tle fractures. Calc. Var. Partial Differential Equations 22 (2005), no. 2, 129–172.

[G] Y. Giga, Surface Evolution Equations: A Level Set Approach. Monogr. Math. 99, Birkh¨auser, Basel, 2006.

[GOU] Y. Giga, J. Okamoto and M. Uesaka, A finer singular limit of a single-well Modica– Mortola functional and its applications to the Kobayashi–Warren–Carter energy. Adv. Calc. Var., published online (2021).

[HT] J. E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals–Cahn–Hilliard theory. Calc. Var. Partial Differential Equations 10 (2000), no. 1, 49–84.

[IKY] A. Ito, N. Kenmochi and N. Yamazaki, A phase-field model of grain boundary motion. Appl. Math. 53 (2008), no. 5, 433–454.

[KG] R. Kobayashi and Y. Giga, Equations with singular diffusivity. J. Stat. Phys. 95 (1999), no. 5–6, 1187–1220.

[KWC1] R. Kobayashi, J. A. Warren and W. C. Carter, A continuum model of grain bound- aries. Phys. D 140 (2000), no. 1–2, 141–150.

[KWC2] R. Kobayashi, J. A. Warren and W. C. Carter, Grain boundary model and singu- lar diffusivity. in: Free Boundary Problems: Theory and Applications, GAKUTO Internat. Ser. Math. Sci. Appl. 14, Gakk¯otosho, Tokyo (2000), 283–294.

[KWC3] R. Kobayashi, J. A. Warren and W. C. Carter, Modeling grain boundaries using a phase field technique. J. Crystal Growth 211 (2000), no. 1–4, 18–20.

[KS] R. V. Kohn and P. Sternberg, Local minimisers and singular perturbations. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 1–2, 69–84.

[LL] G. Lauteri and S. Luckhaus, An energy estimate for dislocation configurations and the emergence of Cosserat-type structures in metal plasticity. arXiv: 1608.06155 (2016).

[LSt] N. Q. Le and P. J. Sternberg, Asymptotic behavior of Allen–Cahn-type energies and Neumann eigenvalues via inner variations. Ann. Mat. Pura Appl. 198 (2019), no. 4, 1257–1293.

[LS] A. Lemenant and F. Santambrogio, A Modica–Mortola approximation for the Steiner problem. C. R. Math. Acad. Sci. Paris 352 (2014), no. 5, 451–454.

[M] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987), no. 2, 123–142.

[MM1] L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977), no. 1, 285–299.

[MM2] L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977), no. 3, 526–529.

[MoSh] S. Moll and K. Shirakawa, Existence of solutions to the Kobayashi–Warren–Carter system. Calc. Var. Partial Differential Equations 51 (2014), no. 3–4, 621–656.

[MoShW1] S. Moll, K. Shirakawa and H. Watanabe, Energy dissipative solutions to the Kobayashi–Warren–Carter system. Nonlinearity 30 (2017), no. 7, 2752–2784.

[MoShW2] S. Moll, K. Shirakawa and H. Watanabe, Kobayashi–Warren–Carter type systems with nonhomogeneous Dirichlet boundary data for crystalline orientation, in prepa- ration.

[MSch] P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995), no. 5, 1533–1589.

[O] J. Okamoto, Convergence of some non-convex energies under various topology, PhD Thesis, The University of Tokyo (2022).

[SWat] K. Shirakawa and H. Watanabe, Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete Contin. Dyn. Syst. Ser. S 7 (2014), no. 1, 139–159.

[SWY] K. Shirakawa, H. Watanabe and N. Yamazaki, Solvability of one-dimensional phase field systems associated with grain boundary motion. Math. Ann. 356 (2013), no. 1, 301–330.

[Sim] L. Simon, Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National Uni- versity, Centre for Mathematical Analysis, Canberra, 1983.

[St] P. Sternberg, The effect of a singular perturbation on nonconvex variational prob- lems. Arch. Ration. Mech. Anal. 101 (1988), no. 3, 209–260.

[To] Y. Tonegawa, Brakke’s Mean Curvature Flow: An Introduction, SpringerBriefs in Mathematics. Springer Nature, Singapore, 2019.

[WSh] H. Watanabe and K. Shirakawa, Qualitative properties of a one-dimensional phase- field system associated with grain boundary, in: Nonlinear Analysis in Inter- disciplinary Sciences – Modellings, Theory and Simulations, GAKUTO Inter- nat. Ser. Math. Sci. Appl. 36, Gakk¯otosho, Tokyo (2013), 301–328.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る