リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「20番染色体母性片親性ダイソミーの臨床像および内分泌的特徴の解明」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

20番染色体母性片親性ダイソミーの臨床像および内分泌的特徴の解明

川嶋 明香 東北大学

2021.03.25

概要

20番染色体母性片親性ダイソミー[maternal uniparental disomy for chromosome 20, UPD(20)mat]は,20番染色体が2本とも母親から由来する状態である.20番染色体長腕に位置するGNAS領域には複数のインプリント遺伝子が存在する.インプリント遺伝子とは片親性に発現する遺伝子のことである.UPD(20)matは20番染色体上のインプリント遺伝子の発現異常を引き起こす.この疾患の患者の一部は出生前および出生後の成長障害や特徴的な顔貌を呈するSilver-Russell症候群(Silver Russell syndrome, SRS)や在胎不当過小性低身長症(small for gestational age-short stature, SGA-SS)と似た表現型を示すことが報告されている.しかし,非モザイク例のUPD(20)matは10例の報告があるのみであり,SRSやSGA-SSにおけるUPD(20)matの頻度や詳細な臨床像は不明である.また,UPD(20)matと鏡像関係となる20番染色体父性片親性ダイソミーはGNAS遺伝子がコードするGタンパク質αサブユニット(Gsα)の活性低下によって副甲状腺ホルモン(parathyroid hormone, PTH)や甲状腺刺激ホルモン(thyroid stimulating hormone, TSH)に対するホルモン抵抗性を来すが,UPD(20)mat患者の内分泌学的評価はなされていない.

そこで今回我々は,遺伝学的原因不明のSRS患者55名および遺伝学的原因不明のSGA-SS患者96名に対してUPD(20)matのスクリーニングを行い,それぞれ3名,1名のUPD(20)mat患者を同定した.さらに低身長および発達遅滞に対する遺伝学的解析で診断された1名のUPD(20)mat患者を加えて,5名のUPD(20)mat患者について内分泌学的検討を含めた臨床像の検討を行った.全ての患者は出生後の成長障害を,5名中4名の患者はSGAを呈した.5名全員が哺乳不良や摂食不良またはBody Mass Index低値を示した.3名の患者がSRSの臨床診断基準であるNetchine-Harbison clinical scoring system (NH-CSS)6項目中4項目以上を満たして臨床的にSRSと診断された.残り2名はNH-CSSの3項目を満たすに留まった.2名の患者は軽度の高カルシウム血症およびインタクトPTH低値あるいは正常下限に近い値を示した.別の1名の患者では5歳時にはTSH値正常だったが,徐々にTSH値が低下し,12歳以降は低値が持続していた.これらの内分泌的異常はGNAS遺伝子がコードするGsαの発現過剰による環状アデノシン一リン酸の増加がホルモン受容体の感受性を増加させた結果引き起こされている可能性がある.

遺伝学的原因不明のSRSの約5%,遺伝学的原因不明のSGA-SSの1%程度にUPD(20)matが存在する可能性がある.本研究はUPD(20)matが年齢とともに徐々に発症するホルモン受容体の感受性亢進と関連している可能性があることを示す.本研究の知見はGNAS遺伝子座を含む20番染色体上のインプリント遺伝子の機能の理解に役立つ.

この論文で使われている画像

参考文献

1. Eggermann T, Perez de Nanclares G, Maher ER, et al: Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clinical Epigenetics 2015;7:123

2. Surani MA, Barton SC, Norris ML: Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984;308:548– 550

3. McGrath J, Solter D: Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37:179–183

4. Nicholls RD, Knoll JH, Butler MG, et al: Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature 1989 ;342:281–285

5. Barlow DP, Stöger R, Herrmann BG, et al: The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 1991;349:84–87

6. DeChiara TM, Robertson EJ, Efstratiadis A: Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991;64:849–859

7. Bartolomei MS, Zemel S, Tilghman SM: Parental imprinting of the mouse H19 gene. Nature 1991;351:153–155

8. Elhamamsy AR. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet 2017;34:549–562

9. Li E, Beard C, Jaenisch R: Role for DNA methylation in genomic imprinting. Nature 1993;366:362–365

10. Engel E: A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am J Med Genet 1980;6:137–143

11. Robinson WP, Langlois S, Schuffenhauer S, et al: Cytogenetic and age-dependent risk factors associated with uniparental disomy 15. Prenat Diagn 1996;16:837–844

12. Robinson WP: Mechanisms leading to uniparental disomy and their clinical consequences. BioEssays 2000;22: 452–459

13. Nakka P, Pattillo Smith S, O'Donnell-Luria AH, et al: Characterization of Prevalence and Health Consequences of Uniparental Disomy in Four Million Individuals from the General Population. Am J Hum Genet 2019;105:921–932

14. Matsubara K, Kagami M, Fukami M: Uniparental disomy as a cause of pediatric endocrine disorders. Clin Pediatr Endocrinol 2018;27:113–121

15. Wakeling EL, Brioude F, Lokulo-Sodipe O, et al: Diagnosis and management of Silver–Russell syndrome: first international consensus statement. Nat Rev Endocrinol 2017;13:105–124

16. Silver HK, Kiyasu W, George J, Deamer WC: Syndrome of congenital 42 hemihypertrophy, shortness of stature, and elevated urinary gonadotropins. Pediatrics. 1953;12:368–76

17. Russel A: A syndrome of intra-uterine dwarfism recognizable at birth with craniofacial dysostosis, disproportionately short arms, and other anomalies (5 examples). Proc R Soc Med 1954;47:1040–1044

18. Azzi S, Salem J, Thibaud N, et al: A prospective study validating a clinical scoring system and demonstrating phenotypical-genotypical correlations in Silver-Russell syndrome. J Med Genet 2015; 52: 446–453

19. Fuke T, Mizuno S, Nagai T, et al: Molecular and Clinical Studies in 138 Japanese Patients with Silver-Russell Syndrome. PLoS One 2013;8: e60105

20. Fuke T, Nakamura A, Inoue T, et al: Role of imprinting disorders in short children born SGA and Silver-Russell syndrome spectrum. J Clin Endocrinol Metab 2020; dgaa856

21. Inoue T, Nakamura A, Fuke T, et al: Genetic heterogeneity of patients with suspected Silver-Russell syndrome: genome-wide copy number analysis in 82 patients without imprinting defects. Clin Epigenetics. 2017;9:52

22. Turan S, Bastepe M: GNAS spectrum of disorders. Curr Osteoporos Rep 2015;13:146–158.

23. Hayward BE, Moran V, Strain L, et al: Bidirectional imprinting of a single gene: 43 GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc Natl Acad Sci U S A 1998; 95: 15475–15480

24. Germain-Lee EL, Ding CL, Deng Z, et al: Paternal imprinting of Galpha(s) in the human thyroid as the basis of TSH resistance in pseudohypoparathyroidism type 1a. Biochem Biophys Res Commun 2002;296:67–72

25. Mantovani G, Ballare E, Giammona E, et al: The gsalpha gene: predominant maternal origin of transcription in human thyroid gland and gonads. J Clin Endocrinol Metab 2002;87:4736–4740

26. Wang Y, Tian H, Chen X: The Distinct Role of the Extra Large G Protein ɑ Subunit XLɑs. Calcif Tissue Int 2020;107:212–219

27. Kelsey G: Imprinting on Chromosome 20: Tissue-Specific Imprinting and Imprinting Mutations in the GNAS Locus. Am J Med Genet C Semin Med Genet 2010;154C:377–386

28. Sparber P, Filatova A, Khantemirova M, et al: The role of long non-coding RNAs in the pathogenesis of hereditary diseases. BMC Med Genomics 2019;12(Suppl 2):42

29. Bastepe M, Lane AH, Jüppner H: Paternal uniparental isodisomy of chromosome 20q--and the resulting changes in GNAS1 methylation--as a plausible cause of pseudohypoparathyroidism. Am J Hum Genet 2001;68:1283–1289

30. Takatani R, Minagawa M, Molinaro A, et al: Similar frequency of paternal uniparental disomy involving chromosome 20q (patUPD20q) in Japanese and Caucasian patients affected by sporadic pseudohypoparathyroidism type Ib (sporPHP1B). Bone 2015;79:15–20

31. Colson C, Decamp M, Gruchy N, et al: High frequency of paternal iso or heterodisomy at chromosome 20 associated with sporadic pseudohypoparathyroidism 1B. Bone 2019;123:145–152

32. Sano S, Iwata H, Matsubara K, et al: Growth hormone deficiency in monozygotic twins with autosomal dominant pseudohypoparathyroidism type Ib. Endocr J 2015;62:523–529.

33. Chudoba I, Franke Y, Senger G, et al: Maternal UPD 20 in a hyperactive child with severe growth retardation. Eur J Hum Genet 1999;7:533–540

34. Salafsky IS, MacGregor SN, Claussen U, et al: Maternal UPD 20 in an infant from a pregnancy with mosaic trisomy 20. Prenat Diagn 2001;21:860–863

35. Velissariou V, Antoniadi T, Gyftodimou J, et al: Maternal uniparental isodisomy 20 in a foetus with trisomy 20 mosaicism: clinical, cytogenetic and molecular analysis. Eur J Hum Genet 2002;10:694–698

36. Eggermann T, Mergenthaler S, Eggermann K, et al: Identification of interstitial maternal uniparental disomy (UPD) (14) and complete maternal UPD(20) in a 45 cohort of growth retarded patients. J Med Genet 2001;38:86–89

37. Mulchandani S, Bhoj EJ, Luo M, et al: Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure. Genet Med 2016;18:309–315

38. Wood AJ, Schulz R, Woodfine K, et al: Regulation of alternative polyadenylation by genomic imprinting. Genes Dev 2008;22:1141–1146

39. Evans HK, Wylie AA, Murphy SK, et al: The neuronatin gene resides in a "microimprinted" domain on human chromosome 20q11.2. Genomics 2001;77:99–104

40. Li J, Bench AJ, Vassiliou GS, et al: Imprinting of the human L3MBTL gene, a polycomb family member located in a region of chromosome 20 deleted in human myeloid malignancies. Proc Natl Acad Sci U S A 2004;101:7341–7346

41. Plagge A, Gordon E, Dean W, et al: The imprinted signaling protein XL a s is required for postnatal adaptation to feeding. Nat Genet 2004;36:818–826

42. Xie T, Plagge A, Gavrilova O, et al: The alternative stimulatory G protein αsubunit XLalphas is a critical regulator of energy and glucose metabolism and sympathetic nerve activity in adult mice. J Biol Chem 2006;281:18989–18999

43. Genevi`eve D, Sanlaville D, Faivre L, et al: Paternal deletion of the GNAS imprinted locus (including Gnasxl) in two girls presenting with severe pre- and post-natal growth retardation and intractable feeding difficulties. Eur J Hum 46 Genet 2005;13:1033–1039

44. Richard N, Molin A, Coudray N, et al: Paternal GNAS Mutations Lead to Severe Intrauterine Growth Retardation (IUGR) and Provide Evidence for a Role of XLαs in Fetal Development. J Clin Endocrinol Metab. 2013;98:E1549–1556

45. Ball ST, Kelly ML, Robson JE, et al: Gene Dosage Effects at the Imprinted Gnas Cluster. PLoS One 2013;8:e65639

46. Sparber P, Filatova A, Khantemirova M, et al: The role of long non-coding RNAs in the pathogenesis of hereditary diseases. BMC Med Genomics 2019;12:42

47. Liu J, Litman D, Rosenberg MJ, et al: A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest 2000;106:1167–1174

48. Lombardi L, Blanchet C, Poirier K, et al: Anorexia nervosa is associated with Neuronatin variants. Psychiatr Genet 2019;29:103–110

49. Millership SJ, Tunster SJ, Van de Pette M, et al: Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice. Mol Metab 2018;18:97–106

50. Braun JL, Geromella MS, Hamstra SI, et al: Neuronatin regulates whole‐body metabolism: is thermogenesis involved? FASEB Bioadv 2020;2:579–586

51. Turan S, Fernandez-Rebollo E, Aydin C, et al: Postnatal establishment of allelic Gαs silencing as a plausible explanation for delayed onset of parathyroid 47 hormone resistance owing to heterozygous Gαs disruption. J Bone Miner Res 2014;29:749–760

52. Usardi A, Mamoune A, Nattes E, et al: Progressive Development of PTH Resistance in Patients With Inactivating Mutations on the Maternal Allele of GNAS. J Clin Endocrinol Metab 2017;102:1844–1850

53. Barr DG, Stirling HF, Darling JA. Evolution of pseudohypoparathyroidism: an informative family study. Arch Dis Child 1994;70:337–338

54. Bel Lassen P, Kyrilli A, Lytrivi M, et al: Graves' disease, multinodular goiter and subclinical hyperthyroidism. Ann Endocrinol (Paris). 2019;80:240–249

55. Perna F, Vu LP, Themeli M, et al: The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells. Stem Cell Reports 2015;4:658–669

56. Poole, RL, Docherty LE, Sayegh AA, et al: Targeted Methylation Testing of a Patient Cohort Broadens the Epigenetic and Clinical Description of Imprinting Disorders. Am J Med Genet Part A 2013;161A:2174–2182

57. Ulaner GA, Yang Y, Hu JF, et al: CTCF Binding at the Insulin-Like Growth Factor-II (IGF2)/H19 Imprinting Control Region Is Insufficient to Regulate IGF2/H19 Expression in Human Tissues. Endocrinology 2003;144:4420–4426

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る