リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Large-scale clustering of light small particles in developed turbulence」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Large-scale clustering of light small particles in developed turbulence

Oka, Sunao 大阪大学

2021.03.17

概要

Small solid particles, droplets, and bubbles can form clusters in turbulent flows by the action of coherent vortices. This phenomenon, sometimes called the preferential concentration, was often thought to be most conspicuous when the velocity relaxation time τp of particles is comparable with the Kolmogorov time τ η. However, since high-Reynolds number turbulence consists of coherent eddies with different timescales, particles can form clusters even when τ p ≫ τ η. We demonstrate, by direct numerical simulations, that light particles with different τp values form clusters around axes of coherent vortices with different sizes in developed turbulence.

この論文で使われている画像

参考文献

1 S. Balachandar and J. K. Eaton, “Turbulent dispersed multiphase flow,” Annu. Rev. Fluid Mech. 42, 111 (2010).

2 K. Gustavsson and B. Mehlig, “Statistical models for spatial patterns of heavy particles in turbulence,” Adv. Phys. 65, 1 (2016).

3 R. A. Shaw, “Particle-turbulence interactions in atmospheric clouds,” Annu. Rev. Fluid Mech. 35, 183 (2003).

4 P. A. Vaillancourt and M. K. Yau, “Review of particle-turbulence interactions and consequences for cloud physics,” Bull. Am. Met. Soc. 81, 285 (2000).

5 I. Saito and T. Gotoh, “Turbulence and cloud droplets in cumulus clouds,” New J. Phys. 20, 023001 (2018).

6 J. N. Cuzzi, R. C. Hogan, J. M. Paque, and A. R. Dobrovolskis, “Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence,” Astrophys. J. 546, 496 (2001).

7 L. Pan, P. Padoan, J. Scalo, A. G. Kritsuk, and M. L. Norman, “Turbulent clus- tering of protoplanetary dust and planetesimal formation,” Astrophys. J. 740, 6 (2011).

8 M. Colombini and A. Stocchino, “Ripple and dune formation in rivers,” J. Fluid Mech. 673, 121 (2011).

9 F. Schuurman, W. A. Marra, and M. G. Kleinhans, “Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity,” J. Geophys. Res. Earth Surf. 118, 2509, https://doi.org/10.1002/2013JF002896 (2013).

10 M. R. Maxey, “The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields,” J. Fluid Mech. 174, 441 (1987).

11 K. D. Squires and J. K. Eaton, “Particle response and turbulence modification in isotropic turbulence,” Phys. Fluids A 2, 1191 (1990).

12 K. D. Squires and J. K. Eaton, “Preferential concentration of particles by turbu-lence,” Phys. Fluids A 3, 1169 (1991).

13 L. P. Wang and M. R. Maxey, “Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence,” J. Fluid Mech. 256, 27 (1993).

14 J. C. Sommerer and E. Ott, “Particles floating on a moving fluid: A dynamically comprehensible physical fractal,” Science 259, 335 (1993).

15 J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio, and F. Toschi, “Heavy particle concentration in turbulence at dissipative and inertial scales,” Phys. Rev. Lett. 98, 084502 (2007).

16 H. Yoshimoto and S. Goto, “Self-similar clustering of inertial particles in homo- geneous turbulence,” J. Fluid Mech. 577, 275 (2007).

17 S. Goto and J. C. Vassilicos, “Sweep-stick mechanism of heavy particle cluster-ing in fluid turbulence,” Phys. Rev. Lett. 100, 054503 (2008).

18 A. D. Bragg, P. J. Ireland, and L. R. Collins, “Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence,” Phys. Rev. E 92, 023029 (2015).

19 A. Crisanti, M. Falcioni, A. Provenzale, P. Tanga, and A. Vulpiani, “Dynamics of passively advected impurities in simple two-dimensional flow models,” Phys. Fluids A 4, 1805 (1992).

20 M. Wilkinson and B. Mehlig, “Caustics in turbulent aerosols,” Europhys. Lett. 71, 186 (2005).

21 S. Douady, Y. Couder, and M. E. Brachet, “Direct observation of the intermittency of intense vorticity filaments in turbulence,” Phys. Rev. Lett. 67, 983 (1991).

22 J. Zhai, M. Fairweather, and M. Colombo, “Simulation of microbubble dynam- ics in turbulent channel flows,” Flow Turbul. Combust. 105, 1303 (2020).

23 G. Shim, H. Park, S. Lee, and C. Lee, “Behavior of microbubbles in homoge- neous stratified turbulence,” Phys. Rev. Fluids 5, 074302 (2020).

24 F. Motta, F. Battista, and P. Gualtieri, “Application of the exact regularized point particle method (ERPP) to bubble laden turbulent shear flows in the two- way coupling regime,” Phys. Fluids 32, 105109 (2020).

25 S. Goto, “A physical mechanism of the energy cascade in homogeneous isotro-pic turbulence,” J. Fluid Mech. 605, 355 (2008).

26 S. Goto, Y. Saito, and G. Kawahara, “Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers,” Phys. Rev. Fluids 2, 064603 (2017).

27 Y. Motoori and S. Goto, “Generation mechanism of a hierarchy of vortices in a turbulent boundary layer,” J. Fluid Mech. 865, 1085 (2019).

28 S. Oka and S. Goto, “Generalized sweep-stick mechanism of inertial-particle clustering in turbulence,” Phys. Rev. Fluids (in press).

29 S. Elghobashi, “Particle-laden turbulent flows: Direct simulation and closure models,” Appl. Sci. Res. 48, 301 (1991).

30 S. Elghobashi, “On predicting particle-laden turbulent flows,” Appl. Sci. Res. 52, 309 (1994).

31 M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,” Phys. Fluids 26, 883 (1983).

32 J. Ferry and S. Balachandar, “A fast eulerian method for disperse two-phase flow,” Int. J. Multiphase Flow 27, 1199 (2001).

33 S. Goto, “Coherent structures and energy cascade in homogeneous turbulence,” Prog. Theor. Phys. Suppl. 195, 139 (2012).

34 Turbulence is composed of the hierarchy of coherent vortices [e.g., Figs. 1(d)–1(f)]. Therefore, we can estimate the lifetime of each coherent vortex by identifying and tracking their axes [Figs. 1(g)–1(i)]. Then, Tlife is evaluated by their average.

35 We numerically integrate the equation for the Fourier components of the vor- ticity and impose the random forcing, by adding uniform white-in-time ran- dom numbers, on the modes with the magnitude of the wavenumber vector being smaller than 2.

36 L. P. Wang and M. R. Maxey, “The motion of microbubbles in a forced isotro-pic and homogeneous turbulence,” Appl. Sci. Res. 51, 291 (1993).

37 T. Leung, N. Swaminathan, and P. A. Davidson, “Geometry and interaction of structures in homogeneous isotropic turbulence,” J. Fluid Mech. 710, 453 (2012).

38 H. Miura and S. Kida, “Identification of tubular vortices in turbulence,” J. Phys. Soc. Jpn. 66, 1331 (1997).

39 S. Kida and H. Miura, “Swirl condition in low-pressure vortices,” J. Phys. Soc. Jpn. 67, 2166 (1998).

40 If small-scale vortices were clustered in a larger-scale vortex, the statistics shown in Fig. 2 would be meaningless. However, this is not the case; see Refs. 25 and 26.

41 G. Jin, G. W. He, and L. P. Wang, “Large-eddy simulation of turbulent collision of heavy particles in isotropic turbulence,” Phys. Fluids 22, 055106 (2010).

42 T. Ariki, K. Yoshida, K. Matsuda, and K. Yoshimatsu, “Scale-similar clustering of heavy particles in the inertial range of turbulence,” Phys. Rev. E 97, 033109 (2018).

43 E. W. Saw, P. Debue, D. Kuzzay, F. Daviaud, and B. Dubrulle, “On the univer- sality of anomalous scaling exponents of structure functions in turbulent flows,” J. Fluid Mech. 837, 657 (2018).

44 A. S. Dorcheh and M. H. Abbasi, “Silica aerogel; synthesis, properties and char-acterization,” J. Mater. Process. Technol. 199, 10 (2008).

45 These particle diameters are determined by the conditions sp ≈ sg and sp ≈ T, respectively. However, we may use smaller particles if the visualized vortices have a long lifetime. This is because, according to (11), vortices with scale ℓ are visualized by the particles with a diameter D in the range √12βνΤ(ℓ)/Κ(ℓ)≲D≲ √12βνΤ(ℓ). Although the estimated D can be larger than η, (5), and therefore (11), may be valid for D < ℓ and τp ≈ T.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る