リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on sardine (Sardinops spp.) stocks using oxygen stable isotope ratios in otoliths.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on sardine (Sardinops spp.) stocks using oxygen stable isotope ratios in otoliths.

坂本, 達也 東京大学 DOI:10.15083/0002002283

2021.10.13

概要

Sardines, Sardinops spp., are short-lived, small pelagic fish that occur widely in temperate areas of global oceans, especially abundant in highly productive areas such as the Kuroshio-Oyashio system or coastal upwelling regions. They efficiently feed on planktons and play crucial roles in energy transfer from low to high trophic levels in marine food webs. Sardines are also economically important because they are a major target of coastal pelagic fisheries. Caught sardines are mainly processed to fishmeal, of which demand is increasing year by year due to the expansion of aquaculture and stock breeding industries or canned for human consumption. However, their abundances are known to fluctuate intensely in multi-decadal scale. The fluctuations are presumably driven by environmental variabilities, although the actual mechanisms have not been revealed. In addition, sardines are highly mobile, and their habitat areas shrink and expand following the variabilities of abundance, which often makes population structures unclear. These cause large difficulties in fisheries managements aiming for sustainable and efficient use of sardine stocks.

 Introduction of high-resolution analysis of oxygen stable isotope (δ18O) in otoliths can cut off new aspects of sardine ecology, and thus contribute to solve the problems. Otoliths are calcium carbonate crystals formed in the inner ear of fish. Oxygen stable isotope ratios (δ18O) in otoliths are known to reflect ambient water temperature. Although the application of the isotope analysis has been limited to large otolith species due to the analytical limitation of conventional mass spectrometry, recent remarkable developments in microscale sampling techniques and microvolume analysing systems have opened the door for applications to small otolith species such as sardines. Otolith δ18O analysis would allow direct and quantitative estimations of ambient water temperature that the fish experienced, which has never been possible in other methods used in researches of sardine stocks.

 Here in this thesis, high-resolution otolith δ18O analysis was introduced to sardines for the first time in the world, to describe movements and the effect of temperature on growth rates during early life history stages of sardines. By extending the target of the analysis to the sardines off South Africa, Japan and California coasts, I also tried to clarify general differences in ecology of sardines in western and eastern boundary current systems.

 A first, the temperature dependence of δ18O in sardine otolith was calibrated through rearing experiment. Japanese sardine juveniles were reared in three different water temperatures over the course of a month. Otolith δ18O (δotolith) was then analysed by extracting the portions formed during the rearing period using a micromill. δ18O of the rearing water (δwater) was also analysed. A linear relationship between otolith δ18O and ambient water temperature was identified as follows: δotolith - δwater = -0.18*T + 2.69 (r2 = 0.91, p < 0.01). This equation is slightly different from that proposed for inorganic aragonite, with resulting application to wild Japanese sardine captured in the Pacific Ocean showing that it estimates a more realistic in situ temperature than equations previously used. Therefore, it was concluded that the sardine-specific isotopic fractionation equation should be used when interpreting otolith δ18O of sardines.

 As a first application, geographical differences in nursery environments of the South African sardine were examined to test the multiple stock hypothesis. The sardine is found off entire coast of South Africa, which includes the western cool region dominated by coastal upwelling and the south-eastern warm region dominated by the western boundary current Agulhas Current, and has recently been hypothesised to be comprised of two or three discrete subpopulations. Sardine otoliths were collected from sardines captured in west, central, south and east coast in summer and winter during 2015–2017, both adults and juveniles, and δ18O and growth rates during the first 2 months from hatch were examined. From west to south coast, adults and summer captured juveniles showed clear longitudinal gradients in both ambient water temperature and growth rates, while the gradient was not evident in winter captured juveniles. The difference between seasons was attributed to the seasonality of upwelling, which are often intensified even in the south coast during summer. It was concluded that sardines in the west and south coast have significant differences in their nursery environments and resulting larval growths, although the extent may vary seasonally, and provided a new evidence that supports the existence of multiple subpopulations in the region.

 Next, I tried to figure out how temperature variations contributed to the recent increase of stock abundances of two sardines in the North Pacific, the Japanese and the Pacific sardine. Although many studies concluded that sardine abundance in the western North Pacific increases in cooler period while in the eastern North Pacific the abundance increases in warmer period, the mechanism connecting the environmental change and sardine production has not been revealed. On otoliths of age-0 Japanese sardines collected during 2006–2010 and 2014–15 and age-1 Pacific sardines collected during 1987, 1991– 1998 and 2005–2007, δ18O analysis in 15–30 days resolution and microstructure analysis were performed to estimate temperature and growth histories during early life history stages. The mean temperature histories showed the difference in basic thermal environment between the two regions, warmer in the western North Pacific especially in larval stage. The comparison between temperature histories and growth trajectories showed that in both sides of North Pacific, larval growths are enhanced in relatively warmer waters while juvenile growths showed no or weak negative correlation with temperature, suggesting the general feature of Sardinops species. The positive correlations were stronger in the Japanese sardine in larval stages and were stronger in the Pacific sardine in the early juvenile stage, suggesting that the response in the early juvenile stages can be responsible for the response of biomass to the temperature variations. Because the inter-annual variations of temperature were not necessarily associated by cool or warm temperature events, however, other potential drivers, such as predations, need to be considered to fully understand the mechanism of the population fluctuations.

 Finally, a method to estimate migration history from otolith δ18O profile by combining numerical simulation was developed, which will be valuable in future studies. Tracking the movement of migratory fish is of great importance in marine biology. Although otolith δ18O has been a potential alternative to tagging and electronic loggers that could not be attached to small fish, the poor resolution of conventional δ18O analysis and the longitudinal homogeneity of open ocean environments have prevented from estimation of migration history. First, using micro-volume carbonate analysing system, otolith δ18O profiles with 10–30 days resolution through entire lives of 6 unmatured Japanese sardines captured in the offshore Oyashio region, were obtained. An individual- based model with random swimming behaviour in a realistic environment generated by a data assimilation model FRA-ROMS was run to search the routes that are consistent with the otolith δ18O profiles. Although otolith δ18O profiles themselves did not show apparent signs of migration, the analysis combined with simulations successfully showed clear northward migration routes heading for the capture point in the Oyashio region. This method will be a valuable for revealing migration routes in early life stages, thereby providing crucial information to understand population structures and the environmental cause of recruitment variabilities, and to validate and improve fish movement models.

 The comparison of sardines in South Africa and North Pacific revealed the general features of Sardinops spp. that sardines living in upwelling regions experience lower temperature in the early life stage than those in western boundary current regions, and larval growth are enhanced in warmer waters. Therefore, the basic environment for sardine is different between upwelling and warm current regions, which may be the key to understand why response of the abundance to the temperature variation are opposite between those regions. Overall, I demonstrated that the high-resolution otolith δ18O is capable of answering scientific questions regarding sardine stocks that need to be solved for effective fisheries managements and also that it may be more powerful when combined with numerical simulations. As the temperature dependence of δ18O is a general feature of fish otoliths, the technique and the methods described here will be valuable for studying ecology of numerous fishes, thereby leading to better relationships between human and marine living resources in the future world.

この論文で使われている画像

参考文献

Chapter 1

M. Barange, J. Coetzee, A. Takasuka, K. Hill, M. Gutierrez, Y. Oozeki, C. van der Lingen, V. Agostini, Habitat expansion and contraction in anchovy and sardine populations. Prog. Oceanogr. 83, 251-260 (2009).

B. Bowen, W. S. Grant, Phylogeography of the sardines (Sardinops spp.): assessing biogeographic models and population histories in temperate upwelling zones. Evolution. 51, 1601-1610 (1997).

S. E. Campana, Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 263-297 (1999).

S. J. Carpenter, J. M. Erickson, F. Holland Jr, Migration of a Late Cretaceous fish. Nature. 423, 70 (2003).

D. Checkley, P. Ayon, T. R. Baumgartner, M. Bernal, J. C. Coetzee, R. Emmett, R. Guevara-Carrasco, L. Hutchings, L. Ibaibarriaga, H. Nakata, Y. Oozeki, B. Planque, J. Schweigert, Y. Stratoudakis, C. van der Lingen, Habitats. in Climate change and small pelagic fish (Cambridge University Press, Cambridge, 2009), p. 12-44.

J. C. Coetzee, Van der Lingen, Carl D, L. Hutchings, T. P. Fairweather, Has the fishery contributed to a major shift in the distribution of South African sardine? ICES J. Mar. Sci. 65, 1676-1688 (2008).

P. Cury, A. Bakun, R. J. Crawford, A. Jarre, R. A. Quinones, L. J. Shannon, H. M. Verheye, Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603-618 (2000).

W. Grant, B. W. Bowen, Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415-426 (1998).

T. Ishimura, U. Tsunogai, T. Gamo, Stable carbon and oxygen isotopic determination of sub‐microgram quantities of CaCO3 to analyse individual foraminiferal shells. Rapid Communications in Mass Spectrometry. 18, 2883-2888 (2004).

T. Ishimura, U. Tsunogai, F. Nakagawa, Grain‐scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS 19, NBS 18, IAEA‐CO‐1, and IAEA‐CO‐8). Rapid Communications in Mass Spectrometry. 22, 1925-1932 (2008).

S. Kim, J. R. O’Neil, C. Hillaire-Marcel, A. Mucci, Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2 concentration. Geochim. Cosmochim. Acta. 71, 4704-4715 (2007).

G. Merino, M. Barange, J. L. Blanchard, J. Harle, R. Holmes, I. Allen, E. H. Allison, M. C. Badjeck, N. K. Dulvy, J. Holt, S. Jennings, C. Mullon, L. D. Rodwell, Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Global Environmental Change. 22, 795-806 (2012).

G. Merino, M. Barange, C. Mullon, Role of Anchovies and Sardines as Reduction Fisheries in the World Fish Meal. in Biology and ecology of sardines and anchovies (CRC Press, Boca Raton, 2014), p. 285-307.

K. Nishida, T. Ishimura, Grain‐scale stable carbon and oxygen isotopic variations of the international reference calcite, IAEA‐603. Rapid Communications in Mass Spectrometry. 31, 1875-1880 (2017).

T. Okazaki, T. Kobayashi, Y. Uozumi, Genetic relationships of pilchards (genus: Sardinops) with anti-tropical distributions. Mar. Biol. 126, 585-590 (1996).

R. Parrish, R. Serra, W. Grant, The monotypic sardines, Sardina and Sardinops: their taxonomy, distribution, stock structure, and zoogeography. Can. J. Fish. Aquat. Sci. 46, 2019-2036 (1989).

K. A. Rose, J. Fiechter, E. N. Curchitser, K. Hedstrom, M. Bernal, S. Creekmore, A. Haynie, S. Ito, S. Lluch-Cota, B. A. Megrey, Demonstration of a fully-coupled end-to-end model for small pelagic fish using sardine and anchovy in the California Current. Prog. Oceanogr. 138, 348-380 (2015).

S. Sakai, Micromilling and sample recovering techniques using high-precision micromill GEOMILL326. JAMSTEC-Rep.Res.Develop. 10, 4–5 (2009).

R. A. Schwartzlose, J. Alheit, A. Bakun, T. R. Baumgartner, R. Cloete, R. J. M. Crawford, W. J. Fletcher, Y. Green-Ruiz, E. Hagen, T. Kawasaki, D. Lluch-Belda, S. E. Lluch-Cota, A. D. MacCall, Y. Matsuura, M. O. Nevárez-Martínez, R. H. Parrish,

C. Roy, R. Serra, K. V. Shust, M. N. Ward, J. Z. Zuzunaga, Worldwide large-scale fluctuations of sardine and anchovy populations. South African Journal of Marine Science. 21, 289-347 (1999).

J. Shiao, T. Yui, H. Høie, U. Ninnemann, S. Chang, Otolith O and C stable isotope compositions of southern bluefin tuna Thunnus maccoyii (Pisces: Scombridae) as possible environmental and physiological indicators. Zool. Stud. 48, 71-82 (2009).

C. Van der Lingen, L. Hutchings, J. Field, Comparative trophodynamics of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: are species alternations between small pelagic fish trophodynamically mediated? African Journal of Marine Science. 28, 465-477 (2006).

Chapter 2

B. A. Block, S. L. Teo, A. Walli, A. Boustany, M. J. Stokesbury, C. J. Farwell, K. C. Weng, H. Dewar, T. D. Williams, Electronic tagging and population structure of Atlantic bluefin tuna. Nature. 434, 1121 (2005).

S. E. Campana, Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 263-297 (1999).

E. Dorval, K. Piner, L. Robertson, C. S. Reiss, B. Javor, R. Vetter, Temperature record in the oxygen stable isotopes of Pacific sardine otoliths: experimental vs. wild stocks from the Southern California Bight. J. Exp. Mar. Biol. Ecol. 397, 136-143 (2011).

A. J. Geffen, Otolith oxygen and carbon stable isotopes in wild and laboratory-reared plaice (Pleuronectes platessa). Environ. Biol. Fishes. 95, 419-430 (2012).

J. A. Godiksen, M. Svenning, J. B. Dempson, M. Marttila, A. Storm-Suke, M. Power, Development of a species-specific fractionation equation for Arctic charr (Salvelinus alpinus (L.)): an experimental approach. Hydrobiologia. 650, 67-77 (2010).

H. Høie, E. Otterlei, A. Folkvord, Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 243- 251 (2004).

R. Humston, J. S. Ault, M. Lutcavage, D. B. Olson, Schooling and migration of large pelagic fishes relative to environmental cues. Fish. Oceanogr. 9, 136-146 (2000).

T. Ishimura, U. Tsunogai, T. Gamo, Stable carbon and oxygen isotopic determination of sub‐microgram quantities of CaCO3 to analyse individual foraminiferal shells. Rapid Communications in Mass Spectrometry. 18, 2883-2888 (2004).

T. Ishimura, U. Tsunogai, F. Nakagawa, Grain‐scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS 19, NBS 18, IAEA‐CO‐1, and IAEA‐CO‐8). Rapid Communications in Mass Spectrometry. 22, 1925-1932 (2008).

J. Kalish, Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Mar. Biol. 110, 37-47 (1991).

S. Kim, J. R. O’Neil, C. Hillaire-Marcel, A. Mucci, Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2 concentration. Geochim. Cosmochim. Acta. 71, 4704-4715 (2007).

S. Kim, J. R. O'Neil, Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta. 61, 3461-3475 (1997).

T. Kitagawa, T. Ishimura, R. Uozato, K. Shirai, Y. Amano, A. Shinoda, T. Otake, U. Tsunogai, S. Kimura, Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Mar. Ecol. Prog. Ser. 481, 199-209 (2013).

H. Nishikawa, I. Yasuda, K. Komatsu, H. Sasaki, Y. Sasai, T. Setou, M. Shimizu, Winter mixed layer depth and spring bloom along the Kuroshio front: implications for the Japanese sardine stock. Mar. Ecol. Prog. Ser. 487, 217-229 (2013).

M. Noto, I. Yasuda, Population decline of the Japanese sardine, Sardinops melanostictus, in relation to sea surface temperature in the Kuroshio Extension. Can. J. Fish. Aquat. Sci. 56, 973-983 (1999).

M. Oda, T. Tetsu, S. Sakai, T. Ishimura, Discrimination of the migration pattern for Japanese sardine in Pacific stock using microscale stable isotopic analytical technique. Bull. Jpn. Soc. Fish. Oceanogr. 80, 48–55 (2016) (in Japanese with English abstract).

T. Okunishi, S. ITO, D. Ambe, A. Takasuka, T. Kameda, K. Tadokoro, T. Setou, K. Komatsu, A. Kawabata, H. Kubota, A modeling approach to evaluate growth and movement for recruitment success of Japanese sardine (Sardinops melanostictus) in the western Pacific. Fish. Oceanogr. 21, 44-57 (2012).

T. Okunishi, Y. Yamanaka, S. Ito, A simulation model for Japanese sardine (Sardinops melanostictus) migrations in the western North Pacific. Ecol. Model. 220, 462- 479 (2009).

R. Radtke, P. Lenz, W. Showers, E. Moksness, Environmental information stored in otoliths: insights from stable isotopes. Mar. Biol. 127, 161-170 (1996).

S. Sakai, Micromilling and sample recovering techniques using high-precision micromill GEOMILL326. JAMSTEC-Rep.Res.Develop. 10, 4–5 (2009).

T. Sharma, R. N. Clayton, Measurement of O18O16 ratios of total oxygen of carbonates. Geochimica Et Cosmochimica Acta. 29, 1347-1353 (1965).

A. Storm-Suke, J. B. Dempson, J. D. Reist, M. Power, A field-derived oxygen isotope fractionation equation for Salvelinus species. Rapid Commun. Mass Spectrom. 21, 4109-4116 (2007).

M. Takahashi, H. Nishida, A. Yatsu, Y. Watanabe, Year-class strength and growth rates after metamorphosis of Japanese sardine (Sardinops melanostictus) in the western North Pacific Ocean during 1996–2003. Can. J. Fish. Aquat. Sci. 65, 1425-1434 (2008).

M. Takahashi, Y. Watanabe, A. Yatsu, H. Nishida, Contrasting responses in larval and juvenile growth to a climate–ocean regime shift between anchovy and sardine. Can. J. Fish. Aquat. Sci. 66, 972-982 (2009).

A. Takasuka, Y. Oozeki, I. Aoki, Optimal growth temperature hypothesis: Why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? Can. J. Fish. Aquat. Sci. 64, 768-776 (2007).

A. Takasuka, Y. Oozeki, H. Kubota, S. E. Lluch-Cota, Contrasting spawning temperature optima: why are anchovy and sardine regime shifts synchronous across the North Pacific? Prog. Oceanogr. 77, 225-232 (2008).

S. R. Thorrold, S. E. Campana, C. M. Jones, P. K. Swart, Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta. 61, 2909-2919 (1997).

Y. Watanabe, Recruitment variability of small pelagic fish populations in the Kuroshio- Oyashio transition region of the Western North Pacific. J.Northw.Atl.Fish.Sci. 41, 197-204 (2009).

Y. Watanabe, H. Zenitani, R. Kimura, Population decline off the Japanese sardine Sardinops melanostictus owing to recruitment failures. Can. J. Fish. Aquat. Sci. 52, 1609-1616 (1995).

I. Yasuda, H. Sugisaki, Y. Watanabe, S. MINOBE, Y. Oozeki, Interdecadal variations in Japanese sardine and ocean/climate. Fish. Oceanogr. 8, 18-24 (1999).

A. Yatsu, T. Watanabe, M. Ishida, H. Sugisaki, L. D. Jacobson, Environmental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management. Fish. Oceanogr. 14, 263-278 (2005).

Chapter 3

V. N. Agostini, A. Bakun, Ocean triads' in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11, 129-142 (2002).

R. E. Baldwin, M. A. Banks, K. C. Jacobson, Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax). Rev. Fish Biol. Fish. 22, 137-156 (2012).

S. E. Campana, Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 263-297 (1999).

S. E. Campana, How reliable are growth back-calculations based on otoliths? Can. J. Fish. Aquat. Sci. 47, 2219-2227 (1990).

J. C. Coetzee, C. D. Van der Lingen, L. Hutchings, T. P. Fairweather, Has the fishery contributed to a major shift in the distribution of South African sardine? ICES J. Mar. Sci. 65, 1676-1688 (2008).

A. Connell, A 21-year ichthyoplankton collection confirms sardine spawning in KwaZulu-Natal waters. African Journal of Marine Science. 32, 331-336 (2010).

C. L. de Moor, D. S. Butterworth, C. D. van der Lingen, The quantitative use of parasite data in multistock modelling of South African sardine (Sardinops sagax). Can. J. Fish. Aquat. Sci. 74, 1895-1903 (2017).

S. Garrido, A. Cristóvão, C. Caldeira, R. Ben-Hamadou, N. Baylina, H. Batista, E. Saiz, M. Peck, P. Ré, A. Santos, Effect of temperature on the growth, survival, development and foraging behaviour of Sardina pilchardus larvae. Mar. Ecol. Prog. Ser. 559, 131-145 (2016).

D. J. Gaughan, W. J. Fletcher, J. P. McKinlay, Functionally distinct adult assemblages within a single breeding stock of the sardine, Sardinops sagax: management units within a management unit. Fisheries Research. 59, 217-231 (2002).

A. Hayashi, Y. Yamashita, H. Kawaguchi, T. Ishii, Rearing method and daily otolith ring of Japanese sardine larvae, Sardinops melanostictus. Nippon Suisan Gakkaishi 55, 997-1000 (1989).

H. Høie, E. Otterlei, A. Folkvord, Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 243- 251 (2004).

L. Hutchings, C. Van der Lingen, L. Shannon, R. Crawford, H. Verheye, C. Bartholomae, A. Van der Plas, D. Louw, A. Kreiner, M. Ostrowski, The Benguela Current: An ecosystem of four components. Prog. Oceanogr. 83, 15-32 (2009).

T. Ishimura, U. Tsunogai, T. Gamo, Stable carbon and oxygen isotopic determination of sub‐microgram quantities of CaCO3 to analyse individual foraminiferal shells. Rapid Communications in Mass Spectrometry. 18, 2883-2888 (2004).

T. Ishimura, U. Tsunogai, F. Nakagawa, Grain‐scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS 19, NBS 18, IAEA‐CO‐1, and IAEA‐CO‐8). Rapid Communications in Mass Spectrometry. 22, 1925-1932 (2008).

T. Kodama, T. Wagawa, S. Ohshimo, H. Morimoto, N. Iguchi, K. Fukudome, T. Goto, M. Takahashi, T. Yasuda, Improvement in recruitment of Japanese sardine with delays of the spring phytoplankton bloom in the Sea of Japan. Fish. Oceanogr. 27, 289-301 (2018).

T. Lamont, M. García-Reyes, S. Bograd, C. van der Lingen, W. Sydeman, Upwelling indices for comparative ecosystem studies: Variability in the Benguela Upwelling System. J. Mar. Syst. 188, 3-16 (2018).

J. Lutjeharms, J. Cooper, M. Roberts, Upwelling at the inshore edge of the Agulhas Current. Cont. Shelf Res. 20, 737-761 (2000).

D. C. Miller, C. L. Moloney, van der Lingen, Carl D, C. Lett, C. Mullon, J. G. Field, Modelling the effects of physical–biological interactions and spatial variability in spawning and nursery areas on transport and retention of sardine Sardinops sagax eggs and larvae in the southern Benguela ecosystem. J. Mar. Syst. 61, 212-229 (2006).

H. Nishikawa, I. Yasuda, Japanese sardine (Sardinops melanostictus) mortality in relation to the winter mixed layer depth in the Kuroshio Extension region. Fish. Oceanogr. 17, 411-420 (2008).

T. Sakamoto, K. Komatsu, M. Yoneda, T. Ishimura, T. Higuchi, K. Shirai, Y. Kamimura, C. Watanabe, A. Kawabata, Temperature dependence of δ18O in otolith of juvenile Japanese sardine: Laboratory rearing experiment with micro-scale analysis. Fisheries Research. 194, 55-59 (2017).

V. Swart, J. Largier, Thermal structure of Agulhas Bank water. South African Journal of Marine Science. 5, 243-252 (1987).

M. Takahashi, H. Nishida, A. Yatsu, Y. Watanabe, Year-class strength and growth rates after metamorphosis of Japanese sardine (Sardinops melanostictus) in the western North Pacific Ocean during 1996–2003. Can. J. Fish. Aquat. Sci. 65, 1425-1434 (2008).

P. R. Teske, T. R. Golla, J. Sandoval-Castillo, A. Emami-Khoyi, van der Lingen, Carl D, S. von der Heyden, B. Chiazzari, B. J. van Vuuren, L. B. Beheregaray, Mitochondrial DNA is unsuitable to test for isolation by distance. Scientific Reports. 8, 8448 (2018).

R. Thomas, Growth of larval pelagic fish in the South-East Atlantic from daily otolith rings in 1982/83 and 1983/84. South African Journal of Marine Science. 4, 61-77 (1986).

C. D. Van Der Lingen, A. McGrath, Incorporating seasonality in sardine spawning into estimations of the transport success of eggs spawned on the South Coast to the West Coast nursery area. FISHERIES/FEB/2017/SWG-PEL/08, (2017)

C. D. Van Der Lingen, L. F. Weston, N. N. Ssempa, C. C. Reed, Incorporating parasite data in population structure studies of South African sardine Sardinops sagax. Parasitology. 142, 156-167 (2015).

C. D. Van Der Lingen, J. Coetzee, L. Hutchings, Overview of the KwaZulu-Natal sardine run. African Journal of Marine Science. 32, 271-277 (2010).

L. F. Weston, C. C. Reed, M. Hendricks, H. Winker, van der Lingen, Carl D, Stock discrimination of South African sardine (Sardinops sagax) using a digenean parasite biological tag. Fisheries Research. 164, 120-129 (2015).

Chapter 4

Y. Amano, J. Shiao, T. Ishimura, K. Yokouchi, K. Shirai, Otolith geochemical analysis for stock discrimination and migratory ecology of tunas. By T.Kitagawa and S.Kimura.CRC Press, Boca Raton, USA., 225-257 (2015).

A. Bakun, Coastal upwelling indices, west coast of North America, 1946-71. US Dept.Commerce NOAA Tech.Rep.NMFS-SSRF. 671, 1-103 (1973).

T. R. Baumgartner, A. Soutar, V. Ferreira-Bartrina, Reconstruction of the history of Pacific sardine and Northern Pacific anchovy populations over the past two millennia from sediments of the Santa Barbara basin, CalCOFI Rep. 33, 24-40 (1992).

J. L. Butler, P. E. Smith, N. C. Lo, The effect of natural variability of life-history parameters on anchovy and sardine population growth. CalCOFI Rep. 34, 104- 111 (1993).

D. Checkley, R. C. Dotson, D. A. Griffith, Continuous, underway sampling of eggs of Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) in spring 1996 and 1997 off southern and central California. Deep Sea Research Part II: Topical Studies in Oceanography. 47, 1139-1155 (2000).

D. Checkley, P. Ayon, T. R. Baumgartner, M. Bernal, J. C. Coetzee, R. Emmett, R. Guevara-Carrasco, L. Hutchings, L. Ibaibarriaga, H. Nakata, Y. Oozeki, B. Planque, J. Schweigert, Y. Stratoudakis, C. van der Lingen, Habitats. in Climate change and small pelagic fish (Cambridge University Press, Cambridge, 2009), p. 12-44.

E. Dorval, K. Piner, L. Robertson, C. S. Reiss, B. Javor, R. Vetter, Temperature record in the oxygen stable isotopes of Pacific sardine otoliths: experimental vs. wild stocks from the Southern California Bight. J. Exp. Mar. Biol. Ecol. 397, 136-143 (2011).

D. Gaughan, W. Fletcher, K. White, Growth rate of larval Sardinops sagax from ecosystems with different levels of productivity. Mar. Biol. 139, 831-837 (2001).

W. Grant, B. W. Bowen, Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415-426 (1998).

M. R. Heath, Field Investigations of the Early Life Stages of Marine Fish. Advances in Marine Biology. 28, 1-174 (1992).

K. T. Hill, L. Jacobson, N. Lo, M. Yaremko, M. Dege, Stock assessment of Pacific sardine for 1998 with management recommendations for 1999. Marine Region Administrative Report 99-4 (1999).

K. T. Hill, P. R. Crone, J. P. Zwolinski, Assessment of the Pacific sardine resource in 2017 for U.S. management in 2017-18. Pacific Fishery Management Council, April 2017 Briefing Book (2017).

E. Houde, Subtleties and episodes in the early life of fishes. J. Fish Biol. 35, 29-38 (1989).

E. Houde, Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17-29 (1987).

T. Ishimura, U. Tsunogai, T. Gamo, Stable carbon and oxygen isotopic determination of sub‐microgram quantities of CaCO3 to analyse individual foraminiferal shells. Rapid Communications in Mass Spectrometry. 18, 2883-2888 (2004).

T. Ishimura, U. Tsunogai, F. Nakagawa, Grain‐scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS 19, NBS 18, IAEA‐CO‐1, and IAEA‐CO‐8). Rapid Communications in Mass Spectrometry. 22, 1925-1932 (2008).

O. Isoguchi, H. Kawamura, E. Oka, Quasi‐stationary jets transporting surface warm waters across the transition zone between the subtropical and the subarctic gyres in the North Pacific. Journal of Geophysical Research: Oceans. 111(2006).

S. Itoh, T. Saruwatari, H. Nishikawa, I. Yasuda, K. Komatsu, A. Tsuda, T. Setou, M. Shimizu, Environmental variability and growth histories of larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus) near the frontal area of the Kuroshio. Fish. Oceanogr. 20, 114-124 (2011).

L. D. Jacobson, S. J. Bograd, R. H. Parrish, R. Mendelssohn, F. B. Schwing, An ecosystem-based hypothesis for climatic effects on surplus production in

California sardine (Sardinops sagax) and environmentally dependent surplus production models. Can. J. Fish. Aquat. Sci. 62, 1782-1796 (2005).

L. D. Jacobson, A. D. MacCall, Stock-recruitment models for Pacific sardine (Sardinops sagax). Can. J. Fish. Aquat. Sci. 52, 566-577 (1995).

L. D. Jacobson, S. McClatchie, Comment on temperature-dependent stock–recruit modeling for Pacific sardine (Sardinops sagax) in Jacobson and MacCall (1995), McClatchie et al.(2010), and Lindegren and Checkley (2013). Can. J. Fish. Aquat. Sci. 70, 1566-1569 (2013).

B. Javor, E. Dorval, Geography and ontogeny influence the stable oxygen and carbon isotopes of otoliths of Pacific sardine in the California Current. Fisheries Research. 154, 1-10 (2014).

S. Kim, J. R. O’Neil, C. Hillaire-Marcel, A. Mucci, Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2 concentration. Geochim. Cosmochim. Acta. 71, 4704-4715 (2007).

R. Kimura, Y. Watanabe, H. Zenitani, Nutritional condition of first-feeding larvae of Japanese sardine in the coastal and oceanic waters along the Kuroshio Current. ICES J. Mar. Sci. 57, 240-248 (2000).

K. Kuroda, Studies on the recruitment process focusing on the early life history of the Japanese sardine, Sardinops melanostictus (Schelegen). Bull. Natl .Res. Inst. Fish. Sci., 3, 25-278 (1991) (in Japanese with English abstract).

M. Kuwae, M. Yamamoto, T. Sagawa, K. Ikehara, T. Irino, K. Takemura, H. Takeoka, T. Sugimoto, Multidecadal, centennial, and millennial variability in sardine and anchovy abundances in the western North Pacific and climate–fish linkages during the late Holocene. Progress in Oceanography. 159, 86-98 (2017).

A. N. LeGrande, G. A. Schmidt, Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33(2006).

M. Lindegren, D. M. Checkley Jr, Temperature dependence of Pacific sardine (Sardinops sagax) recruitment in the California Current Ecosystem revisited and revised. Can. J. Fish. Aquat. Sci. 70, 245-252 (2012).

R. J. Lynn, Variability in the spawning habitat of Pacific sardine (Sardinops sagax) off southern and central California. Fish. Oceanogr. 12, 541-553 (2003).

B. J. Macewicz, J. J. Castko-Gonzalez, J. Hunter, Adult reproductive parameters of Pacific sardine (Sardwops sagax) during 1994. California Cooperative Oceanic Fisheries Investigations Reports. 37, 140-151 (1996).

N. J. Mantua, S. R. Hare, Y. Zhang, J. M. Wallace, R. C. Francis, A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069-1080 (1997).

T. J. Miller, L. B. Crowder, J. A. Rice, E. A. Marschall, Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657-1670 (1988).

K. Nakata, H. Zenitani, D. Inagake, Differences in food availability for Japanese sardine larvae between the frontal region and the waters on the offshore side of Kuroshio. Fish. Oceanogr. 4, 68-79 (1995).

S. Nakayama, A. Takasuka, M. Ichinokawa, H. Okamura, Climate change and interspecific interactions drive species alternations between anchovy and sardine in the western North Pacific: Detection of causality by convergent cross mapping. Fish. Oceanogr. 27, 312-322 (2018).

K. Nishida, T. Ishimura, Grain‐scale stable carbon and oxygen isotopic variations of the international reference calcite, IAEA‐603. Rapid Communications in Mass Spectrometry. 31, 1875-1880 (2017).

H. Nishikawa, I. Yasuda, K. Komatsu, H. Sasaki, Y. Sasai, T. Setou, M. Shimizu, Winter mixed layer depth and spring bloom along the Kuroshio front: implications for the Japanese sardine stock. Mar. Ecol. Prog. Ser. 487, 217-229 (2013).

M. Noto, I. Yasuda, Population decline of the Japanese sardine, Sardinops melanostictus, in relation to sea surface temperature in the Kuroshio Extension. Can. J. Fish. Aquat. Sci. 56, 973-983 (1999).

T. Oba, M. Murayama, Sea‐surface temperature and salinity changes in the northwest Pacific since the Last Glacial Maximum. Journal of Quaternary Science. 19, 335- 346 (2004).

Y. Oozeki, A. Takasuka, H. Kubota, M. Barange, Characterizing Spawning Habitats of Japanese Sardine, Sardinops Melanostictus, Japanese Anchovy, Engraulis Japonicus, and Pacific Round Herring, Etrumeus Teres, in the Northwestern Pacific. California Cooperative Oceanic Fisheries Investigations Report. 48, 191 (2007).

E. Pfeiler, A. Luna, Changes in biochemical composition and energy utilization during metamorphosis of leptocephalous larvae of the bonefish (Albula). Environ. Biol. Fishes. 10, 243-251 (1984).

C. S. Reiss, D. M. Checkley Jr, S. J. Bograd, Remotely sensed spawning habitat of Pacific sardine (Sardinops sagax) and Northern anchovy (Engraulis mordax) within the California Current. Fish. Oceanogr. 17, 126-136 (2008).

R. R. Rykaczewski, D. M. Checkley Jr, Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. U. S. A. 105, 1965-1970 (2008).

G. A. Schmidt, G. R. Bigg, E. J. Rohling. Global Seawater Oxygen-18 Database - v1.22, (1999) https://data.giss.nasa.gov/o18data/

T. Sakamoto, K. Komatsu, K. Shirai, T. Higuchi, T. Ishimura, T. Setou, Y. Kamimura, C. Watanabe, A. Kawabata, Combining microvolume isotope analysis and numerical simulation to reproduce fish migration history. Methods in Ecology and Evolution.(2018).

T. Sakamoto, K. Komatsu, M. Yoneda, T. Ishimura, T. Higuchi, K. Shirai, Y. Kamimura, C. Watanabe, A. Kawabata, Temperature dependence of δ18O in otolith of juvenile Japanese sardine: Laboratory rearing experiment with micro-scale analysis. Fisheries Research. 194, 55-59 (2017).

P. E. Smith, Life-stage duration and survival parameters as related to interdecadal population variability in Pacific sardine. CalCOFI Rep. 33, 41-47 (1992).

G. Sugihara, R. May, H. Ye, C. H. Hsieh, E. Deyle, M. Fogarty, S. Munch, Detecting causality in complex ecosystems. Science. 338, 496-500 (2012).

M. Takahashi, D. M. Checkley Jr, Growth and survival of Pacific sardine (Sardinops sagax) in the California Current region. J. Northwest Atl. Fish. Sci. 41, 129-136 (2008).

M. Takahashi, H. Nishida, A. Yatsu, Y. Watanabe, Year-class strength and growth rates after metamorphosis of Japanese sardine (Sardinops melanostictus) in the western North Pacific Ocean during 1996–2003. Can. J. Fish. Aquat. Sci. 65, 1425-1434 (2008).

M. Takahashi, Y. Watanabe, A. Yatsu, H. Nishida, Contrasting responses in larval and juvenile growth to a climate–ocean regime shift between anchovy and sardine. Can. J. Fish. Aquat. Sci. 66, 972-982 (2009).

A. Takasuka, I. Aoki, I. Mitani, Three synergistic growth-related mechanisms in the short- term survival of larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar. Ecol. Prog. Ser. 270, 217-228 (2004).

A. Takasuka, I. Aoki, I. Mitani, Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar. Ecol. Prog. Ser. 252, 223-238 (2003).

A. Takasuka, Y. Oozeki, I. Aoki, Optimal growth temperature hypothesis: Why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? Can. J. Fish. Aquat. Sci. 64, 768-776 (2007).

A. Takasuka, Y. Oozeki, H. Kubota, S. E. Lluch-Cota, Contrasting spawning temperature optima: why are anchovy and sardine regime shifts synchronous across the North Pacific? Prog. Oceanogr. 77, 225-232 (2008).

A. Takasuka, Y. Oozeki, I. Aoki, R. Kimura, H. Kubota, H. Sugisaki, T. Akamine, Growth effect on the otolith and somatic size relationship in Japanese anchovy and sardine larvae. Fisheries Science. 74, 308-313 (2008).

J. L. Uutleii, Barnes, M. L. Granados, G. J. Thomas, M. Yakemko, B. J. Macewicz, Age composition, growth, and maturation of the Pacific sardine (Sardinops sagax) during 1994. (1996).

C. Van der Lingen, L. Hutchings, J. Field, Comparative trophodynamics of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: are species alternations between small pelagic fish trophodynamically mediated? African Journal of Marine Science. 28, 465-477 (2006).

Y. Watanabe, H. Saito, Feeding and growth of early juvenile Japanese sardines in the Pacific waters off central Japan. J. Fish Biol. 52, 519-533 (1998).

Y. Watanabe, H. Zenitani, R. Kimura, Population decline off the Japanese sardine Sardinops melanostictus owing to recruitment failures. Can. J. Fish. Aquat. Sci. 52, 1609-1616 (1995).

E. D. Weber, Y. Chao, F. Chai, S. McClatchie, Transport patterns of Pacific sardine Sardinops sagax eggs and larvae in the California Current System. Deep Sea Research Part I: Oceanographic Research Papers. 100, 127-139 (2015).

M. Yamamoto, N. Tanaka, S. Tsunogai, Okhotsk Sea intermediate water formation deduced from oxygen isotope systematics. Journal of Geophysical Research: Oceans. 106, 31075-31084 (2001).

A. Yatsu, T. Watanabe, M. Ishida, H. Sugisaki, L. D. Jacobson, Environmental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management. Fish. Oceanogr. 14, 263-278 (2005).

R. Yukami, C. Wanatabe, Y. Kamimura, S. Furuichi, T. Akamine, T. Kishida, Stock assessment and evaluation for the Pacific stock of Japanese sardine (fiscal year 2016). in Marine fisheries stock assessment and evaluation for Japanese waters (fiscal year 2016/2017). (Fisheries Agency and Fisheries Research and Education Agency of Japan, Yokohama, 2017) pp. 15-52 (in Japanese).

Y. Zhang, J. M. Wallace, D. S. Battisti, ENSO-like interdecadal variability: 1900–93. J. Clim. 10, 1004-1020 (1997).

Chapter 5

G. Allain, P. Petitgas, P. Lazure, P. Grellier, Biophysical modelling of larval drift, growth and survival for the prediction of anchovy (Engraulis encrasicolus) recruitment in the Bay of Biscay (NE Atlantic). Fish. Oceanogr. 16, 489-505 (2007).

Y. Amano, J. Shiao, T. Ishimura, K. Yokouchi, K. Shirai, Otolith geochemical analysis for stock discrimination and migratory ecology of tunas. By T.Kitagawa and S.Kimura.CRC Press, Boca Raton, USA., 225-257 (2015).

J. T. Anderson, A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. Journal of Northwest Atlantic Fishery Science. 8, 55-66 (1988).

R. Bainbridge, The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Exp. Biol. 35, 109-133 (1958).

M. Barange, J. Coetzee, A. Takasuka, K. Hill, M. Gutierrez, Y. Oozeki, C. van der Lingen, V. Agostini, Habitat expansion and contraction in anchovy and sardine populations. Prog. Oceanogr. 83, 251-260 (2009).

B. A. Block, S. L. Teo, A. Walli, A. Boustany, M. J. Stokesbury, C. J. Farwell, K. C. Weng, H. Dewar, T. D. Williams, Electronic tagging and population structure of Atlantic bluefin tuna. Nature. 434, 1121 (2005).

A. Bower, T. Rossby, Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data. J. Phys. Oceanogr. 19, 1177-1190 (1989).

S. R. Brennan, C. E. Zimmerman, D. P. Fernandez, T. E. Cerling, M. V. McPhee, M. J. Wooller, Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon. Science Advances. 1, e1400124 (2015).

S. E. Campana, Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 263-297 (1999).

S. E. Campana, How reliable are growth back-calculations based on otoliths? Can. J. Fish. Aquat. Sci. 47, 2219-2227 (1990).

S. J. Carpenter, J. M. Erickson, F. Holland Jr, Migration of a Late Cretaceous fish. Nature. 423, 70 (2003).

F. P. Chavez, J. Ryan, S. E. Lluch-Cota, C. M. Niquen, From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science. 299, 217-221 (2003).

H. Craig, L. I. Gordon, Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. (1965).

R. Crawford, P. Sabarros, T. Fairweather, L. Underhill, A. Wolfaardt, Implications for seabirds off South Africa of a long-term change in the distribution of sardine. African Journal of Marine Science. 30, 177-184 (2008).

E. Crist, C. Mora, R. Engelman, The interaction of human population, food production, and biodiversity protection. Science. 356, 260-264 (2017).

P. Cury, A. Bakun, R. J. Crawford, A. Jarre, R. A. Quinones, L. J. Shannon, H. M. Verheye, Global seabird response to forage fish depletion--one-third for the birds. Science. 334, 1703-1706 (2011).

R. Felix-Uraga, V. M. Gomez-Munoz, C. Quinonez-Velazquez, F. N. Melo-Barrera, K. T. Hill, W. García-Franco, Pacific sardine (Sardinops sagax) stock discrimination off the west coast of baja california and southern california using otolith mophometry. California Cooperative Oceanic Fisheries Investigations Report. 46, 113 (2005).

I. Hara, Swimming speed of sardine school on the basis of aerial survey. Nippon Suisan Gakkaishi 53, 223–227 (1987) (in Japanese with English abstract).

H. Høie, E. Otterlei, A. Folkvord, Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 243- 251 (2004).

S. Hosoda, T. Ohira, T. Nakamura, A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Report of Research and Development. 8, 47-59 (2008).

E. Houde, Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17-29 (1987).

J. Hunter, Swimming speed, tail beat frequency, tail beat amplitude and size in jack mackerel, Trachurus symmetricus, and other fishes. Fish. Bull. 69, 253-266 (1971).

K. Hüssy, H. Mosegaard, C. M. Albertsen, E. E. Nielsen, J. Hemmer-Hansen, M. Eero, Evaluation of otolith shape as a tool for stock discrimination in marine fishes using Baltic Sea cod as a case study. Fisheries Research. 174, 210-218 (2016).

L. Hutchings, L. Beckley, M. Griffiths, M. Roberts, S. Sundby, C. Van der Lingen, Spawning on the edge: spawning grounds and nursery areas around the southern African coastline. Marine and Freshwater Research. 53, 307-318 (2002).

Y. Ishida, T. Funamoto, S. Honda, K. Yabuki, H. Nishida, C. Watanabe, Management of declining Japanese sardine, chub mackerel and walleye pollock fisheries in Japan. Fisheries Research. 100, 68-77 (2009).

T. Ishimura, U. Tsunogai, T. Gamo, Stable carbon and oxygen isotopic determination of sub‐microgram quantities of CaCO3 to analyze individual foraminiferal shells. Rapid Communications in Mass Spectrometry. 18, 2883-2888 (2004).

T. Ishimura, U. Tsunogai, F. Nakagawa, Grain‐scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS 19, NBS 18, IAEA‐CO‐1, and IAEA‐CO‐8). Rapid Communications in Mass Spectrometry. 22, 1925-1932 (2008).

O. Isoguchi, H. Kawamura, E. Oka, Quasi‐stationary jets transporting surface warm waters across the transition zone between the subtropical and the subarctic gyres in the North Pacific. Journal of Geophysical Research: Oceans. 111(2006).

S. Itoh, T. Saruwatari, H. Nishikawa, I. Yasuda, K. Komatsu, A. Tsuda, T. Setou, M. Shimizu, Environmental variability and growth histories of larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus) near the frontal area of the Kuroshio. Fish. Oceanogr. 20, 114-124 (2011).

S. Kim, J. R. O’Neil, C. Hillaire-Marcel, A. Mucci, Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2 concentration. Geochim. Cosmochim. Acta. 71, 4704-4715 (2007).

T. Kitagawa, T. Ishimura, R. Uozato, K. Shirai, Y. Amano, A. Shinoda, T. Otake, U. Tsunogai, S. Kimura, Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Mar. Ecol. Prog. Ser. 481, 199-209 (2013).

H. Kuroda, T. Setou, S. Kakehi, S. Ito, T. Taneda, T. Azumaya, D. Inagake, Y. Hiroe, K. Morinaga, M. Okazaki, Recent Advances in Japanese Fisheries Science in the Kuroshio-Oyashio Region through Development of the FRA-ROMS Ocean Forecast System: Overview of the Reproducibility of Reanalysis Products. Open Journal of Marine Science. 7, 62 (2016).

H. Kuroda, T. Setou, K. Aoki, D. Takahashi, M. Shimizu, T. Watanabe, A numerical study of the Kuroshio-induced circulation in Tosa Bay, off the southern coast of Japan. Continental Shelf Research. 53, 50-62 (2013).

K. Kuroda, Studies on the recruitment process focusing on the early life history of the Japanese sardine, Sardinops melanostictus (Schelegen). Bull. Natl .Res. Inst. Fish. Sci., 3, 25-278 (1991) (in Japanese with English abstract).

K. Nishida, T. Ishimura, Grain‐scale stable carbon and oxygen isotopic variations of the international reference calcite, IAEA‐603. Rapid Communications in Mass Spectrometry. 31, 1875-1880 (2017).

Okunishi, S. Ito, D. Ambe, A. Takasuka, T. Kameda, K. Tadokoro, T. Setou, K. Komatsu, Kawabata, H. Kubota, A modeling approach to evaluate growth and movement for recruitment success of Japanese sardine (Sardinops melanostictus) in the western Pacific. Fish. Oceanogr. 21, 44-57 (2012).

D. Pauly, V. Christensen, S. Guénette, T. J. Pitcher, U. R. Sumaila, C. J. Walters, R. Watson, D. Zeller, Towards sustainability in world fisheries. Nature. 418, 689 (2002).

J. A. Rice, T. J. Miller, K. A. Rose, L. B. Crowder, E. A. Marschall, A. S. Trebitz, D. L. DeAngelis, Growth rate variation and larval survival: inferences from an individual-based size-dependent predation model. Can. J. Fish. Aquat. Sci. 50, 133-142 (1993).

K. A. Rose, E. S. Rutherford, D. S. McDermot, J. L. Forney, E. L. Mills, Individual‐Based Model Of Yellow Perch And Walleye Populations In Oneida Lake. Ecol. Monogr. 69, 127-154 (1999).

S. Sainz-Trápaga, T. Sugimoto, Three-dimensional velocity field and cross-frontal water exchange in the Kuroshio Extension. J. Oceanogr. 56, 79-92 (2000).

S. Sakai, Micromilling and sample recovering techniques using high-precision micromill GEOMILL326. JAMSTEC-Rep.Res.Develop., 10, 4–5 (2009).

T. Sakamoto, K. Komatsu, K. Shirai, T. Higuchi, T. Ishimura, T. Setou, Y. Kamimura, C. Watanabe, A. Kawabata, Combining microvolume isotope analysis and numerical simulation to reproduce fish migration history. Methods in Ecology and Evolution.(2018).

T. Sakamoto, K. Komatsu, M. Yoneda, T. Ishimura, T. Higuchi, K. Shirai, Y. Kamimura, C. Watanabe, A. Kawabata, Temperature dependence of δ18O in otolith of juvenile Japanese sardine: Laboratory rearing experiment with micro-scale analysis. Fisheries Research. 194, 55-59 (2017).

J. Shiao, T. Yui, H. Høie, U. Ninnemann, S. Chang, Otolith O and C stable isotope compositions of southern bluefin tuna Thunnus maccoyii (Pisces: Scombridae) as possible environmental and physiological indicators. Zool. Stud. 48, 71-82 (2009).

L. Silva, A. Faria, M. A. Teodósio, S. Garrido, Ontogeny of swimming behaviour in sardine Sardina pilchardus larvae and effect of larval nutritional condition on critical speed. Mar. Ecol. Prog. Ser. 504, 287-300 (2014).

J. Smagorinsky, General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91, 99-164 (1963).

A. Storm-Suke, J. B. Dempson, J. D. Reist, M. Power, A field-derived oxygen isotope fractionation equation for Salvelinus species. Rapid Commun. Mass Spectrom. 21, 4109-4116 (2007).

A. Sturrock, C. Trueman, A. Darnaude, E. Hunter, Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? J. Fish Biol. 81, 766-795 (2012).

M. Takahashi, H. Nishida, A. Yatsu, Y. Watanabe, Year-class strength and growth rates after metamorphosis of Japanese sardine (Sardinops melanostictus) in the western North Pacific Ocean during 1996–2003. Can. J. Fish. Aquat. Sci. 65, 1425-1434 (2008).

J. Torniainen, A. Lensu, P. J. Vuorinen, E. Sonninen, M. Keinänen, R. I. Jones, W. P. Patterson, M. Kiljunen, Oxygen and carbon isoscapes for the Baltic Sea: Testing their applicability in fish migration studies. Ecology and Evolution. 7, 2255-2267 (2017).

K. Tsukamoto, I. Nakai, Do all freshwater eels migrate? Nature. 396, 635 (1998).

R. Yukami, C. Wanatabe, Y. Kamimura, S. Furuichi, T. Akamine, T. Kishida, Stock assessment and evaluation for the Pacific stock of Japanese sardine (fiscal year 2016). in Marine fisheries stock assessment and evaluation for Japanese waters (fiscal year 2016/2017). (Fisheries Agency and Fisheries Research and Education Agency of Japan, Yokohama, 2017) pp. 15-52 (in Japanese).

J. P. Zwolinski, R. L. Emmett, D. A. Demer, Predicting habitat to optimize sampling of Pacific sardine (Sardinops sagax). ICES J. Mar. Sci. 68, 867-879 (2011).

Chapter 6

P. Cury, A. Bakun, R. J. Crawford, A. Jarre, R. A. Quinones, L. J. Shannon, H. M. Verheye, Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603-618 (2000).

C. L. de Moor, D. S. Butterworth, van der Lingen, Carl D, The quantitative use of parasite data in multistock modelling of South African sardine (Sardinops sagax). Can. J. Fish. Aquat. Sci. 74, 1895-1903 (2017).

J. Kalish, Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Mar. Biol. 110, 37-47 (1991).

S. Kim, J. R. O’Neil, C. Hillaire-Marcel, A. Mucci, Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2 concentration. Geochim. Cosmochim. Acta. 71, 4704-4715 (2007).

M. J. Kishi, M. Kashiwai, D. M. Ware, B. A. Megrey, D. L. Eslinger, F. E. Werner, M. Noguchi-Aita, T. Azumaya, M. Fujii, S. Hashimoto, NEMURO—a lower trophic level model for the North Pacific marine ecosystem. Ecol. Model. 202, 12-25 (2007).

R. C. Lewontin, The organism as the subject and object of evolution. (1983).

C. Mullon, P. Cury, P. Penven, Evolutionary individual-based model for the recruitment of anchovy (Engraulis capensis) in the southern Benguela. Can. J. Fish. Aquat. Sci. 59, 910-922 (2002).

R. A. Schwartzlose, J. Alheit, A. Bakun, T. R. Baumgartner, R. Cloete, R. J. M. Crawford, W. J. Fletcher, Y. Green-Ruiz, E. Hagen, T. Kawasaki, D. Lluch-Belda, S. E. Lluch-Cota, A. D. MacCall, Y. Matsuura, M. O. Nevárez-Martínez, R. H. Parrish, C. Roy, R. Serra, K. V. Shust, M. N. Ward, J. Z. Zuzunaga, Worldwide large-scale fluctuations of sardine and anchovy populations. South African Journal of Marine Science. 21, 289-347 (1999).

J. Shiao, K. Shirai, K. Tanaka, N. Takahata, Y. Sano, S. Hsiao, D. Lee, Y. Tseng, Assimilation of nitrogen and carbon isotopes from fish diets to otoliths as measured by nanoscale secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry.(2018).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る