リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparison of microstructure, crystallographic texture, and mechanical properties in Ti–15Mo–5Zr–3Al alloys fabricated via electron and laser beam powder bed fusion technologies」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparison of microstructure, crystallographic texture, and mechanical properties in Ti–15Mo–5Zr–3Al alloys fabricated via electron and laser beam powder bed fusion technologies

Sun, Shi Hai 大阪大学

2021.11.01

概要

Depending on the application, establishing a strategy for selecting the type of powder bed fusion technology—from electron beam (EB-PBF) or laser powder bed fusion (L-PBF)—is important. In this study, we focused on the β-type Ti–15Mo–5Zr–3Al alloy (expected for hard-tissue implant applications) as a model material, and we examined the variations in the microstructure, crystallographic texture, and resultant mechanical properties of specimens fabricated by L-PBF and EB-PBF. Because the melting mode transforms from the conduction mode to the keyhole mode with an increase in the energy density in L-PBF, the relative density of the L-PBF-built specimen decreases at higher energy densities, unlike that of the EB-PBF-built specimen. Although both EB-PBF and L-PBF can obtain cubic crystallographic textures via bidirectional scanning with a 90° rotation in each layer, the formation mechanisms of the textures were found to be different. The <100> texture in the build direction is mainly derived from the vertically grown columnar cells in EB-PBF, whereas it is derived from the vertically and horizontally grown columnar cells in L-PBF. Consequently, different textures were developed via bidirectional scanning without rotation in each layer: the <110> and <100> aligned textures along the build direction in L-PBF and EB-PBF, respectively. The L-PBF-built specimen exhibited considerably better ductility, but slightly lower strength than the EB-PBF-built specimen, under the conditions of the same crystallographic texture and relative density. We attributed this to the variation in the microstructures of the specimens; the formation of the α-phase was completely absent in the L-PBF-built specimen. The results demonstrate the importance of properly selecting the two technologies according to the material and its application.

参考文献

[1] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Mater. 117 (2016) 371–392.

[2] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and property, Prog. Mater. Sci. 92 (2018) 112–224.

[3] L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, P. W. Shindo, F. Medina, R.B. Wicker, Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science, J. Mater. Res. Technol. 1 (2012) 42–54.

[4] V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, R. Singh, A review on powder bed fusion technology of metal additive manufacturing. Additive Manufacturing Handbook, CRC Press, 2017, pp. 251–253.

[5] C. Ko¨roner, Additive manufacturing of metallic components by selective electron beam melting – a review, Int. Mater. Rev. 61 (2016) 361–377.

[6] F. Dausinger, J. Shen, Energy coupling efficiency in laser surface treatment, ISIJ Int. 33 (1993) 925–933.

[7] E. Beyer, K. Wissenbach, Oberfl¨achenbehandlung mit Laserstrahlung, Springer-Verlag, 2013.

[8] M.A. Lodes, R. Guschlbauer, C. Ko¨rner, Process development for the manufacturing of 99.94% pure copper via selective laser melting, Mater. Lett. 143 (2015) 298–301.

[9] T. Kolb, F. Huber, B. Akbulut, C. Donocik, N. Urban, D. Maurer, J. Franke, Laser beam melting of NdFeB for the production of rare-earth magnets, in: Proceedings of the Electric Drives Production Conference (EDPC), IEEE, 2016, pp. 34–40.

[10] H.J. Gong, K. Rafi, H.F. Gu, T. Starr, B. Stucker, Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes, Addit. Manuf. 1–4 (2014) 87–98.

[11] A. Townsend, N. Senin, L. Blunt, R.K. Leach, J.S. Taylor, Surface texture metrology for metal additive manufacturing: a review, Precis. Eng. 46 (2016) 34–47.

[12] J. Beuth, J. Fox, J. Gockel, C. Montgomery, R. Yang, H.P. Qiao, E. Soylemez, P. Reeseewatt, A. Anvari, S. Narra, N. Klingbeil, Process mapping for qualification across multiple direct metal additive manufacturing processes, in: Proceedings of the Solid Freeform Fabrication Symposium, University of Texas, Austin, 2013, pp. 655–665.

[13] M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, M. Takeyama, Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting, Addit. Manuf. 13 (2017) 61–70.

[14] L. Loeber, S. Biamino, U. Ackelid, S. Sabbadini, P. Epicoco, P. Fino, J. Eckert, Comparison of selective laser and electron beam melted titanium aluminides, in: Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 2011, pp. 547–556.

[15] A.S. Wu, D.W. Brown, M. Kumar, G. Gallegos, W.E. King, An experimental investigation into additive manufacturing induced residual stresses in 316L stainless steel, Metall. Mater. Trans. A 45 (2014) 6260–6270.

[16] Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L. C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Mater. 113 (2016) 56–67.

[17] X.L. Zhao, S.J. Li, M. Zhang, Y.D. Liu, T.B. Sercombe, S.G. Wang, Y.L. Hao, R. Yang, L.E. Murr, Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting, Mater. Des. 95 (2016) 21–31.

[18] Y. Zhong, L.E. R¨annar, S. Wikman, A. Koptyug, L.F. Liu, Daqing Cuia, Z.J. Shen, Additive manufacturing of ITER first wall panel parts by two approaches: selective laser melting and electron beam melting, Fusion Eng. Des. 116 (2017) 24–33.

[19] K.N. Amato, J. Hernandez, L.E. Murr, E. Martinez, S.M. Gaytan, P.W. Shindo, S. Collins, Comparison of microstructures and properties for a Ni-base superalloy (alloy 625) fabricated by electron and laser beam melting, J. Mater. Sci. Res. 1 (2012) 3–41.

[20] S.H. Sun, Y. Koizumi, S. Kurosu, Y.P. Li, H. Matsumoto, A. Chiba, Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting, Acta Mater. 64 (2014) 154–168.

[21] S.H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y.P. Li, Y.J. Cui, A. Chiba, Electron beam additive manufacturing of Inconel 718 alloy rods: impact of build direction on microstructure and high-temperature tensile properties, Addit. Manuf. 23 (2018) 457–470.

[22] T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, T. Nakano, Crystallographic texture control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus, Scr. Mater. 132 (2017) 34–38.

[23] S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting, Scr. Mater. 159 (2019) 89–93.

[24] P. Wang, P. Huang, F.L. Ng, W.J. Sin, S. Lu, M.L.S. Nai, Z. Dong, J. Wei, Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder, Mater. Des. 168 (2019), 107576.

[25] S.H. Sun, K. Hagihara, T. Nakano, Effect of scanning strategy on texture formation in Ni-25 at% Mo alloys fabricated by selective laser melting, Mater. Des. 140 (2018) 307–316.

[26] H.L. Wei, J. Mazumder, T. DebRoy, Evolution of solidification texture during additive manufacturing, Sci. Rep. 5 (2015) 16446.

[27] A. Takase, T. Ishimoto, R. Suganuma, T. Nakano, Surface residual stress and phase stability in unstable β-type Ti-15Mo-5Zr-3Al alloy manufactured by laser and electron beam powder bed fusion technologies, Addit. Manuf. 47 (2021), 102257.

[28] P.R. Boyer, G. Welsh, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994.

[29] S.H. Lee, K. Hagihara, T. Nakano, Microstructural and orientation dependence of the plastic deformation behavior in β-type Ti–15Mo–5Zr–3Al alloy single crystals, Metall. Mater. Trans. A 43A (2012) 1588–1597.

[30] R. Huiskes, H. Weinans, B. Van Rietbergen, The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials, Clin. Orthop. Relat. Res. 274 (1992) 124–134.

[31] M. Tane, K. Hagihara, M. Ueda, T. Nakano, Y. Okuda, Elastic-modulus enhancement during room-temperature aging and its suppression in metastable Ti-Nb-based alloys with low body-centered cubic phase stability, Acta Mater. 102 (2016) 373–384.

[32] S.H. Lee, M. Todai, M. Tane, K. Hagihara, H. Nakajima, T. Nakano, Biocompatible low Young’s modulus achieved by strong crystallographic elastic anisotropy in Ti–15Mo–5Zr–3Al alloy single crystal, J. Mech. Behav. Biomed. Mater. 14 (2012) 48–54.

[33] J.Y. Rho, T.Y. Tsui, G.M. Pharr, Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials 18 (1997) 1325–1330.

[34] M. Tane, Y. Okuda, Y. Todaka, H. Ogi, A. Nagakubo, Elastic properties of single- crystalline ω phase in titanium, Acta Mater. 61 (2013) 7543–7554.

[35] J.C. Williams, B.S. Hickman, D.H. Leslie, The effect of ternary additions on the decomposition of metastable beta-phase titanium alloys, Metall. Trans. 2 (1971) 477–484.

[36] S. Ohtani, M. Nishigaki, Effect of Zr on the stability of a Ti-15 Mo base beta alloy, J. Jpn. Inst. Met. 35 (1971) 97–102.

[37] F.F. Cardoso, P.L. Ferrandini, E.S.N. Lopes, A. Cremasco, R. Caram, Ti–Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior, J. Mech. Behav. Biomed. Mater. 32 (2014) 31–38.

[38] H.S. Carslaw, J.C. Jaeger. Conduction of Heat in Solids, second ed., Oxford University Press, Oxford, 1986.

[39] K. Dai, L. Shaw, Finite element analysis of the effect of volume shrinkage during laser densification, Acta Mater. 53 (2005) 4743–4754.

[40] A. Takase, T. Ishimoto, R. Suganuma, T. Nakano, Lattice distortion in selective laser melting (SLM)-manufactured unstable β-type Ti-15Mo-5Zr-3Al alloy analyzed by high-precision X-ray diffractometry, Scr. Mater. 201 (2021), 113953.

[41] N.G. Shen, K. Chou, Thermal modeling of electron beam additive manufacturing process: powder sintering effects, in: Proceedings of ASME 2012 International Manufacturing Science and Engineering Conference, ASME MSEC2012-7253, 2012, pp.287-295.

[42] D.Y. Zhang, W.D. Wang, Y.W. Guo, S.T. Hu, D.D. Dong, R. Poprawe, J. H. Schleifenbaum, S. Ziegler, Numerical simulation in the absorption behavior of Ti6Al4V powder materials to laser energy during SLM, J. Mater. Process. Technol. 268 (2019) 25–36.

[43] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater. 108 (2016) 36–45.

[44] M. Rombouts, J.P. Kruth, L. Froyen, P. Mercelis, Fundamentals of selective laser melting of alloyed steel powders, CIRP Ann. 55 (2006) 187–192.

[45] K. Hagihara, T. Nakano, H. Maki, Y. Umakoshi, M. Ninomi, Isotropic plasticity of β-type Ti-29Nb-13Ta-4.6Zr alloy single crystals for the development of single crystalline β-Ti implants, Sci. Rep. 6 (2016) 29779.

[46] Y.W. Chai, H.Y. Kim, H. Hosoda, S. Miyazaki, Interfacial defects in Ti-Nb shape memory alloys, Acta Mater. 56 (2008) 3088–3097.

[47] J. Hernandez, S.J. Li, E. Martinez, L.E. Murr, X.M. Pan, K.N. Amato, X.Y. Cheng, F. Yang, C.A. Terrazas, S.M. Gaytan, Y.L. Hao, R. Yang, F. Medina, R.B. Wicker, Microstructures and hardness properties for β-phase Ti-24Nb-4Zr-7.9Sn alloy fabricated by electron beam melting, J. Mater. Sci. Technol. 29 (2013) 1011–1017.

[48] W. Chen, C. Chen, X.H. Zi, X.F. Cheng, X.Y. Zhang, Y.C. Lin, K.C. Zhou, Controlling the microstructure and mechanical properties of a metastable β titanium ally by selective laser melting, Mater. Sci. Eng. A 726 (2018) 240–250.

[49] D.D. Gu, B.B. He, Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy, Comput. Mater. Sci. 117 (2016) 221–232.

[50] M.J. Lai, C.C. Tasan, D. Raabe, On the mechanism of {332} twinning in metastable β titanium alloys, Acta Mater. 111 (2016) 173–186.

[51] S. Ehtemam Haghighi, H.B. Lu, G.Y. Jian, G.H. Cao, D. Habibi, L.C. Zhang, Effect of α′′ martensite on the microstructure and mechanical properties of beta-type Ti-Fe- Ta alloys, Mater. Des. 76 (2015) 47–54.

[52] T. Ishimoto, K. Hagihara, K. Hisamoto, T. Nakano, Stability of crystallographic texture in laser powder bed fusion: understanding the competition of crystal growth using a single crystalline seed, Addit. Manuf. 43 (2021), 102004.

[53] X.P. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C. K. Chua, Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting, Acta Mater. 97 (2015) 1–16.

[54] S.H. Sun, Y. Koizumi, S. Kurosu, Y.P. Li, A. Chiba, Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting, Acta Mater. 86 (2015) 305–318.

[55] A. Mitchell, A. Kawakami, Segregation and solidification in titanium alloys, in: Proceedings of the Ti-2007 Science and Technology, The Japan Institute of Metals, 2007, pp. 173–176.

[56] T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, C. Schnitter, M. Stenzel, A. Matsugaki, T. Nagase, T. Matsuzaka, M. Todai, H.S. Kim, T. Nakano, Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility, Scr. Mater. 194 (2021), 113658.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る