リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Retention and impairment of neurocognitive functions in mild cognitive impairment and Alzheimer's disease with a comprehensive neuropsychological test」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Retention and impairment of neurocognitive functions in mild cognitive impairment and Alzheimer's disease with a comprehensive neuropsychological test

Yao, Lu Aoyama, Shinsuke Ouchi, Atushi Yamamoto, Yasuji Sora, Ichiro 神戸大学

2022.06

概要

Aim MATRICS Consensus Cognitive Battery was developed by the National Institute of Mental Health to establish acceptance criteria for measuring cognitive changes in schizophrenia and can be used to assess cognitive functions in other psychiatric disorders. We used a Japanese version of MATRICS Consensus Cognitive Battery to explore the changes in multiple cognitive functions in patients with mild cognitive impairment and mild Alzheimer's disease. Methods We administered the Japanese version of MATRICS Consensus Cognitive Battery to 11 patients with mild cognitive impairment (MCI), 11 patients with Alzheimer's disease, and 27 healthy controls. All Japanese versions of MATRICS Consensus Cognitive Battery domain scores were converted to t-scores using sample means and standard deviations and were compared for significant performance differences among healthy control, MCI, and mild Alzheimer's disease groups. Results Compared with healthy controls, patients with MCI and mild Alzheimer's disease demonstrated the same degree of impairment to processing speed, verbal learning, and visual learning. Reasoning and problem-solving showed significant impairments only in mild Alzheimer's disease. Verbal and visual abilities in working memory showed different performances in the MCI and mild Alzheimer's disease groups, with the Alzheimer's disease group demonstrating significantly more deficits in these domains. No significant difference was found among the groups in attention/vigilance and social cognition. Conclusions The Japanese version of MATRICS Consensus Cognitive Battery can be used to elucidate the characteristics of cognitive dysfunction of normal aging, MCI, and mild dementia in clinical practice.

この論文で使われている画像

参考文献

suggesting that processing speed can be used as a risk factor for

1. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K,

et al. Mild cognitive impairment. Lancet. 2006;367(9518):1262–­70.

2. Burns A, Zaudig M. Mild cognitive impairment in older people.

Lancet. 2002;360(9349):1963–­5.

3. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH,

et al. Mild cognitive impairment represents early-­stage Alzheimer

disease. Arch Neurol. 2001;58(3):397–­4 05.

4. Prestia A, Caroli A, Van Der Flier WM, Ossenkoppele R, Van Berckel

B, Barkhof F, et al. Prediction of dementia in MCI patients based

on core diagnostic markers for Alzheimer disease. Neurology.

2013;80(11):1048–­56.

5. Matsuda O, Saito M. Multiple cognitive deficits in patients during

the mild cognitive impairment stage of Alzheimer's disease: how

are cognitive domains other than episodic memory impaired? Int

Psychogeriatr. 2009;21(5):970–­6.

assessing MCI. Whether verbal and visual learning can be used as

routine clinical examinations for distinguishing between healthy

controls and MCI requires further study. Working memory can be

used not only as a clinical neuropsychological test to distinguish

MCI from AD but also as a basis for assessing the driving fitness

of the elderly. Notably, reasoning and problem-­solving were preserved in MCI. Attention/vigilance and social cognition did not

demonstrate obvious impairment in the MCI and mild AD groups,

suggesting their importance in maintaining social activity. In clinical practice, physicians will be able to use the MCCB-­J to regularly

evaluate preserved and impaired cognitive functions and record

behavioral changes.

2574173x, 2022, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/npr2.12243 by Kobe University, Wiley Online Library on [13/12/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

180 6. Aggarwal NT, Wilson RS, Beck TL, Bienias JL, Bennett DA. Mild

cognitive impairment in different functional domains and incident Alzheimer's disease. J Neurol Neurosurg Psychiatry.

2005;76(11):1479–­8 4.

7. Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM,

Cohen JD, et al. The MATRICS consensus cognitive battery,

part 1: test selection, reliability, and validity. Am J Psychiatry.

2008;165(2):203–­13.

8. Rodriguez-­J imenez R, Santos JL, Dompablo M, Santabárbara

J, Aparicio AI, Olmos R, et al. MCCB cognitive profile in

Spanish first episode schizophrenia patients. Schizophr Res.

2019;211:88–­9 2.

9. Kumar S, Mulsant BH, Tsoutsoulas C, Ghazala Z, Voineskos AN,

Bowie CR, et al. An optimal combination of MCCB and CANTAB to

assess functional capacity in older individuals with schizophrenia.

Int J Geriatr Psychiatry. 2016;31(10):1116–­23.

10. Burton CZ, Vella L, Harvey PD, Patterson TL, Heaton RK,

Twamley EW. Factor structure of the MATRICS Consensus

Cognitive Battery (MCCB) in schizophrenia. Schizophr Res.

2013;146(1–­3):244–­8 .

11. Shi C, Kang L, Yao S, Ma Y, Li T, Liang Y, et al. The MATRICS

Consensus Cognitive Battery (MCCB): co-­norming and standardization in China. Schizophr Res. 2015;169(1–­3):109–­15.

12. Rodriguez-­Jimenez R, Bagney A, Garcia-­Navarro C, Aparicio AI,

Lopez-­Anton R, Moreno-­Ortega M, et al. The MATRICS consensus

cognitive battery (MCCB): co-­norming and standardization in Spain.

Schizophr Res. 2012;134(2–­3):279–­8 4.

13. Nitzburg GC, Derosse P, Burdick KE, Peters BD, Gopin CB,

Malhotra AK. MATRICS cognitive consensus battery (MCCB) performance in children, adolescents, and young adults. Schizophr Res.

2014;152(1):223–­8.

14. August SM, Kiwanuka JN, McMahon RP, Gold JM. The MATRICS

Consensus Cognitive Battery (MCCB): clinical and cognitive correlates. Schizophr Res. 2012;134(1):76–­82.

15. Kaneda Y, Ohmori T, Okahisa Y, Sumiyoshi T, Pu S, Ueoka Y, et al.

M easurement and T reatment R esearch to I mprove C ognition in

S chizophrenia C onsensus C ognitive B attery: V alidation of the J

apanese version. Psychiatry Clin Neurosci. 2013;67(3):182–­8.

16. Tamiya H, Ouchi A, Chen R, Miyazawa S, Akimoto Y, Kaneda Y, et al.

Neurocognitive impairments are more severe in the binge-­eating/

purging anorexia nervosa subtype than in the restricting subtype.

Front Psychiatry. 2018;9:138.

17. Ishisaka N, Shimano S, Miura T, Motomura K, Horii M, Imanaga H,

et al. Neurocognitive profile of euthymic Japanese patients with

bipolar disorder. Psychiatry Clin Neurosci. 2017;71(6):373–­82.

18. White KE, Cummings JL. Schizophrenia and Alzheimer's disease: clinical and pathophysiologic analogies. Compr Psychiatry.

1996;37(3):188–­95.

19. Perry RJ, Watson P, Hodges JR. The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer’s disease: relationship to episodic and semantic memory impairment.

Neuropsychologia. 2000;38(3):252–­71.

20. Cameron J, Worrall-­C arter L, Page K, Stewart S, Ski CF. Screening

for mild cognitive impairment in patients with heart failure:

Montreal cognitive assessment versus mini mental state exam. Eur

J Cardiovas Nurs. 2013;12(3):252–­60.

21. Schmitt FA, Aarsland D, Brønnick KS, Meng X, Tekin S, Olin JT.

Evaluating rivastigmine in mild-­to-­moderate Parkinson’s disease

dementia using ADAS-­cog items. Am J Alzheimer's Dis Other

Dement. 2010;25(5):407–­13.

22. Association AP. Diagnostic and statistical manual of mental disorders (DSM-­5®). American Psychiatric Pub; 2013.

23. Levada OA, Cherednichenko NV, Troyan AS. neuropsychiatric

symptoms in patients with the main etiological types of mild neurocognitive disorders: a hospital-­based case–­control study. Front

Psychiatry. 2017;8:75.

181

24. Sachdev PS, Blacker D, Blazer DG, Ganguli M, Jeste DV, Paulsen JS,

et al. Classifying neurocognitive disorders: the DSM-­5 approach.

Nat Rev Neurol. 2014;10(11):634–­42.

25. Reisberg B, Ferris SH, Anand R, Deleon MJ, Schneck MK, Buttinger

C, et al. Functional staging of dementia of the Alzheimer type. Ann

N Y Acad Sci. 1984;435(1):481–­3.

26. Matsuoka K, Uno M, Kasai K, Koyama K, Kim Y. Estimation

of premorbid IQ in individuals with Alzheimer’s disease using

Japanese ideographic script (Kanji) compound words: Japanese

version of National Adult Reading Test. Psychiatry Clin Neurosci.

2006;60(3):332–­9.

27. Kern RS, Nuechterlein KH, Green MF, Baade LE, Fenton WS,

Gold JM, et al. The MATRICS consensus cognitive battery,

part 2: co-­n orming and standardization. Am J Psychiatry.

2008;165(2):214–­20.

28. Ramachandran VS. Encyclopedia of human behavior. Academic

Press; 2012.

29. Holdnack JA, Prifitera A, Weiss LG, Saklofske DH. WISC-­V and the

personalized assessment approach: WISC-­V assessment and interpretation: scientist-­practitioner perspectives. Elsevier; 2015, 373.

3 0. Sliwinski M, Buschke H. Processing speed and memory in aging and

dementia. J Gerontol B: Psychol Sci Soc Sci. 1997;52(6):P308–­P18.

31. Welmer A-­K , Rizzuto D, Qiu C, Caracciolo B, Laukka EJ. Walking

speed, processing speed, and dementia: a population-­based longitudinal study. J Gerontol A: Biomed Sci Med Sci. 2014;69(12):1503–­10.

32. Benedict RH, Schretlen D, Groninger L, Brandt J. Hopkins verbal

learning test–­revised: normative data and analysis of inter-­form and

test-­retest reliability. Clin Neuropsychol. 1998;12(1):43–­55.

33. Benedict RH, Schretlen D, Groninger L, Dobraski M, Shpritz B.

Revision of the brief visuospatial memory test: studies of normal

performance, reliability, and validity. Psychol Assess. 1996;8(2):145.

3 4. Hogervorst E, Combrinck M, Lapuerta P, Rue J, Swales K, Budge

M. The Hopkins verbal learning test and screening for dementia.

Dement Geriatr Cogn Disord. 2002;13(1):13–­20.

35. Shi J, Tian J, Wei M, Miao Y, Wang Y. The utility of the hopkins

verbal learning test (Chinese version) for screening dementia and

mild cognitive impairment in a Chinese population. BMC Neurol.

2012;12(1):136.

36. Luis CA, Abdullah L, Ait-­Ghezala G, Mouzon B, Keegan AP, Crawford

F, et al. Feasibility of predicting MCI/AD using neuropsychological tests and serum β-­Amyloid. Int J Alzheimer’s Dis. 2011;2011.

https://doi.org/10.4061/2011/786264. Epub ahead of print.

37. Baddely A, Hitch G. Working memory.-­The psychology of learning

and motivation. New York Academic Press; 1974.

38. Alloway TP, Gathercole SE, Pickering SJ. Verbal and visuospatial

short-­term and working memory in children: are they separable?

Child Dev. 2006;77(6):1698–­716.

39. Engle RW, Kane MJ, Tuholski SW. Individual differences in working

memory capacity and what they tell us about controlled attention,

general fluid intelligence, and functions of the prefrontal cortex.

Cambridge University Press; 1999.

4 0. Shah P, Miyake A. The separability of working memory resources

for spatial thinking and language processing: an individual differences approach. J Exp Psychol Gen. 1996;125(1):4.

41. Finke K, Bublak P, Zihl J. Visual spatial and visual pattern working

memory: Neuropsychological evidence for a differential role of left

and right dorsal visual brain. Neuropsychologia. 2006;44(4):649–­61.

42. Driscoll I, Davatzikos C, An Y, Wu X, Shen D, Kraut M, et al.

Longitudinal pattern of regional brain volume change differentiates

normal aging from MCI. Neurology. 2009;72(22):1906–­13.

43. Baghel V, Tripathi M, Parida G, Gupta R, Yadav S, Kumar P, et al.

In vivo assessment of tau deposition in Alzheimer disease and assessing its relationship to regional brain glucose metabolism and

cognition. Clin Nucl Med. 2019;44(11):e597–­601.

4 4. Reger MA, Welsh RK, Watson G, Cholerton B, Baker LD, Craft S.

The relationship between neuropsychological functioning and

2574173x, 2022, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/npr2.12243 by Kobe University, Wiley Online Library on [13/12/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

YAO et al.

5. 4

46. 47. 48. 49. 50. 51. 52. 3. 5

54. 55. driving ability in dementia: a meta-­analysis. Neuropsychology.

2004;18(1):85–­93.

Porteus SD. The Maze Test and clinical psychology. 1959.

Wass C, Denman-­Brice A, Rios C, Light KR, Kolata S, Smith AM,

et al. Covariation of learning and “reasoning” abilities in mice:

Evolutionary conservation of the operations of intelligence. J Exp

Psychol Anim Behav Process. 2012;38(2):109.

Sauce B, Matzel LD. Inductive reasoning. 2017.

Waltz JA, Knowlton BJ, Holyoak KJ, Boone KB, Mishkin FS, de

Menezes SM, et al. A system for relational reasoning in human prefrontal cortex. Psychol Sci. 1999;10(2):119–­25.

Huntley JD, Hampshire A, Bor D, Owen AM, Howard RJ. The importance of sustained attention in early Alzheimer's disease. Int J

Geriatr Psychiatry. 2017;32(8):860–­7.

Parasuraman R, Haxby JV. Attention and brain function in

Alzheimer's disease: a review. Neuropsychology. 1993;7(3):242.

Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE.

Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J Neurosci. 2003;23(3):986–­93.

Perry RJ, Hodges JR. Attention and executive deficits in Alzheimer's

disease: a critical review. Brain. 1999;122(3):383–­4 04.

Pennington DC. Social cognition. Routledge; 2012.

Frith CD. Social cognition. Philos Trans R Soc Lond B Biol Sci.

2008;363(1499):2033–­9.

Mayer JD, Salovey P, Caruso DR, Sitarenios G. Measuring emotional

intelligence with the MSCEIT V2.0. Emotion. 2003;3(1):97–­105.

YAO et al.

56. Rankin KP, Kramer JH, Mychack P, Miller BL. Double dissociation of social functioning in frontotemporal dementia. Neurology.

2003;60(2):266–­71.

57. Cosentino S, Zahodne LB, Brandt J, Blacker D, Albert M, Dubois

B, et al. Social cognition in Alzheimer's disease: a separate

construct contributing to dependence. Alzheimer's Dement.

2014;10(6):818–­26.

S U P P O R T I N G I N FO R M AT I O N

Additional supporting information may be found in the online

version of the article at the publisher’s website.

How to cite this article: Yao L, Aoyama S, Ouchi A,

Yamamoto Y, Sora I. Retention and impairment of

neurocognitive functions in mild cognitive impairment and

Alzheimer’s disease with a comprehensive

neuropsychological test. Neuropsychopharmacol Rep.

2022;42:174–­182. https://doi.org/10.1002/npr2.12243

2574173x, 2022, 2, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/npr2.12243 by Kobe University, Wiley Online Library on [13/12/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

182 ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る