リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pantoea ananatis を宿主としたテルペノイド発酵生産基盤技術の開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pantoea ananatis を宿主としたテルペノイド発酵生産基盤技術の開発

新田, 暢久 筑波大学 DOI:10.15068/0002005706

2022.11.28

概要

我々人類は、古くから植物が生産する化合物を医薬品や食品、化成品として日々の生活に活用してきた。その多くは植物の二次代謝物と定義される化合物群で、抗腫瘍活性を持つアルカロイド類、抗酸化活性を示すフラボノイド類のほか、芳香性を持つテルペノイド類が代表例として挙げられる。なかでもテルペノイド化合物の用途は香料、着色料、健康補助食品、医薬品原料、農薬、工業原料など多岐にわたり、我々の日々の生活に欠かせないものとなっている。

テルペノイド化合物の多くは現在主に植物組織からの抽出により供給されているが、植物中に含まれる量が微量であることや、植物の生長自体が天候や病原菌による影響を受けやすいことから、資源保護や安定供給の観点で課題がある1。化学合成により生産されるテルペノイドも存在するが、昨今はヨーロッパを中心に消費者の食品へのナチュラル志向が高まっており、フレーバー用途に用いられる場合は"Natural"表示可能な植物からの抽出物が好まれる傾向にある2。また、2015年に国連総会で採択された「持続可能な開発目標(SDGs)」達成への貢献に対して社会の関心が高まる中、地球環境保全、省エネルギー、省資源を意識した製法の確立が、テルペノイドに限らず各企業に求められている。

こうした背景下で、再生可能な植物バイオマスから微生物を用いた発酵法で目的のテルペノイドを生産する方法が昨今注目を集めている。この20年、代謝工学や合成生物学の発展によりバクテリアや酵母を宿主としたテルペノイド化合物の発酵生産技術は飛躍的に向上した。実際、バイオテクノロジーベースの柑橘系フレーバー(ヌートカトン、バレンセン)に代表されるテルペノイド化合物が市場に登場している2。米国およびEU圏では、天然原料から微生物による発酵により変換した生成物には"Natural"表示が許可されており、こうした発酵由来の製品は化学合成品よりも高値で取引される傾向にある。しかしながら一部の化合物を除き、依然テルペノイドの発酵生産性は低い。本研究では、本課題を解決するための有望な手段として耐酸性通性嫌気性細菌Pantoeaananatisをプラットフォーム菌に用いた高生産性のテルペノイド発酵製法を提案した。また、本研究では化学合成では困難とされる100%鏡像選択的なテルペノイド生産の実例を示し、発酵法(酵素反応)の利点を実証した。

本章(序章)ではテルペノイドの多様性と有用性を踏まえた上で、自然界におけるテルペノイド生合成経路に関する知見、従来のテルペノイド製法の課題を整理し、本研究に着手するに至った社会的背景と動機に関して述べる。続いて、これまで検討されてきた組換え微生物によるテルペノイド発酵の現状を整理すると共に、テルペノイド発酵に求められる代謝工学的手法と発酵プロセスに関する基礎的な知見を纏めることで、高生産性のテルペノイド発酵生産技術を構築するうえで必要な要素技術を抽出した。最後に、生産宿主として用いるP.ananatisに関する知見を整理した。以上を纏めたうえで、最終的に本研究の目的と意義を示した。

この論文で使われている画像

参考文献

1. van Beilen, J. B. & Poirier, Y. Establishment of new crops for the production of natural rubber. Trends Biotechnol. 25, 522–529 (2007).

2. Schempp, F. M., Drummond, L., Buchhaupt, M. & Schrader, J. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds. J. Agric. Food Chem. 66, 2247–2258 (2018).

3. Sonntag, F. et al. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol. Metab. Eng. 32, 82–94 (2015).

4. Han, G. H. et al. Fermentative production and direct extraction of (−)-α-bisabolol in metabolically engineered Escherichia coli. Microb. Cell Fact. 15, (2016).

5. Whited, G. M. et al. Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind. Biotechnol.

6, 152–163 (2010). 6. Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, F. D. Evolution of the Isoprene Biosynthetic Pathway in Kudzu. Plant Physiol. 137, 700–712 (2005).

7. Zebec, Z. et al. Towards synthesis of monoterpenes and derivatives using synthetic biology. Curr. Opin. Chem. Biol. 34, 37–43 (2016).

8. Lange, B. M., Rujan, T., Martin, W. & Croteau, R. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. 97, 13172–13177 (2000).

9. Ye, L., Lv, X. & Yu, H. Engineering microbes for isoprene production. Metab. Eng. 38, 125–138 (2016).

10. Ajikumar, P. K. et al. Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli. Science 330, 70–74 (2011).

11. May, P. H. & Barata, L. A. E. S. Rosewood exploitation in the Brazilian Amazon: Options for sustainable production. Econ. Bot. 58, 257–265 (2004).

12. Celedon, J. M. et al. Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis. Plant J. 86, 289–299 (2016).

13. Mirata, M. A., Heerd, D. & Schrader, J. Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem. 44, 764–771 (2009).

14. Shukal, S., Chen, X. & Zhang, C. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli. Metab. Eng. 55, 170–178 (2019).

15. Meadows, A. L. et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537, 694–697 (2016).

16. Cao, X., Wei, L. J., Lin, J. Y. & Hua, Q. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica. Bioresour. Technol. 245, 1641–1644 (2017).

17. Peplow, M. Synthetic malaria drug meets market resistance. Nature 530, 389–390 (2016).

18. Navale, G. R., Dharne, M. S. & Shinde, S. S. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 105, 457– 475 (2021).

19. Mendez-perez, D. et al. Production of Jet Fuel Precursor Monoterpenoids From Engineered Escherichia coli. Biotechnol. Bioeng. 114, 1703–1712 (2017).

20. Zhao, J. et al. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microb. Cell Fact. 16, 17 (2017).

21. Tsuruta, H. et al. High-level production of amorpha-4, 11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4(2): e4489 (2009).

22. Li, Meijie, Feifei Hou, Tong Wu, Xinglin Jiang, Fuli Li, Haobao Liu, Mo Xian, H. Z. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Nat. Prod. Rep. 37, 80– 99 (2020).

23. Kim, H. U., Kim, B., Seung, D. Y. & Lee, S. Y. Effects of Introducing Heterologous Pathways on Microbial Metabolism with Respect to Metabolic Optimality. Biotechnol. Bioprocess Eng. 19, 660–667 (2014).

24. 田代美希,梅野太輔. テルペノイド合成酵素の機能進化デザイン. 化学と生物 54, 562–567 (2016).

25. Peralta-Yahya, P. P. et al. Identification and microbial production of a terpene-based advanced biofuel. Nat. Commun. 2, 483 (2011).

26. Li, W. et al. Characterization of trans-Nerolidol Synthase from Celastrus angulatus Maxim and 107 Production of trans-Nerolidol in Engineered Saccharomyces cerevisiae. (2021). J. Agric. Food Chem. 69, 2236– 2244 (2021).

27. Ramos, J. L. et al. Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 56, 743–768 (2002).

28. Shah, A. A. et al. Enhancement of geraniol resistance of Escherichia coli by MarA overexpression. J. Biosci. Bioeng. 115, 253–258 (2013).

29. Copolovici, L. & Niinemets, Ü. Salting-in and salting-out effects of ionic and neutral osmotica on limonene and linalool Henry’s law constants and octanol/water partition coefficients. Chemosphere 69, 621–629 (2007).

30. Brennan, T. C. R., Turner, C. D., Krömer, J. O. & Nielsen, L. K. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol. Bioeng. 109, 2513–2522 (2012).

31. Hofmeister, D. L., Thoden, J. B. & Holden, H. M. Investigation of a sugar N-formyltransferase from the plant pathogen Pantoea ananatis. Protein Sci. 28, 707–716 (2019).

32. Hara, Y. et al. The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential. Appl. Microbiol. Biotechnol. 93, 331–341 (2012).

33. Katashkina, J. I. et al. Use of the λ Red-recombineering method for genetic engineering of Pantoea ananatis. BMC Mol. Biol. 10, 34 (2009).

34. Andreeva, I. G. et al. Identification of Pantoea ananatis gene encoding membrane pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and pqqABCDEF operon essential for PQQ biosynthesis. FEMS Microbiol. Lett. 318, 55–60 (2011).

35. Takumi, K., Ziyatdinov, M. K., Samsonov, V. & Nonaka, G. Fermentative production of cysteine by Pantoea ananatis. Appl. Environ. Microbiol. 83, e02502-16 (2017).

36. Hara, Y. et al. Method for producing dicarboxylic acid. Patent US 20170298397 B2, (2017).

37. Burg, J. M. et al. Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations. Curr. Opin. Chem. Eng. 14, 121–136 (2016).

38. Dahl, R. H. et al. Engineering dynamic pathway regulation using stress-response promoters. Nat. 108 Biotechnol. 31, 1039–1046 (2013).

39. Wang, F. et al. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Metab. Eng. 39, 257–266 (2017).

40. Hsieh, Y. & Wanner, B. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198–203 (2010).

41. Minaeva, N. I. et al. Dual-In/Out strategy for genes integration into bacterial chromosome: A novel approach to step-by-step construction of plasmid-less marker-less recombinant E. coli strains with predesigned genome structure. BMC Biotechnol. 8, 1–11 (2008).

42. Tajima, Y. et al. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes. Appl. Environ. Microbiol. 81, 929– 937 (2015).

43. Kazieva, E. et al. Characterization of feedback-resistant mevalonate kinases from the methanogenic archaeons Methanosaeta concilii and Methanocella paludicola. Microbiology 163, 1283–1291 (2017).

44. Makino, K., Shinagawa, H., Amemura, M. & Nakata, A. Nucleotide Sequence of the phoB Gene, the Positive Regulatory Gene for the Phosphate Regulon of Escherichia coli K-12. J. Mol. Biol. 190, 37–44 (1986).

45. Kim, S. K., Makino, K., Amemura, M., Shinagawa, H. & Nakata, A. Molecular Analysis of the phoH Gene, Belonging to the Phosphate Regulon in Escherichia coli. J. Bacteriol. 175, 1316–1324 (1993).

46. Kasahara, M., Makino, K., Amemura, M., Nakata, A. & Shinagawa, H. Dual regulation of the ugp Operon by Phosphate and Carbon Starvation at Two Interspaced Promoters. J. Bacteriol. 173, 549–558 (1991).

47. Hedl, M. et al. Enterococcus faecalis Acetoacetyl-Coenzyme A Thiolase/3-Hydroxy-3-MethylglutarylCoenzyme A Reductase, a Dual-Function Protein of Isopentenyl Diphosphate Biosynthesis. J. Bacteriol. 184, 2116–2122 (2002).

48. Sutherlin, A. et al. Enterococcus faecalis 3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase, an Enzyme of Isopentenyl Diphosphate Biosynthesis. J. Bacteriol. 184, 4065–4070 (2002).

49. Wang, J. et al. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration. Appl. Environ. Microbiol. 82, 7176–7184 (2016).

50. Yasuyuki, H., Minako, H. et al. Isoprene synthase and gene encoding the same, and method for 109 producing isoprene monomer. Patent US 2014/0113344 A1, (2014).

51. Tajima, Y., Rachi, H., Nishio, Y., Katashkina, Z. I. & Oleg, V. B. Method for producing isoprenoid compound. European patent 3225691 A1, (2017).

52. Aprotosoaie, A. C., Hăncianu, M., Costache, I. I. & Miron, A. Linalool: A review on a key odorant molecule with valuable biological properties. Flavour Fragr. J. 29, 193–219 (2014).

53. Chen, X. et al. Characterisation of an (S)-linalool synthase from kiwifruit (Actinidia arguta) that catalyses the first committed step in the production of floral lilac compounds. Funct. Plant Biol. 37, 232–243 (2010).

54. Nakano, C., Kim, H. K. & Ohnishi, Y. Identification and Characterization of the linalool/nerolidol Synthase from Streptomyces clavuligerus. ChemBioChem 12, 2403–2407 (2011).

55. Deng, Y., Sun, M., Xu, S. & Zhou, J. Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae. J. Appl. Microbiol. 121, 187–195 (2016).

56. Matsudaira, A. et al. Production of glutamate and stereospecific flavors, (S)-linalool and (+)-valencene, by Synechocystis sp. PCC6803. J. Biosci. Bioeng. 130, 464–70 (2020).

57. Lei, D., Qiu, Z., Qiao, J. & Zhao, G. R. Biotechnology for Biofuels Plasticity engineering of plant monoterpene synthases and application for microbial production of monoterpenoids. Biotechnol. Biofuels 1–16 (2021).

58. Hoshino, Y. et al. Stereospecific linalool production utilizing two-phase cultivation system in Pantoea ananatis. J. Biotechnol. 324, 21–27 (2020).

59. Fukui, K. et al. Identification of succinate exporter in Corynebacterium glutamicum and its physiological roles under anaerobic conditions. J. Biotechnol. 154, 25–34 (2011).

60. Marina Soković, Jasmina Glamočlija, Petar D. Marin, Dejan Brkić, L. J. L. D. van G. Antibacterial Effects of the Essential Oils of Commonly Consumed Medicinal Herbs Using an In Vitro Model. Molecules 15, 7532–7546 (2010).

61. Liu, W. et al. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture. Biotechnol. Biofuels 9, 58 (2016).

62. Martin, V. J. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

63. Hartwig, S. et al. SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides. Biochem. Biophys. Res. Commun. 458, 883–889 (2015).

64. Beekwilder, J., Houwelingen, V., Cankar, K. & Dijk, A. D. J. Van. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnol. J. 12, 174–182 (2014).

65. Steinmetz, E. & Auldridge, M. Screening Fusion Tags for Improved Recombinant Protein Expression in E. coli with the Expresso® Solubility and Expression Screening System. Curr Protoc Protein Sci. 90, 5.27.1- 5.27.20 (2017).

66. Heeres, A. S., Picone, C. S. F., van der Wielen, L. A. M., Cunha, R. L. & Cuellar, M. C. Microbial advanced biofuels production: Overcoming emulsification challenges for large-scale operation. Trends Biotechnol. 32, 221–229 (2014).

67. Chinen, A., Kozlov, Y. I. & Hara, Y. Innovative Metabolic Pathway Design for Efficient L-Glutamate Production by Suppressing CO2 Emission. J. Biosci. Bioeng. 103, 262–269 (2007).

68. Salmon, K. et al. Global Gene Expression Profiling in Escherichia coli K12. J. Biol. Chem. 278, 29837– 29855 (2003).

69. McGinness, K. E., Baker, T. A. & Sauer, R. T. Engineering Controllable Protein Degradation. Mol. Cell 22, 701–707 (2006).

70. Lynch, M. D. Into new territory: Improved microbial synthesis through engineering of the essential metabolic network. Curr. Opin. Biotechnol. 38, 106–111 (2016).

71. Yoshikuni, Y., Dietrich, J. A., Nowroozi, F. F., Babbitt, P. C. & Keasling, J. D. Redesigning Enzymes Based on Adaptive Evolution for Optimal Function in Synthetic Metabolic Pathways. Chem. Biol. 15, 607–618 (2008).

72. Tashiro, M. et al. Bacterial Production of Pinene by a Laboratory-Evolved Pinene-Synthase. ACS Synth. Biol. 5, 1011–1020 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る