リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「異核Feshbach共鳴を有するBose-Fermi混合原子気体における強相関量子多体現象の理論研究 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

異核Feshbach共鳴を有するBose-Fermi混合原子気体における強相関量子多体現象の理論研究 (本文)

真辺, 幸喜 慶應義塾大学

2022.03.23

概要

本研究が対象とする冷却原子気体は,原子間にはたらく引力相互作用の強さや原子の量子統計性 (Fermi 統計,Bose 統計) を人為的に制御できることから,強く相互作用する量子多体系に現れる多様な強相関量子多体現象を研究するための理想的なプラットフォームとして重要視されている.当該研究分野では,金属超伝導との類似性が指摘されている 2 成分 Fermi 原子気体 (40K や 6Li) において Cooper 対形成と超流動転移が実現して以来,この系の強相関物性が精力的に研究されてきた.さらに近年では,これらの量子多体現象における量子統計効果を研究できる系として,本博士論文が研究対象とする Bose-Fermi 混合原子気体が注目を集めている.

本章では,先ず 1.1 節において冷却原子気体の研究分野を概説する.1.2 節では,Bose- Fermi 混合原子気体を導入する.その研究の現状と課題を 2 成分 Fermi 原子気体と比較しながら説明,Bose-Fermi 混合原子気体ではこれまでに強相関量子物性の研究が十分行われていないことを指摘する.1.3 節では,Bose-Fermi 混合原子気体に特徴的な強相関量子多体現象が期待される物理量として 1 粒子励起スペクトルと光原子分光スペクトルを挙げ,さらにこれらの物理量における成分間の質量インバランス,粒子数インバランスの重要性を説明する.1.4 節では,この系に特有の現象として熱力学的安定性の問題を挙げ,先行研究の結果をまとめる.本研究の目的と本論文の構成を 1.5 節で述べる.

この論文で使われている画像

参考文献

[1] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[2] S. Giorgini, L. Pitaevskii, and S. Stringari, Theory of ultracold atomic Fermi gases, Rev. Mod. Phys. 80, 1215 (2008).

[3] Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics Enrico Fermi, Course CXL, edited by M. Inguscio, S. Stringari, and C. E. Weiman (IOS Press, Amsterdam, 1999).

[4] Ultra-cold Fermi Gases, Proceedings of the International School of Physics Enrico Fermi, Course CLXIV , edited by M. Inguscio, W. Ketterle, and C. Salomon (IOS Press, Amsterdam, 2008).

[5] Quantum Matters at Ultralow Temperatures, Proceedings of the International School of Physics Enrico Fermi, Course CXLI, edited by M. Inguscio, W. Ket- terle, S. Stringari, and G. Roati (IOS Press, Amsterdam, 2016).

[6] I. Bloch, J. Dalibard, and S. Nascimb´ene, Quantum simulations with ultracold quantum gases, Nat. Phys. 8, 267 (2012).

[7] C. Gross and I. Bloch, Quantum simulation with ultracold atoms in optical lat- tices, Science 357, 995 (2017).

[8] F. Sch¨afer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Tools for quantum simulation with ultracold atoms in optical lattices, Nat. Rev. Phys. 2, 411 (2020).

[9] C. J. Pethick, and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cam- bridge University Press, NY, 2008).

[10] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995).

[11] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75, 3969 (1995).

[12] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose- Einstein Condensation in an Atomic Gas with Attractive Interaction, Phys. Rev. Lett. 75, 1687 (1995).

[13] B. DeMacro and D. S. Jin, Onset of Fermi Degeneracy in a Trapped Atomic Gas, Science 285, 1703 (1999).

[14] C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett. 92, 040403 (2004).

[15] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle, Condensation of Pairs of Fermionic Atoms near a Feshbach Resonance, Phys. Rev. Lett. 92, 120403 (2004).

[16] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, and R. Grimm, Crossover from a Molecular Bose-Einstein Condensate to a Degener- ate Fermi Gas, Phys. Rev. Lett. 92, 120401 (2004).

[17] D. M. S.-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Optical Confinement of a Bose-Einstein Condensate, Phys. Rev. Lett. 80, 2027 (1998).

[18] J. Stenger, S. Inouye, D. M. S.-Kurn, H.-J. Miesner, A. P. Chikkatur, and W. Ketterle, Spin domains in ground-state Bose-Einstein condensates, Nature 396, 345 (1998).

[19] M. D. Barrett, J. A. Sauer, and M. S .Chapman, All-Optical Formation of an Atomic Bose-Einstein Condensate, Phys. Rev. Lett. 87, 010404 (2001).

[20] T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, Collisional Stability of a Three-Component Degenerate Fermi Gas, Phys. Rev. Lett. 101, 203202 (2008).

[21] J. H. Huckans, J. R. Williams, E. L. Hazlett, R. W. Stites, and K. M. O’Hara, Three-Body Recombination in a Three-State Fermi Gas with Widely Tunable In- teractions, Phys. Rev. Lett. 102, 165302 (2009).

[22] S. Taie, Y. Takasu, S. SUgawa, R. Yamazaki, T. Tsujimoto, R. Murakami, and Y. Takahashi, Realization of SU(2)×SU(6) System of Fermions in a Cold Atomic Gas, Phys. Rev. Lett. 105, 190401 (2010).

[23] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G. Hulet, Observation of Fermi Pressure in a Gas of Trapped Atoms, Science 291, 2570 (2001).

[24] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon, Quasipure Bose-Einstein Condensate Immersed in a Fermi Sea, Phys. Rev. Lett. 87, 080403 (2001).

[25] Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. G¨orlitz, and W. Ketterle, Two-Species Mixture of Quantum Degenerate Bose and Fermi Gases, Phys. Rev. Lett. 88, 160401 (2002).

[26] G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Fermi-Bose Quantum Degen- erate 40K-87Rb Mixture with Attractive Interaction, Phys. rev. Lett. 89, 150403 (2002).

[27] M. Greiner, O. Mandel, T. Esslinger, T. W. H¨ansch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002).

[28] M. K¨ohl, H. Moritz, T. St¨oferele, K. Gu¨nter, and T. Esslinger, Fermionic Atoms in a Three Dimensional Optical Lattice: Observing Fermi Surfaces, Dynamics, and Interactions, Phys. Rev. Lett. 94, 080403 (2005).

[29] R. J¨ordens, N. Strohmaier, K. Gu¨nter, H. Moritz and T. Esslinger, A Mott insu- lator of fermionic atoms in an optical lattice. Nature 455, 204 (2008).

[30] U. Schneider, L. Hackermu¨ller, S. Will, Th. Best, I. Bloch, T. A. Costi, R. W. Helmes, D. Rasch, and A. Rosch, Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice. Science 322, 1520 (2008).

[31] A. G¨orlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. A.-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Realization of Bose-Einstein Condensates in Lower Dimensions, Phys. Rev. Lett. 87, 130402 (2001).

[32] T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a One-Dimensional Tonks-Girardeau Gas, Science 305, 1125 (2004).

[33] B. Paredes, A. Widera, V. Murg, O. Mandel, S. F¨olling, I. Cirac, G. V. Shlyap- nikov, T. W. H¨ansch, and I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical lattice, Nature 429, 277 (2004).

[34] H. Moritz, T. St¨oferle, K. Gu¨nter, M. K¨ohl, and T. Esslinger, Confinement In- duced Molecules in a 1D Fermi Gas, Phys. Rev. Lett. 94, 210401 (2005).

[35] Z. Hadzibabic, P. Kru¨ger, M. Cheneau, B. Battelier, and J. Dalibard, Berezinskii- Kosterlitz-Thouless crossover in a trapped atomic gas, Nature 441, 1118 (2006).

[36] K. Martiyanov, V. Makhalov, and A. Turlapov, Observation of a Two- Dimensional Fermi Gas of Atoms, Phys. Rev. Lett. 105, 030404 (2010).

[37] P. Dyke, E. D. Kuhnle, S. Whitlock, H. Hu, M. Mark, S. Honika, M. Lingham, P. Hannaford, and C. J. Vale, Crossover from 2D to 3D in Weakly Interacting Fermi Gas, Phys. Rev. Lett. 106, 105304 (2011).

[38] A. T. Sommer, L. W. Cheuk, M. J. H. Ku, W. S. Bakr, and M. W. Zwierlein, Evolution of Fermion Pairing from Three to Two Dimensions, Phys. Rev. Lett. 108, 045302 (2012).

[39] M. G. Ries, A. N. Wenz, G. Zu¨rn, L. Bayha, I. Boettcher, D. Kedar, P. A. Murthy, M. Neidig, T. Lompe, and S. Jochim, Observation of Pair Condensation in the Quasi-2D BEC-BCS Crossover, Phys. Rev. Lett. 114, 230401 (2015); P. A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D. Kedar, M. Neidig, M. G. Ries, A. N. Wenz, G. Zu¨rn, and S. Jochim, Observation of the Berezinskii-Kosterlitz-Thouless Phase Transition in an Ultracold Fermi Gas, ibid, 115, 010401 (2015).

[40] C. Chin, R. Grimm, P. Julienee, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[41] 堀越宗一,「s 波散乱長で支配される普遍的物理法則」(原子衝突学会誌「しょうとつ」,第 14 巻 5 号,2017).

[42] W. Ketterle, D. S. Durfee, and D. M. S.-Kurn, Making, probing and understand- ing Bose-Einstein condensates, in Ref. [3].

[43] A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Resonances in ultracold collisions of 6Li, 7Li, and 23Na, Phys. Rev. A 51, 4852 (1995).

[44] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. S.-Kurn, and W. Ket- terle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature 392, 151 (1998).

[45] K. M. O’hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas, Obser- vation of a Strongly Interacting Degenerate Fermi Gas of Atoms, Science 298, 2179 (2002).

[46] K. Dieckmann, C. A. Stan, S. Gupta, Z. Hadzibabic, C. H. Schunck, and W. Ket- terle, Decay of an Ultracold Fermionic Lithium Gas near a Feshbach Resonance, Phys. rev. Lett. 89, 203201 (2002).

[47] S. Jochim, M. Bartenstein, G. Hendl, J. H. Denschlag, R. Grimm, A. Mosk, and M. Weidermu¨ller, Magnetic Field Control of Elastic Scattering in a Cold Gas of Fermionic Lithium Atoms, Phys. Rev. Lett. 89, 273202 (2002).

[48] T. Loftus, C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Resonant Control of Elastic Collisions in an Optically Trapped Fermi Gas of Atoms, Phys. Rev. Lett. 88, 173201 (2002).

[49] C. A. Regal and D. S. Jin, Measurement of positive and negative scattering length in a Fermi gas of atoms, Phys. rev. Lett. 90, 230404 (2003).

[50] C. A. Stan, M. W. Zwierlein, C. H. Schunck, S. M. F. Raupach, and W. Ket- terle, Observation of Feshbach Resonances between Two Different Atomic Species, Phys. Rev. Lett. 93, 143001 (2004).

[51] S. Inouye, J. Goldwin, M. L. Olsen, C. Ticknor, J. L. Bohn, and D. S. Jin, Observation of Heteronuclear Feshbach Resonances in a Mixture of Bosons and Fermions, Phys. Rev. Lett. 93, 183201 (2004).

[52] G. C. Strinati, P. Pieri, G. R¨opke, P. Schuck, and M. Urban, The BCS-BEC crossover: From ultra-cold Fermi gases to nuclear systems, Phys. Rep. 738, 1 (2018).

[53] Y. Ohashi, H. Tajima, and P. van Wyk, BCS-BEC crossover in cold atomic and in nuclear systems, Prog. Part. Nucl. Phys. 111, 103739 (2020).

[54] D. M. Eagles, Possible pairing without superconductivity at low carrier concen- trations in bulk and thin-film superconducting semiconductors, Phys. Rev. 186, 456 (1969).

[55] A. J. Leggett, in Modern Trends in the Theory of Condensed Matter, editted by A. Pekalski and J. Przystawa (Springer Verlag, Berlin, 1980).

[56] P. Nozi`eres and S. Schmitt-Rink, Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity, J. Low Temp. Phys. 59, 195 (1985).

[57] C. A. R. S´a de Melo, M. Randeria, and J. R. Engelbrecht, Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent Ginzbrug- Landau theory, Phys. Rev. Lett. 71, 3202 (1993).

[58] Y. Ohashi and A. Griffin, BCS-BEC crossover in a gas of Fermi atoms with a Feshbach resonance, Phys. Rev. Lett. 89, 130402 (2002).

[59] E. Fratini and P. Pieri, Pairing and condensation in a resonant Bose-Fermi mix- ture, Phys. Rev. A 81, 051605(R) (2010).

[60] D. Ludwig, S. Floerchinger, S. Moroz, and C. Wetterich, Quantum phase transi- tion in Bose-Fermi mixtures, Phys. Rev. A 84, 033629 (2011).

[61] M. Duda, X.-Y. Chen, A. Schindewolf, R. Bause, J. von Milczewski, R. Schdmit, I. Bloch, and X.-Y. Luo, Transition from a polaronic condensate to a degenerate Fermi gas of heteronuclear molecules, arXiv:2111.04301v1.

[62] C.-H. Wu, J. W. Park, P. Ahmadi, S. Will, and M. W. Zwierlein, Ultracold Fermionic Feshbach Molecules of 23Na40K, Phys. Rev. Lett. 109, 085301 (2012).

[63] 久我隆弘,「量子光学」,(朝倉書店,東京,2003).

[64] W. Ketterle and M. W. Zwierlein, Making, probing and understanding ultracold Fermi gases, in Ref. [4].

[65] M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, and M. Weidemu¨ller, Observation of interspecies 6Li-133Cs Feshbach resonances, Phys. Rev. A 87, 010701 (2013).

[66] R. Pires, J. Ulmanis, S. H¨afner, M. Repp, A. Arias, E. D. Kuhnle, and M. Weidemu¨ller, Observation of Efimov Resonances in a Mixture with Extreme Mass Imbalance, Phys. Rev. Lett. 112, 250404 (2014).

[67] S.-K. Tung, C. V. Parker, J. Johansen, and C. Chin, Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions, Phys. Rev. A 87, 010702(R) (2013).

[68] S.-K. Tung, K. J.-Garc´ıam J. Johansen, C. V. Parker, and C. Chin, Geometric Scaling of Efimov States in a 6Li-133Cs Mixture, Phys. Rev. Lett. 113, 240402 (2014).

[69] B. J. DeSalvo, K. Patel, J. Johansen, and C. Chin, Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate, Phys. Rev. Lett. 119, 233401 (2017).

[70] B. J. DeSalvo, K. Patel, G. Cai, and C. Chin, Observation of fermion-mediated interactions between bosonic atoms, Nature 568, 61 (2019).

[71] C. Silber, S. Gu¨nter, C. Marzok, B. Deh, Ph. W. Courteille, and C. Zimmer- mann, Quantum-Degenerate Mixture of Fermionic Lithium and Bosonic RUbid- ium Gases, Phys. Rev. Lett. 95, 170408 (2005).

[72] B. Deh, C. Marzok, C. Zimmermann, and Ph. W. Courteille, Feshbach resonances in mixtures of ultracold 6Li and 87Rb, Phys. Rev. A 77, 010701(R) (2008).

[73] B. Deh, W. Gunton, B. G. Klappauf, Z. Li, M. Semczuk, J. Van Dongen, and K. W. Madison, Giant Feshbach resonances in 6Li-85Rb mixtures, Phys. Rev. A 82, 020701(R) (2010).

[74] R. S. Lous, I. Fritsche, M. Jag, F. Lehmann, E. Kirilov, B. Huang, and R. Grimm, Thermometry of a deeply degenerate Fermi gas with a Bose-Einstein condensate, Phys. Rev. A 95, 053627 (2017).

[75] R. S. Lous, I. Fritsche, M. Jag, F. Lehmann, E. Kirilov, B. Huang, and R. Grimm, Probing the Interface of a Phase-Separated State in a Repulsive Bose- Fermi Mixture, Phys. Rev. Lett. 120, 243403 (2018).

[76] B. Huang, I. Fritsche, R. S. Lous, C. Baroni, J. T. M. Walraven, E. Kirilov, and R. Grimm, Breathing mode of a Bose-Einstein condensate repulsively interacting with a fermionic reservoir, Phys. Rev. A 99, 041602(R) (2019).

[77] I. Fritsche, C. Baroni, E. Dobler, E. Kirilov, B. Huang, R. Grimm, G. M. Bruun, and P. Massignan, Stability and breakdown of Fermi polarons in a strongly inter- acting Fermi-Bose mixture, Phys. Rev. A 103, 053314 (2021).

[78] X.-C. Yao, H.-Z. Chen, Y.-P. Wu, X.-P. Liu, X.-Q. Wang, X. Jiang, Y. Deng, Y.-A. Chen, and J.-W. Pan, Observation of Coupled Vortex Lattices in a Mass- Imbalance Bose and Fermi Superfluid Mixture, Phys. Rev. Lett. 117, 145301 (2016).

[79] M. S. Heo, T. T. Wang, C. A. Christensen, T. M. Rvachocv, D. A. Cotta, J. H. Choi, Y. R. Lee, and W. Ketterle, Formation of ultracold fermionic NaLi Feshbach molecules, Phys. Rev. A 86, 021602(R) (2012).

[80] T. Schuster, R. Scelle, A. Trautmann, S. Knoop, M. K. Oberthaler, M. M. Haver- hals, M. R. Goosen, S. J. J. M. F. Kokkelmans, and E. Tiemann, Feshbach spec- troscopy and scattering properties of ultracold Li+Na mixtures, Phys. Rev. A 85, 042721 (2012).

[81] F. Ferlaino, C. D’Errico, G. Roati, M. Zaccanti, M. Inguscio, G. Modugno, and A. Simoni, Feshbach spectroscopy of a K-Rb atomic mixture, Phys. Rev. A 73, 040702(R) (2006).

[82] K. Gu¨nter, T. St¨oferle, H. Moritz, M. K¨ohl, and T. Esslinger, Bose-Fermi Mix- tures in a Three-Dimensional Optical Lattice, Phys. Rev. Lett. 96, 180402 (2006).

[83] S. Ospelkaus, C. Ospelkaus, O. Wille, M. Succo, P. Ernst, K. Sengstock, and K. Bongs, Localization of Bosonic Atoms by Fermionic Impurities in a Three- Dimensional Optical Lattice, Phys. Rev. Lett. 96, 180403 (2006).

[84] C. Ospelkaus, S. Ospelkaus, L. Humbert, P. Ernst, K. Sengstock, and K. Bongs, Ultracold Heteronuclear Molecules in a 3D Optical Lattice, Phys. Rev. Lett. 97, 120402 (2006).

[85] J. J. Zirbel, K.-K. Ni, S. Ospelkaus, J. P. D’Incao, C. E. Wieman, J. Ye, and D. S. Jin, Collisional Stability of Fermionic Feshbach Molecules, Phys. Rev. Lett. 100, 143201 (2008).

[86] J. J. Zirbel, K.-K. Ni, S. Ospelkaus, T. L. Nicholson, M. L. Olsen, P. S. Julienne, C. E. Wieman, J. Ye, and D. S. Jin, Heteronuclear molecules in an optical dipole trap, Phys. Rev. A 78, 013416 (2008).

[87] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. P´eer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, High Phase-Space-Density Gas of Polar Molecules, Science 322, 231 (2008).

[88] L. De Macro, G. Valtolina, K. Matsuda, W. G. Tobias, J. P. Covey, and J. Ye, A degenerate Fermi gas of polar molecules, Science 363, 853 (2019).

[89] G. Modugno, G. Roati, F. Riboli, F. Ferlaino, R. J. Brecha, and M. Inguscio, Collapse of a Degenerate Fermi Gas, Science 297, 2240 (2002).

[90] C. Ospelkaus, S. Ospelkaus, K. Sengstock, and K. Bongs, Interaction-Driven Dy- namics of 40K-87Rb Fermion-Boson Gas Mixtures in the Large-Particle-Number Limit, Phys. Rev. Lett. 96, 020401 (2006).

[91] S. Ospelkaus, C. Ospelkaus, L. Humbert, K. Sengstock, and K. Bongs, Tuning of Heteronuclear Interactions in a Degenerate Fermi-Bose Mixture, Phys. Rev. Lett. 97, 120403 (2006).

[92] M. Zaccanti, C. D’Errico, F. Ferlaino, G. Roati, M. Inguscio, and G. Modugno, Control of the interaction in a Fermi-Bose mixture, Phys. Rev. A 74, 041605(R) (2006).

[93] R. S. Bloom, M.-G. Hu, T. D. Cumby, and D. S. Jin, Tests of Universal Three- Body Physics in an Ultracold Bose-Fermi Mixture, Phys. Rev. Lett. 111, 105301 (2013).

[94] M.-G. Hu, V. de Graaff, D. Kedar, J. P. Corson, E. A. Cornell, and D. S. Jin, Bose Polarons in the Strongly Interacting Regime, Phys. Rev. Lett. 117, 055301 (2016).

[95] H. Edri, B. Raz, N. Matzliah, N. Davidson, and R. Ozeri, Observation of Spin- Spin Fermion-Mediated Interactions between Ultracold Bosons, Phys. Rev. Lett. 124, 163401 (2020).

[96] W. G. Tobias, K. Matsuda, G. Valtolina, L. De Macro, J.-R. Li, and J. Ye, Ther- malization and Sub-Poissonian Density Fluctuations in a Degenerate Molecular Fermi Gas, Phys. Rev. Lett. 124, 033401 (2020).

[97] J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C Salomon, Expansion of a lithium gas in the BEC-BCS crossover, in Proceedings of the XIX International Conference on Atomic Physics, edited by L. G. Marcassa, V. S. Bagnato, and K. Helmerson, (AIP, New York, 2005).

[98] I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, A mixture of Bose and Fermi superfluids, Science 345, 1035 (2014).

[99] S. Laurent, M. Pierce, M. Delehaye, T. Yefsah, F. Chevy, and C. Salomon, Con- necting Few-Body Inelastic Decay to Quantum Correlations in a Many-Body Sys-tem: A Weakly Coupled Impurity in a Resonant Fermi Gas, Phys. Rev. Lett. 118, 103403 (2017).

[100] T. Ikemachi, A. Ito, Y. Aratake, Y. Chen, M. Koashi, M. K.-Gonokami, and M. Horikoshi, All-optical production of dual Bose-Einstein condensates of paired fermions and bosons with 6Li and 7Li, J. Phys. B: At. Mol. Opt. Phys. 50, 01LT01 (2017).

[101] J. W. Park, C.-H. Wu, I. Santiago, T. G. Tiecke, S. Will, P. Ahmadi, and M. W. Zwierlein, Quantum degenerate Bose-Fermi mixture of chemically different atomic species with widely tunable interaction, Phys. rev. A 85, 051602(R) (2012).

[102] Z. Z. Yan, Y. Ni, C. Robens, and M. W. Zwierlein, Bose polarons near quantum criticality, Science 368, 190 (2020).

[103] X.-Y. Chen, M. Duda, A. Schindewolf, R. Bause, I. Bloch, and X.-Y. Luo, Suppression of Unitary Three-body Loss in a Degenerate Bose-Fermi Mixture, arXiv:2110.01290v1.

[104] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H. Denschlag, and R. Grimm, Observation of the Pairing Gap in a Strongly Interacting Fermi Gas, Science 305, 1128 (2004).

[105] M. Greiner, C. A. Regal, and D. S. Jin, Probing the Excitation Spectrum of a Fermi Gas in the BCS-BEC Crossover Regime, Phys. Rev. Lett. 94, 070403 (2005).

[106] J. T. Stewart, J. P. Gaebler, and D. S. Jin, Using photoemission spectroscopy to probe a strongly interacting Fermi Gas, Nature 454, 744 (2008).

[107] J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic, and K. Levin, Heat Capacity of a Strongly Interacting Fermi Gas, Science 307, 1296 (2005).

[108] L. Luo, B. Clancy, J. Joseph, J. Kinast, and J. E. Thomas, Measurement of the Entropy and Critical Temperature of a Strongly Interacting Fermi Gas, Phys. Rev. Lett. 98, 080402 (2007).

[109] M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama, Measurement of Uni- versal Thermodynamic Functions for a Unitary Fermi Gas, Science 327, 442 (2010).

[110] S. Nascimb´ene, N. Navon, K. J. Jiang, F. Chevy, and C. Salomon, Exploring the Thermodynamics of a universal Fermi gas, Nature 463, 1057 (2010).

[111] N. Navon, S. Nascimb´ene, F. Chevy, and C. Salomon, The Equation of State of a Low-Temperature Fermi Gas with Tunable Interaction, Science 328, 729 (2010).

[112] M. Horikoshi, M. Koashi, H. Tajima, Y. Ohashi, and M. K.-Gonokami, Ground-State Thermodynamic Quantities of Homogeneous Spin-1/2 Fermions from the BCS Region to the Unitarity Limit, Phys. Rev. X 7, 041004 (2017).

[113] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas, Science 335, 563 (2012).

[114] C. Sanner, E. J. Su, A. Keshet, W. Huang, J. Gillen, R. Gommers, and W. Ketterle, Speckle Imaging of Spin Fluctuations in a Strongly Interacting Fermi Gas, Phys. Rev. Lett. 106, 010402 (2011).

[115] Y. Long, F. Xiong, and C. V. Parker, Spin Susceptibility above the Superfluid Onset in Ultracold Fermi Gases, Phys. Rev. Lett. 126, 153402 (2021).

[116] K. Maeda, G. Baym, and T. Hatsuda, Simulating dense QCD matter with ultra- cold atomic boson-fermion mixtures, Phys. Rev. Lett. 103, 085301 (2009).

[117] K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rep. Prog. Phys. 74, 014001 (2001).

[118] F. P. Laussy, A. V. Kavokin, and I. A. Shelykh, Exciton-Polariton Mediated Superconductivity, Phys. Rev. Lett. 104, 106402 (2010).

[119] I. A. Shelykh, T. Taylor, and A. V. Kavokin, Rotons in a Hybrid Bose-Fermi System, Phys. Rev. Lett. 105, 140402 (2010).

[120] O. Cotle¸t, S. Zeytinoˇglu, M. Sigrist, E. Demler, and A. Imamoˇglu, Superconduc- tivity and other collective phenomenon in a hybrid Bose-Fermi mixture formed by a polariton condensate and an electron system in two dimensions, Phys. Rev. B 93, 054510 (2016).

[121] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, Fermi polaron-polaritons in charge-tunable atomically thin semiconductors, Nat. Phys. 13, 255 (2017).

[122] A. Perali, P. Pieri, G. C. Strinati, and C. Castellani, Pseudogap and spectral function from superconducting fluctuations to the bosonic limit, Phys. Rev. B 66, 024510 (2002).

[123] P. Pieri, L. Pisani, and G. C. Strinati, BCS-BEC crossover at finite temperature in the broken-symmetry phase Phys. Rev. B 70, 094508 (2004).

[124] S. Tsuchiya, R. Watanabe, and Y. Ohashi, Single-particle properties and pseu- dogap effects in the BCS-BEC crossover regime of an ultracold Fermi gas above Tc, Phys. Rev. A 80, 033613 (2009).

[125] D. Kharga, D. Inotani, R. Hanai, and Y. Ohashi, Single-Particle Excitations and Effects of Hetero-Pairing Fluctuations in a Bose-Fermi Mixture with a Feshbach Resonance, J. Phys. Soc. Jpn. 86, 084301 (2017).

[126] J. P. Gaebler, J. T. Stewart, T. E. Drake, D. S. Jin, A. Perali, P. Pieri, and G. C. Strinati, Observation of pseudogap behavior in a strongly interacting Fermi gas, Nat. Phys. 6, 569 (2010).

[127] M. Feld, B. Fr¨ohlich, E. Vogt, M. Koschorreck, and M. K¨ohl, Observation of a pairing pseudogap in a two-dimensional Fermi gas, Nature 480, 75 (2011).

[128] Y. Sagi, T. E. Drake, R. Paudel, R. Chapurin, and D. S. Jin, Breakdown of the Fermi Liquid Description for Strongly Interacting Fermions, Phys. Rev. Lett. 114, 075301 (2015).

[129] S. Tsuchiya, R. Watanabe, and Y. Ohashi, Photoemission spectrum and effect of inhomogeneous pairing fluctuations in the BCS-BEC crossover regime of an ultracold Fermi gas, Phys. Rev. A 82, 033629 (2010).

[130] A. Perali, F. Palestini, P. Pieri, G. C. Strinati, J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas, Phys. Rev. Lett. 106, 060402(2011).

[131] J. P. Gaebler, Photoemission Spectroscopy of a Strongly Interacting Fermi Gas, Ph.D. thesis, University of Colorado, 2010.

[132] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, Bose-Einstein Condensation of Atoms in a Uniform Potential, Phys. Rev. Lett. 110, 200406 (2013).

[133] L. Chomaz, L. Corman, T. Bienaim´e, R. Desbuquois, C. Weitenberg, S. Nascimb´ene, J. Beugnon, and J. Dalibard, Emergence of coherence via trans- verse condensation in a uniform quasi-two-dimensional Bose gas, Nat. Commun. 6, 6162 (2015).

[134] M. Tajik, B. Rauer, T. Schweigler, F. Cataldini, J. Sabino, F. S. Moller, S.-C. Ji, I. E. Mazets, and J. Schmiedmayer, Designing arbitrary one-dimensional potentials on an atomic chip, Optics Express 27, 33474 (2019).

[135] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and M. W. Zwierlein, Homogeneous Atomic Fermi Gases, Phys. Rev. Lett. 118, 123401 (2017).

[136] K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz, Two- Dimensional Homogeneous Fermi Gases, Phys. Rev. Lett. 120, 060402 (2018).

[137] A. P. Chikkatur, A. G¨orlitz, D. M. S.-kurn, S. Inouye, S. Gupta, and W. Ket- terle, Suppression and Enhancement of Impurity Scattering in a Bose-Einstein Condensate, Phys. Rev. Lett. 85, 483 (2000).

[138] N. B. Jogensen, L. Wacker, K. T. Skalmstang, M. M. Parish, J. Levinsen, R. S. Christensen, G. M. Bruun, and J. J. Arlt, Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate, Phys. Rev. Lett. 117, 055302 (2016); L. A. P. Ardila, N. B. Jogensen, T. P. Giorgini, G. M. Bruun, and J. J. Arlt, Analyzing a Bose polaron across resonant interactions, Phys. Rev. A 99, 063607 (2019).

[139] G. E. Astrakharchik and L. P. Pitaevskii, Motion of a heavy impurity through a Bose-Einstein condensate, Phys. Rev. A 70, 013608 (2004).

[140] J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E. Timmermans, and J. T. Devreese, Feynman path-integral treatment of the BEC-impurity polaron, Phys. Rev. B 80, 184504 (2009); ibid 87, 099903 (2013).

[141] S. P. Rath and R. Schmidt, Field-theoretical study of the Bose polaron, Phys. Rev. A 88, 053632 (2013).

[142] S. M. Yoshida, S. Endo, J. Levinsen, and M. M. Parish, Universality of an Im- purity in a Bose-Einstein Condensate, Phys. Rev. X 8, 011024 (2018).

[143] A. C.-Guardian, L. A. P. Ardila, and G. M. Bruun, Bipolarons in a Bose-Einstein Condensate, Phys. Rev. Lett. 121, 013401 (2018).

[144] B. Field, J. Levinsen, and M. M. Parish, Fate of the Bose polaron at finite tem- perature, Phys. Rev. A 101, 013623 (2020).

[145] J. M. Gerton, D. Strekalov, I. Prodan, and R. G. Hulet, Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions, Nature 408, 692 (2000).

[146] J. L. Roberts, N. R. Claussen, S. L. Cornish, E. A. Donley, E. A. Cornell, and C. E. Wieman, Controlled Collapse of a Bose-Einstein Condensate, Phys. Rev. Lett. 86, 4211 (2001).

[147] E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Dynamics of collapsing and exploding Bose-Einstein condensates, Nature 412, 295 (2001).

[148] K. Mølmer, Bose Condensates and Fermi Gases at Zero Temperature, Phys. Rev. Lett. 80, 1804 (1998).

[149] L. Viverit, C. J. Pethick, and H. Smith, Zero-temperature phase diagram of binary boson-fermion mixtures, Phys. Rev. A 61, 053605 (2000).

[150] T. Miyakawa, T. Suzuki, and H. Yabu, Induced instability for boson-fermion mixed condensates of alkali-metal atoms due to the attractive boson-fermion in-teraction, Phys. Rev. A 64, 033611 (2001).

[151] R. Roth, Structure and stability of trapped atomic boson-fermion mixtures, Phys. Rev. A 66, 013614 (2002).

[152] K. Shirasaki, E. Nakano, H. Yabu, Bose-Einstein condensation and density col- lapse in a weakly coupled boson-fermion mixture, Phys. Rev. A 90, 063629 (2014).

[153] Z.-Q. Yu, S. Zhang, and H. Zhai, Stability condition of a strongly interacting boson-fermion mixture across an interspecies Feshbach resonance, Phys. Rev. A 83, 041603(R) (2011); ibid 86, 069904 (2012).

[154] J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Verification of Universal Relations in a Strongly Interacting Fermi Gas, Phys. Rev. Lett. 104, 235301 (2010).

[155] F. Palestini, P. Pieri, and G. C. Strinati, Density and Spin Response of a Strongly Interacting Fermi Gas in the Attractive and Quasirepulsive Regime, Phys. Rev. Lett. 108, 080401 (2012).

[156] P. van Wyk, H. Tajima, R. Hanai, and Y. Ohashi, Specific heat and effects of pairing fluctuations in the BCS-BEC-crossover regime of an ultracold Fermi gas, Phys. Rev. A 93, 013621 (2016).

[157] T.-L. Ho and Q. Zhou, Obtaining the phase diagram and Thermodynamic quanti- ties of bulk systems from the densities of trapped gases, Nat. Phys. 6, 131 (2010).

[158] K. Seo and C. A. R. S´a de Melo, Compressibility and spin susceptibility in the evolution from BCS to BEC superfluids, arXiv:1105.4365.

[159] T. Mu¨ller, B. Zimmermann, J. Meineke, J.-P. Brantut, T. Esslinger, and H. Moritz, Local Observation of Antibunching in a Trapped Fermi Gas, Phys. Rev. Lett. 105, 040401 (2010).

[160] C. Sanner, E. J. Su, A. Keshet, R. Gommers, Y.-il Shin, W. Huang, and W. Ketterle, Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas, Phys. Rev. Lett. 105, 040402 (2010).

[161] N. Gemelke, X. Zhang, C.-L. Hung, C. Chin, In-situ Observation of Incompress- ible Mott-Insulating Domains of Ultracold Atomic Gases, Nature 460, 995 (2009).

[162] See Supplemental Material attached to Z. Yan, P.B. Patel, B. Mukherjee, R. J. Fletcher, J. Struck, and M. W. Zwierlein, Boiling a Unitary Fermi Liquid, Phys. Rev. Lett. 122, 093401 (2019).

[163] S. Tan, Generalized virial theorem and pressure relation for a strongly correlated Fermi gas, Ann. Phys. 323, 2987 (2008).

[164] L. Luo and J. E. Thomas, Thermodynamic Measurements in a Strongly Interact-ing Fermi Gas, J. Low Temp. Phys. 154, 1 (2009).

[165] S. Simonucchi, P. Pieri, and G. C. Strinati, Broad vs. narrow Fano-Feshbach resonances in the BCS-BEC crossover with trapped Fermi atoms, Europhys. Lett. 69, 713 (2005).

[166] M. Randeria, in Bose-Einstein Condensation, edited by A. Griffin, D. W. Snoke, and S. Stringari (Cambridge University Press, New York, 1995).

[167] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, (Dover, New York, 1975).

[168] G. D. Mahan, Many-Particle Physics (Springer Science & Business Media, New York, 2013).

[169] A. Storozhenko, P. Schuck, T. Suzuki, H. Yabu, and J. Dukelsky, Boson-fermion pairing in a boson-fermion environment, Phys. Rev. A 71, 063617 (2005).

[170] T. Watanabe, T. Suzuki, and P. Schuck, Bose-Fermi pair correlations in attrac- tively interacting Bose-Fermi atomic mixtures, Phys. Rev. A 78, 033601 (2008).

[171] E. Fratini and P. Pieri, Mass imbalance effect in resonant Bose-Fermi mixtures, Phys. Rev. A 85, 063618 (2012).

[172] E. Fratini and P. Pieri, Single-particle spectral functions in the normal phase of a strongly attractive Bose-Fermi mixture, Phys. Rev. A 88, 013627 (2013).

[173] A. Guidini, G. Bertaina, E. Fratini, and P. Pieri, Bose-Fermi mixtures in the molecular limit, Phys. Rev. A 89, 023634 (2014).

[174] N. M. Hugenholtz and D. Pines, Ground-state energy and excitation spectrum of a system of interacting bosons, Phys. Rev. 116, 489 (1959).

[175] D. Kharga, H. Tajima, P. van Wyk, D. Inotani, and Y. Ohashi, Normal-State Properties of a Unitary Bose-Fermi Mixture: A Combined Strong-Coupling Ap- proach with Universal Thermodynamics, J. Phys. Soc. Jpn. 86, 074302 (2017).

[176] K. Manabe, D. Inotani, and Y. Ohashi, Single-particle properties of a strongly interacting Bose-Fermi mixture with mass and population imbalance, Phys. Rev. A 100, 063609 (2019).

[177] K. Manabe and Y. Ohashi, Thermodynamic stability, compressibility matrices, and effects of mediated interactions in a strongly interacting Bose-Fermi mixture, Phys. Rev. A 103, 063317 (2021).

[178] R. Haussmann, Crossover from BCS superconductivity to Bose-Einstein conden- sation: A self-consistent theory, Z. Phys. B: Condens. Matter 91, 291 (1993).

[179] R. Haussmann, Properties of a Fermi liquid at the superfluid transition in the crossover region between BCS superconductivity and Bose-Einstein condensation, Phys. Rev. B 49, 12975 (1994).

[180] M. Pini, P. Pieri, and G. C. Strinati, Fermi gas throughout the BCS-BEC crossover: Comparative study of t-matrix approaches with various degrees of self- consistency, Phys. Rev. B 99, 094502 (2019).

[181] H. J. Vidberg and J. W. Serene, Solving the Eliashberg equations by means of N-Point Pad´e approximants, J. Low. Temp. Phys. 29, 179 (1977).

[182] W. Li and T.-L. Ho, Bose Gases near Unitarity, Phys. Rev. Lett. 108, 195301 (2012).

[183] X.J. Liu, B. Mulkerin, L. He, and H. Hu, Equation of state and contact of a strongly interacting Bose gas in the normal state, Phys. Rev. A 91, 043631 (2015).

[184] J.-L. Song, M. S. Mashayekhi, and F. Zhou, Fermi-Bose Mixtures near Broad In- terspecies Feshbach Resonances, Phys. Rev. Lett. 105, 195301 (2010); J. Dukel- sky, C. Esebbag, P. Schuck, and T. Suzuki, ibid, 106, 129601 (2011); J.-L. Song and F. Zhou, Anomalous dimers in quantum mixtures near broad resonances: Pauli blocking, Fermi surface dynamics, and implications, Phys. Rev. A 84, 013601 (2011).

[185] J. E. Baarsma, J. Armaitis, R. A. Duine, and H. T. C. Stoof, Polarons in ex- tremely polarized Fermi gases: The strongly interacting 6Li-40K mixture, Phys. Rev. A 85, 033631 (2012).

[186] E. E. Salpeter and H. A. Bethe, A Relativistic Equation for Bound-State Prob- lems, Phys. Rev. 84, 1232 (1951).

[187] K. Maki, Critical Fluctuation of the Order Parameter in a Superconductor. I, Prog. Theor. Phys. 40, 193 (1968).

[188] R. S. Thompson, Microwave, Flux Flow, and Fluctuation Resistance of Dirty Type-II Superconductors, Phys. Rev. B 1, 327 (1970).

[189] L. G. Aslamazov and A. I. Larkin, The influence of fluctuation pairing of electrons on the conductivity of normal metal, Phys. Lett. A 26, 238 (1968).

[190] R. Cˆot´e and A. Griffin, Cooper-pair-condensate fluctuations and plasmons in layered superconductors, Phys. Rev. B 48, 10404 (1993).

[191] P. Pieri and G. C. Strinati, Strong-coupling limit in the evolution from BCS superconductivity to Bose-Einstein condensation, Phys. Rev. B 61, 15370 (2000).

[192] G. C. Strinati, P. Pieri, and C. Lucheroni, From superconducting fluctuations to the bosonic limit in the response functions above the critical temperature, Eur. Phys. J. B 30, 161 (2002).

[193] G. Baym and C. Pethick, Landau Fermi-Liquid Theory: Concepts and Applica-tions, (Wiley-VCH, New York, 1991).

[194] 高田康民,「多体問題」 (朝倉書店,東京,1999).

[195] M. Yu. Kagan, I. V. Brodsky, D. V. Efremov, and A. V. Klaptsov, Composite fermions, trios, and quartets in a Fermi-Bose mixture, Phys. Rev. A 70, 023607 (2004).

[196] G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-Body Theory of Quan- tum Systems: A Modern Introduction, (Cambridge University Press, Cambridge, 2013).

[197] P. T¨orm¨a, Physics of ultracold Fermi gases revealed by spectroscopies, Phys. Scr. 91, 043006 (2016).

[198] P. T¨orm¨a and P. Zoller, Laser Probing of Atomic Cooper Pairs, Phys. Rev. Lett. 85, 487 (2000).

[199] A. Perali, P. Pieri, and G. C. Strinati, Competition between Final-State and Pairing-Gap Effects in the Radio-Frequency Spectra of Ultracold Fermi Atoms, Phys. Rev. Lett. 100, 010402 (2008).

[200] See, e.g., Theoretical Methods for Strongly Correlated Electrons, edited by D. S´en´ecal, A.-M. S. Tremblay, and C. Bourdonnais (Springer, New York, 2004).

[201] N. E. Bickers and S. R. White, Conserving approximations for strongly fluctuating electron systems. II. Numerical results and parquet extension, Phys. Rev. B 3, 8044 (1991).

[202] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E. Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov, and K. Held, Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory, Rev. Mod. Phys. 90, 025003 (2018).

[203] A. Valli, T. Sch¨afer, P. Thunstr¨om, G. Rohringer, S. Andergassen, G. Sangio- vanni, K. Held, and A. Toschi, Dynamical vertex approximation in its parquet implementation: Application to Hubbard nanorings, Phys. Rev. B 91, 115115 (2015).

[204] G. Li, N. Wentzell, P. Pudleiner, P. Thunstr¨om, and K. Held, Efficient imple- mentation of the parquet equations: Role of the reducible vertex function and its kernel approximation, Phys. Rev. B 93, 165103 (2016).

[205] S. Tan, Energetics of a strongly correlated Fermi gas, Ann. Phys. 323, 2952 (2008).

[206] S. Tan, Large momentum part of a strongly correlated Fermi gas, Ann. Phys. 323, 2971 (2008).

[207] R. Combescot, F. Alzetto, and X. Leyronas, Particle distribution tail and related energy formula, Phys. Rev. A 79, 053640 (2009).

[208] E. Braaten, D. Kang, and L. Platter, Universal relations for identical bosons from three-body physics, Phys. Rev. Lett. 106, 153005 (2011).

[209] F. Werner and Y. Castin, General relations for quantum gases in two and three dimensions. II. Bosons and mixtures, Phys. Rev. A 86, 053633 (2012).

[210] L. Viverit, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Momentum distribution of a trapped Fermi gas with large scattering length, Phys. Rev. A 69, 013607 (2004).

[211] C. Carcy, S. Honika, M. G. Lingham, P. Dyke, C. C. N. Kuhn, H. Hu, and C. J. Vale, Contact and Sum Rules in a Near-Uniform Fermi Gas at Unitarity, Phys. Rev. Lett. 122, 203401 (2019).

[212] B. Mukherjee, P. B. Patel, Z. Yan, R. J. Fletcher, J. Struck, and M. W. Zwierlein, Spectral Response and Contact of the Unitary Fermi Gas, Phys. Rev. Lett. 122, 203402 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る