リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on regulatory mechanisms governing the expression of transcription factor genes during mouse heart development」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on regulatory mechanisms governing the expression of transcription factor genes during mouse heart development

堀, 優太郎 東京大学 DOI:10.15083/0002001698

2021.09.08

概要

Congenital heart diseases occur frequently among newborns, indicating that heart development is a complex process that requires precise control of differentiation and growth of cardiac cells and also precise patterning of these cells. Although the mechanism underlying heart development is still not fully understood, previous studies have suggested that dose-sensitive characteristics of cardiac transcription factors play critical roles for heart development. Many of the cardiac transcription factor genes require both alleles for proper heart development and their mutations result in highly variable phenotypes even among inbred strain mice.

Recent studies about regulatory mechanism of gene expression in mammals have revealed that long non-coding RNAs (lncRNAs) are an important modulator at the transcriptional and translational levels. Based on the hypothesis that lncRNAs also play important roles in mouse heart development, I attempted to comprehensively identify lncRNAs by comparing embryonic and adult mouse hearts.

RNA-seq analysis of the ventricles of E10.5, E13.5 and 8 week mice identified 787 lncRNA candidates. By comparing the expression of these candidates in mouse brain RNA-seq data, I identified 316 lncRNA candidates among them as non-ubiquitous and heart-selective ones. Next, I examined the distribution of lncRNAs in the mouse genome. Gene ontology analysis revealed that many heart-selective lncRNAs are present near genes important for the heart development. Importantly, many of them are transcribed from the promoters of neighboring genes in a head-to-head divergent manner. I next tried to address significance of the enrichment of genes with bidirectional lncRNAs among haploinsufficient genes. Based on the report that identified haploinsufficient genes and RefSeq transcript annotation database, I showed that the enrichment is observed not only in the heart but also in many other tissues.

In this study, I focused on the lncRNA divergently transcribed from Tbx5, since it is evolutionarily well conserved and Tbx5 is also a haploinsufficient gene. Quantitative RT-PCR (qRT-PCR) analysis demonstrated that the expression pattern of the lncRNA is slightly different from that of Tbx5, indicating that they are regulated separately, though they share the same promoter. Using ES cells, I knocked down the lncRNA by inserting strong transcription stop signals into the second exon using the Crispr/Cas9 system. Knockdown (KD) mice derived from the ES cells were embryonic lethal and exhibited severe hypoplasia of ventricle. The expression pattern of Tbx5 mRNA was unchanged and the RNA-seq of KD mice suggested normal differentiation of cardiomyocytes. Thus, although the precise mechanism is still unsolved, this transcript is likely to function in the morphogenesis of the mouse heart.

During the study of Chapter I, I found that Tbx5 has multiple promoters and the expression pattern of Tbx5 protein could be altered in the lncRNA KD mice. Based on these findings, I tried to understand the translational regulation of Tbx5 in Chapter II. Tbx5 has been shown to be expressed at the left-side of the ventricle and crucial for the proper formation of the ventricular septum. Although disturbance of this left-right gradient is well-known to cause univentricular heart completely lacking the left-right identity, the molecular mechanism underlying the formation of this gradient is yet to be understood.

First, by conducting qRT-PCR and immunohistochemistry onTbx5, I found a distinct expression pattern at the mRNA and protein levels in the ventricle. Even in postnatal mice that lack Tbx5 protein signal, the mRNA level was comparable to that in embryos. I reanalyzed the RNA-seq data I used in Chapter I and found that there are three Tbx5 promoters and one of them, which I call promoter A, showed the embryo-specific expression pattern. I compared the expression levels of these alternative promoter isoforms by qRT-PCR and revealed that the expression pattern of promoter A isoform was consistent with that of Tbx5 protein. The spatial expression pattern of promoter A isoform in the ventricle of embryos was also remarkably consistent with the protein expression pattern. Furthermore, by luciferase assay, the 5’ UTR of the highly-expressed isoform with an inconsistent expression pattern exhibited strong translational repression activity. However, knockout (KO) of isoform A turned out to have little impact on Tbx5 protein production in ESC differentiation system, indicating that Tbx5 is subject to a complex post-transcriptional control.

In conclusion, these findings suggested that lncRNAs, especially bidirectionally transcribed ones, might play a role in the precise expression regulation of dose-sensitive transcription factor genes that are close to them. In addition, the study in Chapter II suggested various potential strategies to achieve complex expression patterns of these genes.

この論文で使われている画像

参考文献

Almada, A.E., Wu, X., Kriz, A.J., Burge, C.B., and Sharp, P. a (2013). Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499, 360–363.

Anderson, K.M., Anderson, D.M., McAnally, J.R., Shelton, J.M., Bassel-Duby, R., and Olson, E.N. (2016). Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539, 433–436.

Araujo, P.R., Yoon, K., Ko, D., Smith, A.D., Qiao, M., Suresh, U., Burns, S.C., and Penalva, L.O.F. (2012). Before it gets started: Regulating translation at the 5’ UTR. Comp. Funct. Genomics 2012.

Bardou, F., Ariel, F., Simpson, C.G., Romero-Barrios, N., Laporte, P., Balzergue, S., Brown, J.W.S., and Crespi, M. (2014). Long Noncoding RNA Modulates Alternative Splicing Regulators in Arabidopsis. Dev. Cell 30, 166–176.

Bateson, P., and Gluckman, P. (2012). Plasticity and robustness in development and evolution. Int. J. Epidemiol. 41, 219–223.

Blake, W.J., KAErn, M., Cantor, C.R., and Collins, J.J. (2003). Noise in eukaryotic gene expression. Nature 422, 633–637.

Blake, W.J., Balázsi, G., Kohanski, M. a, Isaacs, F.J., Murphy, K.F., Kuang, Y., Cantor, C.R., Walt, D.R., and Collins, J.J. (2006). Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865.

Breckenridge, R.A., Zuberi, Z., Gomes, J., Orford, R., Dupays, L., Felkin, L.E., Clark, J.E., Magee, A.I., Ehler, E., Birks, E.J., et al. (2009). Overexpression of the transcription factor Hand1 causes predisposition towards arrhythmia in mice. J. Mol. Cell. Cardiol. 47, 133–141.

Brockdorff, N. (2013). Noncoding RNA and Polycomb recruitment. RNA 429–442.

Bruneau, B.G. (2008). The developmental genetics of congenital heart disease. Nature 451, 943–948.

Bruneau, B.G., Nemer, G., Schmitt, J.P., Charron, F., Robitaille, L., Caron, S., Conner, D.A., Gessler, M., Nemer, M., Seidman, C.E., et al. (2001). A murine model of Holt-Oram syndrome defines roles of the T-Box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721.

Cabili, M.N., Dunagin, M.C., McClanahan, P.D., Biaesch, A., Padovan-Merhar, O., Regev, A., Rinn, J.L., and Raj, A. (2015). Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 16, 20.

Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C., et al. (2005). The transcriptional landscape of the mammalian genome. Science 309, 1559–1563.

Carroll, S.B. (2008). Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution. Cell 134, 25–36.

Dang, V.T., Kassahn, K.S., Marcos, A.E., and Ragan, M.A. (2008). Identification of human haploinsufficient genes and their genomic proximity to segmental duplications. Eur. J. Hum. Genet. 16111, 1350–1357.

Davidovich, C., Wang, X., Cifuentes-Rojas, C., Goodrich, K.J., Gooding, A.R., Lee, J.T., and Cech, T.R. (2015). Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552–559.

Deutschbauer, A.M., Jaramillo, D.F., Proctor, M., Kumm, J., Hillenmeyer, M.E., Davis, R.W., Nislow, C., and Giaever, G. (2005). Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925.

Ebert, M.S., and Sharp, P.A. (2010). Emerging roles for natural microRNA sponges. Curr. Biol. 20, R858–R861.

Ebisuya, M., Yamamoto, T., Nakajima, M., and Nishida, E. (2008). Ripples from neighbouring transcription. Nat. Cell Biol. 10, 1106–1113.

Eisenberg, E., and Levanon, E.Y. (2013). Human housekeeping genes, revisited. Trends Genet. 29, 569–574.

Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. (2002). Stochastic Gene Expression in a Single Cell. Science (80-. ). 297, 1183–1186.

Espinoza-Lewis, R.A., Liu, H., Sun, C., Chen, C., Jiao, K., and Chen, Y. (2011). Ectopic expression of Nkx2.5 suppresses the formation of the sinoatrial node in mice. Dev. Biol. 356, 359–369.

Faghihi, M., and Wahlestedt, C. (2009). Regulatory roles of natural antisense transcripts. Nat. Rev. Mol. Cell Biol. 10, 637–643.

Fahed, A.C., Gelb, B.D., Seidman, J.G., and Seidman, C.E. (2013). Genetics of congenital heart disease: The glass half empty. Circ. Res. 112, 707–720.

Franco, D., Lamers, W.H., and Moorman, A.F.M. (1998). Patterns of expression in the developing myocardium : towards a morphologically integrated transcriptional model. Cardiovasc. Res. 38 38, 25–53.

Gloss, B.S., and Dinger, M.E. (2015). The specificity of long noncoding RNA expression. Biochim. Biophys. Acta - Gene Regul. Mech. 1859, 16–22.

Gove, C., Walmsley, M., Nijjar, S., Bertwistle, D., Guille, M., Partington, G., Bomford, A., and Patient, R. (1997). Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors. EMBO J. 16, 355–368.

Grote, P., Wittler, L., Hendrix, D., Koch, F., Währisch, S., Beisaw, A., Macura, K., Bläss, G., Kellis, M., Werber, M., et al. (2013). The Tissue-Specific lncRNA Fendrr Is an Essential Regulator of Heart and Body Wall Development in the Mouse. Dev. Cell 24, 206–214.

Hoffman, J.I.E., and Kaplan, S. (2002). The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900.

Holt, M., and Oram, S. (1960). Familial heart disease with skeletal malformations. Br. Heart J. 22, 236–242.

Huang, D.W., Lempicki, R. a, and Sherman, B.T. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

Jay, P.Y., Rozhitskaya, O., Tarnavski, O., Sherwood, M.C., Dorfman, A.L., Lu, Y., Ueyama, T., and Izumo, S. (2005). Haploinsufficiency of the cardiac transcription factor Nkx2-5 variably affects the expression of putative target genes. FASEB J. 19, 1495–1497.

Jensen, B., Wang, T., Christoffels, V.M., and Moorman, A.F.M. (2013). Evolution and development of the building plan of the vertebrate heart. Biochim. Biophys. Acta J. 1833, 783–794.

Khalil, A.M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B.E., van Oudenaarden, A., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. U. S. A. 106, 11667–11672.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36.

Kitano, H. (2004). Biological robustness. Nat. Rev. Genet. 5, 826–837.

Klattenhoff, C. a, Scheuermann, J.C., Surface, L.E., Bradley, R.K., Fields, P. a, Steinhauser, M.L., Ding, H., Butty, V.L., Torrey, L., Haas, S., et al. (2013). Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment. Cell 152, 570–583.

Koshiba-Takeuchi, K., Mori, A.D., Kaynak, B.L., Cebra-Thomas, J., Sukonnik, T., Georges, R.O., Latham, S., Beck, L., Henkelman, R.M., Black, B.L., et al. (2009). Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature 461, 95–98.

Li, Q.Y., Newbury-Ecob, R. a, Terrett, J. a, Wilson, D.I., Curtis, a R., Yi, C.H., Gebuhr, T., Bullen, P.J., Robson, S.C., Strachan, T., et al. (1997). Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat. Genet. 15, 21–29.

Liberatore, C.M., Searcy-Schrick, R.D., and Yutzey, K.E. (2000). Ventricular expression of tbx5 inhibits normal heart chamber development. Dev. Biol. 223, 169–180.

Minette, M.S., and Sahn, D.J. (2006). Ventricular septal defects. Circulation 114, 2190–2197.

Mori, A.D., and Bruneau, B.G. (2004). TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr. Opin. Cardiol. 19, 211–215.

Moskowitz, I.P.G., Pizard, A., Patel, V. V, Bruneau, B.G., Kim, J.B., Kupershmidt, S., Roden, D., Berul, C.I., Seidman, C.E., and Seidman, J.G. (2004). The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 131, 4107–4116.

Münst, B., Patsch, C., and Edenhofer, F. (2009). Engineering Cell-permeable Protein. J. Vis. Exp. e1627.

Novikova, I. V., Hennelly, S.P., and Sanbonmatsu, K.Y. (2013). Tackling structures of long noncoding RNAs. Int. J. Mol. Sci. 14, 23672–23684.

Okamoto, I., Patrat, C., Thépot, D., Peynot, N., Fauque, P., Daniel, N., Diabangouaya, P., Wolf, J.-P., Renard, J.-P., Duranthon, V., et al. (2011). Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472, 370–374.

Olson, E.N. (2006). Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927.

Pennisi, E. (2012). ENCODE Project Writes Eulogy For Junk DNA. Science (80-. ). 337, 1159–1161.

Picelli, S., Björklund, Å.K., Faridani, O.R., Sagasser, S., Winberg, G., and Sandberg, R. (2013). Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098.

Postma, A. V, Bezzina, C.R., and Christoffels, V.M. (2015). Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. J Hum Genet 61, 13–19.

Preissl, S., Schwaderer, M., Raulf, A., Hesse, M., Grüning, B.A., Köbele, C., Backofen, R., Fleischmann, B.K., Hein, L., and Gilsbach, R. (2015). Deciphering the Epigenetic Code of Cardiac Myocyte Transcription. Circ. Res. 117, 413–423.

Rabbow, E., Rettberg, P., Barczyk, S., Bohmeier, M., Panitz, C., Horneck, G., Heise-rotenburg, R. Von, Hoppenbrouwers, T., Willnecker, R., Baglioni, P., et al. (2012). The Evolutionary Landscape of Alternative Splicing in Vertebrate. Science (80-. ). 12, 374–387.

Raser, J.M., and O’Shea, E.K. (2004). Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814.

Seidman, J.G., and Seidman, C. (2002). Transcription factor haploinsufficiency: When half a loaf is not enough. J. Clin. Invest. 109, 451–455.

Smemo, S., Campos, L.C., Moskowitz, I.P., Krieger, J.E., Pereira, A.C., and Nobrega, M.A. (2012). Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease. Hum. Mol. Genet. 21, 3255–3263.

Srivastava, D. (2006). Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 1037–1048.

Taft, R.J., and Mattick, J.S. (2003). Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. Genome Biol. 5, P1.

Takeuchi, J.K., Ohgi, M., Koshiba-Takeuchi, K., Shiratori, H., Sakaki, I., Ogura, K., Saijoh, Y., and Ogura, T. (2003). Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development 130, 5953–5964.

Taniguchi, Y., Choi, P.J., Li, G., Chen, H., Babu, M., Hearn, J., Emili, A., and Xie, X.S. (2011). Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells. Science 329, 533–539.

Tanimoto, Y., Iijima, S., Hasegawa, Y., Suzuki, Y., Daitoku, Y., Mizuno, S., Ishige, T., Kudo, T., Takahashi, S., Kunita, S., et al. (2008). Embryonic stem cells derived from C57BL/6J and C57BL/6N mice. Comp. Med. 58, 347–352.

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515.

Tripathi, V., Shen, Z., Chakraborty, A., Giri, S., Freier, S.M., Wu, X., Zhang, Y., Gorospe, M., Prasanth, S.G., Lal, A., et al. (2013). Long Noncoding RNA MALAT1 Controls Cell Cycle Progression by Regulating the Expression of Oncogenic Transcription Factor B-MYB. PLoS Genet. 9.

Wamstad, J.A., Wang, X., Demuren, O.O., and Boyer, L.A. (2014). Distal enhancers: New insights into heart development and disease. Trends Cell Biol. 24, 294–302.

Wang, K.C., and Chang, H.Y. (2011). Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914.

Wu, B., Eliscovich, C., Yoon, Y.J., and Singer, R.H. (2016). Translation dynamics of single mRNAs in live cells and neurons. Science (80-. ). 1084, aaf1084.

Zlotogora, J. (2003). Penetrance and expressivity in the molecular age. Genet. Med. 5, 347–352.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る