リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Low magnetic field promotes recombinant human BMP-2-induced bone formation and influences orientation of trabeculae and bone marrow-derived stromal cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Low magnetic field promotes recombinant human BMP-2-induced bone formation and influences orientation of trabeculae and bone marrow-derived stromal cells

Okada, Rintaro 大阪大学

2021.06.01

概要

Effects of high magnetic fields [MFs, ≥ 1 T (T)] on osteoblastic differentiation and the orientation of cells or matrix proteins have been reported. However, the effect of low MFs (< 1 T) on the orientation of bone formation is not well known. This study was performed to verify the effects of low MFs on osteoblastic differentiation, bone formation, and orientation of both cells and newly formed bone. An apparatus was prepared with two magnets (190 mT) aligned in parallel to generate a parallel MF. In vitro, bone marrow-derived stromal cells of rats were used to assess the effects of low MFs on cell orientation, osteoblastic differentiation, and mineralization. A bone morphogenetic protein (BMP)-2-induced ectopic bone model was used to elucidate the effect of low MFs on microstructural indices, trabecula orientation, and the apatite c-axis orientation of newly formed bone. Low MFs resulted in an increased ratio of cells oriented perpendicular to the direction of the MF and promoted osteoblastic differentiation in vitro. Moreover, in vivo analysis demonstrated that low MFs promoted bone formation and changed the orientation of trabeculae and apatite crystal in a direction perpendicular to the MF. These changes led to an increase in the mechanical strength of rhBMP-2-induced bone. These results suggest that the application of low MFs has potential to facilitate the regeneration of bone with sufficient mechanical strength by controlling the orientation of newly formed bone.

参考文献

Aydin, N., Bezer, M., 2011. The effect of an intramedullary implant with a static magnetic field on the healing of the osteotomised rabbit femur. Int. Orthop. 35 (1), 135–141.

G.K. Bruce, C.R. Howlett, R.L. Huckstep, Effect of a static magnetic field on fracture healing in a rabbit radius. Preliminary results, Clin Orthop Relat Res (222) (1987) 300–6.

Eguchi, Y., Ogiue-Ikeda, M., Ueno, S., 2003. Control of orientation of rat Schwann cells using an 8-T static magnetic field. Neurosci. Lett. 351 (2), 130–132.

T. Enomae, FiberOri8single03 V.8.03, 2019. http://www.enomae.com/FiberOri/FiberOr i8s03.zip.

Enomae, T., Han, Y.-H., Isogai, A., 2006. Nondestructive determination of fiber orientation distribution of paper surface by image analysis. Nordic Pulp & Paper Research Journal 21 (2), 253–259.

Gao, J., Dennis, J.E., Muzic, R.F., Lundberg, M., Caplan, A.I., 2001. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169 (1), 12–20.

Higashi, T., Yamagishi, A., Takeuchi, T., Kawaguchi, N., Sagawa, S., Onishi, S., Date, M., 1993. Orientation of erythrocytes in a strong static magnetic field. Blood 82 (4), 1328–1334.

Ishimoto, T., Nakano, T., Umakoshi, Y., Yamamoto, M., Tabata, Y., 2013. Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2. J. Bone Miner. Res. 28 (5), 1170–1179.

Ishimoto, T., Yamada, K., Takahashi, H., Takahata, M., Ito, M., Hanawa, T., Nakano, T., 2018. Trabecular health of vertebrae based on anisotropy in trabecular architecture and collagen/apatite micro-arrangement after implantation of intervertebral fusion cages in the sheep spine. Bone 108, 25–33.

Kanda, Y., 2013. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 48 (3), 452–458.

Kim, E.C., Park, J., Kwon, I.K., Lee, S.W., Park, S.J., Ahn, S.J., 2017. Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells. J Periodontal Implant Sci 47 (5), 273–291.

Kotani, H., Iwasaka, M., Ueno, S., Curtis, A., 2000. Magnetic orientation of collagen and bone mixture. J. Appl. Phys. 87 (9), 6191–6193.

Kotani, H., Kawaguchi, H., Shimoaka, T., Iwasaka, M., Ueno, S., Ozawa, H., Nakamura, K., Hoshi, K., 2002. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J. Bone Miner. Res. 17 (10), 1814–1821.

Landis, W.J., 1995. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16 (5), 533–544.

Matsugaki, A., Aramoto, G., Ninomiya, T., Sawada, H., Hata, S., Nakano, T., 2015. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure. Biomaterials 37, 134–143.

Murray, H.B., Pethica, B.A., 2016. A follow-up study of the in-practice results of pulsed electromagnetic field therapy in the management of nonunion fractures. Orthop. Res. Rev. 8, 67–72.

Nakano, T., Kaibara, K., Tabata, Y., Nagata, N., Enomoto, S., Marukawa, E., Umakoshi, Y., 2002. Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system. Bone 31 (4), 479–487.

O’Brien, W., Fissel, B.M., Maeda, Y., Yan, J., Ge, X., Gravallese, E.M., Aliprantis, A.O., Charles, J.F., 2016. RANK-independent osteoclast formation and bone erosion in inflammatory arthritis. Arthritis Rheumatol 68 (12), 2889–2900.

Ohman, C., Baleani, M., Perilli, E., Dall’Ara, E., Tassani, S., Baruffaldi, F., Viceconti, M., 2007. Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements. J. Biomech. 40 (11), 2426–2433.

Sadri, M., Abdolmaleki, P., Abrun, S., Beiki, B., Samani, F.S., 2017. Static magnetic field effect on cell alignment. Growth, and Differentiation in Human Cord-Derived Mesenchymal Stem Cells, Cell Mol Bioeng 10 (3), 249–262.

Sasaki, N., Sudoh, Y., 1997. X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif. Tissue Int. 60 (4), 361–367.

Schenck, J.F., 2000. Safety of strong, static magnetic fields. J. Magn. Reson. Imaging 12 (1), 2–19.

Shin, K., Acri, T., Geary, S., Salem, A.K., 2017. Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Eng Part A 23 (19–20), 1169–1180.

Shinohara, H., Takei, H., Saito, D., Kotani, M., Ueno, S., Nakahira, A., 2006. Fundamental study on bone formation using collagen orientation induced by magnetic fields. J. Ceram. Soc. Jpn. 114 (1325), 131–134.

Teodori, L., Albertini, M.C., Uguccioni, F., Falcieri, E., Rocchi, M.B., Battistelli, M., Coluzza, C., Piantanida, G., Bergamaschi, A., Magrini, A., Mucciato, R., Accorsi, A., 2006. Static magnetic fields affect cell size, shape, orientation, and membrane surface of human glioblastoma cells, as demonstrated by electron, optic, and atomic force microscopy. Cytometry A 69 (2), 75–85.

Todoh, M., Ihara, M., Matsumoto, T., Tanaka, M., 2004. Relationship between mechanical property of cancellous bone and hardness of trabeculae. JSME International Journal Series C 47 (4), 1075–1078.

Umeno, A., Ueno, S., 2003. Quantitative analysis of adherent cell orientation influenced by strong magnetic fields. IEEE Trans Nanobioscience 2 (1), 26–28.

Yamamoto, Y., Ohsaki, Y., Goto, T., Nakasima, A., Iijima, T., 2003. Effects of static magnetic fields on bone formation in rat osteoblast cultures. J. Dent. Res. 82 (12), 962–966.

Yuge, L., Okubo, A., Miyashita, T., Kumagai, T., Nikawa, T., Takeda, S., Kanno, M., Urabe, Y., Sugiyama, M., Kataoka, K., 2003. Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochem. Biophys. Res. Commun. 311 (1), 32–38.

Yun, H.M., Ahn, S.J., Park, K.R., Kim, M.J., Kim, J.J., Jin, G.Z., Kim, H.W., Kim, E.C., 2016. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 85, 88–98.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る