リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Frequency-tunable and absorption/transmission-switchable microwave absorber based on a chitin-nanofiber-derived elastic carbon aerogel」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Frequency-tunable and absorption/transmission-switchable microwave absorber based on a chitin-nanofiber-derived elastic carbon aerogel

Li, Xiang 大阪大学

2023.08.01

概要

Electromagnetic waves are used for wireless transmission of infor­
mation [1]. Excessive use of electromagnetic waves can interfere with
the operation of precision instruments and induce adverse effects on
human health [2]. Microwave absorbers have been intensively devel­
oped to reduce electromagnetic pollution [3]. Because the frequency
range of electromagnetic waves used for wireless communication is
expanding, it is highly desirable to develop a microwave absorber that
can smartly tune its absorption frequency and absorption/transmission
properties to meet the specific application requirements and/or realtime environmental changes [4]. Sufficient impedance matching be­
tween the microwave absorber and air is essential to suppress reflection
and enhance absorption [5]. To switch between absorption and trans­
mission, the dielectric loss tangent of the microwave absorber should be
reportedly tuned [6] because moderate or low dielectric loss tangent can
result in microwave absorption or transmission, respectively [7], while a
high dielectric loss results in microwave reflection [8]. ...

この論文で使われている画像

参考文献

[1] T.D.P. Perera, D.N.K. Jayakody, S.K. Sharma, S. Chatzinotas, J. Li, Simultaneous

wireless information and power transfer (SWIPT): recent advances and future

challenges, IEEE Commun. Surv. Tutorials 20 (2018) 264–302, https://doi.org/

10.1109/COMST.2017.2783901.

F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi,

Electromagnetic interference shielding with 2D transition metal carbides

(MXenes), Science 353 (2016) 1137–1140, https://doi.org/10.1126/science.

aag2421.

F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Graphene-based

microwave absorbing composites: a review and prospective, Compos. Part B Eng.

137 (2018) 260–277, https://doi.org/10.1016/j.compositesb.2017.11.023.

Z. Cheng, R. Wang, Y. Cao, Z. Cai, Z. Zhang, Y. Huang, Intelligent off/on switchable

microwave absorption performance of reduced graphene oxide/VO2 composite

aerogel, Adv. Funct. Mater. 32 (2022) 2205160, https://doi.org/10.1002/

adfm.202205160.

F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng,

L. Zhang, H. Li, Direct growth of edge-rich graphene with tunable dielectric

properties in porous Si3N4 ceramic for broadband high-performance microwave

absorption, Adv. Funct. Mater. 28 (2018) 1707205, https://doi.org/10.1002/

adfm.201707205.

X. Liu, Y. Li, X. Sun, W. Tang, G. Deng, Y. Liu, Z. Song, Y. Yu, R. Yu, L. Dai, J. Shui,

Off/on switchable smart electromagnetic interference shielding aerogel, Matter 4

(2021) 1735–1747, https://doi.org/10.1016/j.matt.2021.02.022.

Y. Tang, W. Dong, L. Tang, Y.K. Zhang, J. Kong, J. Gu, Fabrication and

investigations on the polydopamine/KH-560 functionalized PBO fibers/cyanate

ester wave-transparent composites, Compos. Commun. 8 (2018) 36–41, https://

doi.org/10.1016/j.coco.2018.03.006.

N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim,

Highly aligned graphene/polymer nanocomposites with excellent dielectric

properties for high-performance electromagnetic interference shielding, Adv.

Mater. 26 (2014) 5480–5487, https://doi.org/10.1002/adma.201305293.

Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional

materials: electromagnetic wave shielding and absorption, Adv. Funct. Mater. 32

(2022) 2204591, https://doi.org/10.1002/adfm.202204591.

X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption

theory and recent achievements in microwave absorbers, Carbon 168 (2020)

606–623, https://doi.org/10.1016/j.carbon.2020.07.028.

F. Ruiz-Perez, S.M. L´

opez-Estrada, R.V. Tolentino-Hern´

andez, F. Caballero-Briones,

Carbon-based radar absorbing materials: a critical review, J. Sci. Adv. Mater.

Devices 7 (3) (2022), 100454, https://doi.org/10.1016/j.jsamd.2022.100454.

Y. Liu, Y. Liu, M.G.B. Drew, A theoretical investigation of the quarter-wavelength

model-part 2: verification and extension, Phys. Scr. 97 (1) (2022), 015806, https://

doi.org/10.1088/1402-4896/ac1eb1.

X. Li, L. Zhu, T. Kasuga, M. Nogi, H. Koga, Chitin-derived-carbon nanofibrous

aerogel with anisotropic porous channels and defective carbon structures for strong

microwave absorption, Chem. Eng. J. 450 (2022), 137943, https://doi.org/

10.1016/j.cej.2022.137943.

J.B. Kim, S.K. Lee, C.G. Kim, Comparison study on the effect of carbon nano

materials for single-layer microwave absorbers in X-band, Compos. Sci. Technol.

68 (2008) 2909–2916, https://doi.org/10.1016/j.compscitech.2007.10.035.

X. Peng, K. Wu, Y. Hu, H. Zhuo, Z. Chen, S. Jing, Q. Liu, C. Liu, L. Zhong,

A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for

piezoresistive sensors, J. Mater. Chem. A 6 (2018) 23550–23559, https://doi.org/

10.1039/C8TA09322A.

Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular

aerogels with superelasticity and multifunctionality, Nat. Commun. 5 (2014) 5802,

https://doi.org/10.1038/ncomms6802.

S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Churn, Complex

permeability and permittivity and microwave absorption of ferrite-rubber

composite in X-band frequencies, IEEE Trans. Magn. 27 (1991) 5462–5464,

https://doi.org/10.1109/20.278872.

Y. Naito, K. Suetake, Application of ferrite to electromagnetic wave absorber and

its characteristics, IEEE Trans. Microw. Theory Tech. 19 (1971) 65–72, https://doi.

org/10.1109/TMTT.1971.1127446.

H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon hollow

microspheres with a designable mesoporous shell for high-performance

electromagnetic wave absorption, ACS Appl. Mater. Interfaces 9 (2017)

6332–6341, https://doi.org/10.1021/acsami.6b15826.

C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han,

Constructing uniform core-shell PPy@PANI composites with tunable shell

thickness toward enhancement in microwave absorption, ACS Appl. Mater.

Interfaces 7 (2015) 20090–20099, https://doi.org/10.1021/acsami.5b05259.

X. Li, L. Yu, L. Yu, Y. Dong, Q. Gao, Q. Yang, W. Yang, Y. Zhu, Y. Fu, Chiral

polyaniline with superhelical structures for enhancement in microwave absorption,

Chem. Eng. J. 352 (2018) 745–755, https://doi.org/10.1016/j.cej.2018.07.096.

J. Huang, B.G. Sumpter, V. Meunier, Theoretical model for nanoporous carbon

supercapacitors, Angew. Chem. Int. Ed. 47 (2008) 520–524, https://doi.org/

10.1002/anie.200703864.

A.K. Jonscher, The ‘universal’ dielectric response, Nature 267 (1977) 673–679.

https://www.nature.com/articles/267673a0.

S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Freezing as a path to build complex

composites, Science 311 (2006) 515–518, https://doi.org/10.1126/

science.1120937.

K.H. Kim, Y. Oh, M.F. Islam, Graphene coating makes carbon nanotube aerogels

superelastic and resistant to fatigue, Nat. Nanotechnol. 7 (2012) 562–566, https://

doi.org/10.1038/nnano.2012.118.

X. Li et al.

Chemical Engineering Journal 469 (2023) 144010

[26] T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer,

L. Valdevit, W.B. Carter, Ultralight metallic microlattices, Science 334 (2011)

962–965, https://doi.org/10.1126/science.1211649.

[27] L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based

cellular monoliths, Nat. Commun. 3 (2012) 1241, https://doi.org/10.1038/

ncomms2251.

[28] C. Li, M. Ding, B. Zhang, X. Qiao, C.Y. Liu, Graphene aerogels that withstand

extreme compressive stress and strain, Nanoscale 10 (2018) 18291–18299, https://

doi.org/10.1039/c8nr04824j.

[29] L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang, H. Bin Zhang, X. Zhou, C. Liu, C. Shen,

X. Xie, Multifunctional magnetic Ti3C2TxMXene/graphene aerogel with superior

electromagnetic wave absorption performance, ACS Nano 15 (2021) 6622–6632,

https://doi.org/10.1021/acsnano.0c09982.

[30] C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers,

Adv. Mater. 24 (23) (2012) OP98–OP120, https://doi.org/10.1002/

adma.201200674.

[31] F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu, J. Cheng, H. Jiang, X. Wang, Y. Jiang, W. Lu,

Heterointerface engineering of β-chitin/carbon nano-onions/Ni–P composites with

boosted maxwell-wagner-sillars effect for highly efficient electromagnetic wave

response and thermal management, Nano-Micro Lett. 14 (2022) 85, https://doi.

org/10.1007/s40820-022-00804-w.

[32] F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong, X. Zhu, Y. Shi, Z. Shi, Y. Liu, W. Lu,

Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains

aerogel-based microwave absorber with ultra-low matching thickness, Nano-Micro

Lett. 14 (2022) 140, https://doi.org/10.1007/s40820-022-00869-7.

[33] L. Cai, F. Pan, X. Zhu, Y. Dong, Y. Shi, Z. Xiang, J. Cheng, H. Jiang, Z. Shi, W. Lu,

Etching engineering and electrostatic self-assembly of N-doped MXene/hollow CoZIF hybrids for high-performance microwave absorbers, Chem. Eng. J. 434 (2022),

133865, https://doi.org/10.1016/j.cej.2021.133865.

[34] J. Cheng, H. Jiang, L. Cai, F. Pan, Y. Shi, X. Wang, X. Zhang, S. Lu, Y. Yang, L. Li,

Z. Xiu, J. Wang, H. Guo, W. Lu, Porous N-doped C/VB-group VS2 composites

derived from perishable garbage to synergistically solve the environmental and

electromagnetic pollution, Chem. Eng. J. 457 (2022), 141208, https://doi.org/

10.1016/j.cej.2022.141208.

[35] I. Choi, J.G. Kim, D.G. Lee, I.S. Seo, Aramid/epoxy composites sandwich structures

for low-observable radomes, Compos. Sci. Technol. 71 (2011) 1632–1638, https://

doi.org/10.1016/j.compscitech.2011.07.008.

[36] Y. Yang, L. Xia, T. Zhang, B. Shi, L. Huang, B. Zhong, X. Zhang, H. Wang, J. Zhang,

G. Wen, Fe3O4@LAS/RGO composites with a multiple transmission-absorption

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

mechanism and enhanced electromagnetic wave absorption performance, Chem.

Eng. J. 352 (2018) 510–518, https://doi.org/10.1016/j.cej.2018.07.064.

Y. Xie, S. Liu, K. Huang, B. Chen, P. Shi, Z. Chen, B. Liu, K. Liu, Z. Wu, K. Chen,

Y. Qi, Z. Liu, Ultra-broadband strong electromagnetic interference shielding with

ferromagnetic graphene quartz fabric, Adv. Mater. 34 (2022) 2202982, https://

doi.org/10.1002/adma.202202982.

P. Yi, H. Zou, Y. Yu, X. Li, Z. Li, G. Deng, C. Chen, M. Fang, J. He, X. Sun, X. Liu,

J. Shui, R. Yu, MXene-reinforced liquid metal/polymer fibers via interface

engineering for wearable multifunctional textiles, ACS Nano 16 (2022)

14490–14502, https://doi.org/10.1021/acsnano.2c04863.

Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng, X. Liu, J. Shui, R. Yu, Environmentally tough

and stretchable mxene organohydrogel with exceptionally enhanced

electromagnetic interference shielding performances, Nano-Micro Lett. 14 (2022)

77, https://doi.org/10.1007/s40820-022-00819-3.

J. Li, Y. Zhang, X. Li, C. Chen, H. Zou, P. Yi, X. Liu, R. Yu, Oriented magnetic liquid

metal-filled interlocked bilayer films as multifunctional smart electromagnetic

devices, Nano Res. 16 (2023) 1764–1772, https://doi.org/10.1007/s12274-0224843-z.

F. Meng, H. Wang, W. Wei, Z. Chen, T. Li, C. Li, Y. Xuan, Z. Zhou, Generation of

graphene-based aerogel microspheres for broadband and tunable highperformance microwave absorption by electrospinning-freeze drying process, Nano

Res. 11 (2018) 2847–2861, https://doi.org/10.1007/s12274-017-1915-6.

G. Ma, Y. Zeng, X. Yang, Y. Liu, Y. Duan, Wave-transmitting material to optimize

impedance matching and enhance microwave absorption properties of flaky

carbonyl iron coating, J. Mater. Sci-Mater. Electron. 31 (2021) 8627–8636,

https://doi.org/10.1007/s10854-020-03398-4.

C.P. Neo, V.K. Varadan, Optimization of carbon fiber composite for microwave

absorber, IEEE Trans. Electromagn. Compat. 46 (2004) 102–106, https://doi.org/

10.1109/TEMC.2004.823618.

X.X. Wang, M. Zhang, J.C. Shu, B. Wen, W.Q. Cao, M.S. Cao, Thermally-tailoring

dielectric “genes” in graphene-based heterostructure to manipulate

electromagnetic response, Carbon 184 (2021) 136–145, https://doi.org/10.1016/j.

carbon.2021.07.099.

X. Qian, Y. Zhang, Z. Wu, R. Zhang, X. Li, M. Wang, R. Che, Multi-path electron

transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for

boosting microwave absorption performance, Small 17 (2021) 2100283, https://

doi.org/10.1002/smll.202100283.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る