リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「光学測定による量子ホールエッジの研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

光学測定による量子ホールエッジの研究

神山 晃範 東北大学

2022.03.25

概要

量子ホール状態はトポロジカル絶縁体の一種であり、試料の電気伝導は試料端に形成される1次元の伝導チャネルが担う。これは量子ホールエッジと呼ばれる。量子ホールエッジにおける電荷輸送は一方向伝導性(カイラリティ)、無散逸性や高いコヒーレンスを示し、さらには相互作用による特異モードの発現といった性質から、物性物理学を始めとして、様々な研究の舞台を提供してきた。

相互作用する2次元や3次元の電子系は、一般にフェルミ液体となることが知られている。一方で、相互作用する1次元電子系は朝永ラッティンジャー液体[1–3]で記述されることが知られている。この液体の素励起は電子の集団励起である電荷やスピンの密度波であり、スピン電荷分離や電荷の細分化といった興味深い現象を引き起こす[4]。量子ホールエッジは、朝永ラッティンジャー液体の性質を探る舞台として注目されている[4]。量子ホールエッジには、通常のカイラリティに従う電荷を運ぶモード以外にも様々なモードが出現する場合がある。例えば、特定の占有率の分数量子ホール状態では逆走する電荷モードの存在が予想されている[5]。また、エッジ付近のポテンシャル形状に起因して電荷モードが逆走する場合もある[6]。複数のエッジが相互作用した場合、電荷中性モード[7]や逆走する電荷中性モード[8–11]などが発現し得る。電荷中性モードは電荷モードが互いに逆位相で振動することにより電荷の総和が0となるため電気測定による検出は難しい。一方で、占有率ν=5/2などで出現する電荷中性モードは非可換統計に従うマヨラナモードであると考えられており[9]、環境ノイズに強いことで注目を浴びているトポロジカル量子計算への応用が期待されている[12]。量子ホールエッジは応用の観点からも注目を浴びている。量子ホールエッジの電荷の集団励起は、相互作用により高速で振動するプラズマの一種であり、回路への応用を図るプラズモニクスの分野から注目されている[13]。また、高いコヒーレンスを示し、電子のビームスプリッターやディレイなどを容易に半導体試料上に実現できることから、量子光学[14]やエニオン統計[15–17]の研究の舞台を提供している。さらには量子情報の分野からも注目され、量子エネルギーテレポーテーションを実証する理想的な舞台とも考えられている[18,19]。

参考文献

[1] Sin-itiro Tomonaga. Remarks on bloch’s method of sound waves applied to many-fermion problems. Progress of Theoretical Physics, 5(4):544–569, 1950.

[2] JM Luttinger. An exactly soluble model of a many-fermion system. Journal of mathematical physics, 4(9):1154–1162, 1963.

[3] D. Yoshioka. Quantum Hall effect. 1998.

[4] Masayuki Hashisaka and Toshimasa Fujisawa. Tomonaga–luttinger-liquid nature of edge excitations in integer quantum hall edge channels. Reviews in Physics, 3:32–43, 2018.

[5] AH MacDonald. Edge states in the fractional-quantum-hall-effect regime. Physical review letters, 64(2):220, 1990.

[6] Nicolas Moreau, Boris Brun, Sowmya Somanchi, Kenji Watanabe, Takashi Taniguchi, Christoph Stampfer, and Benoit Hackens. Upstream modes and antidots poison graphene quantum hall effect. Nature Communications, 12(1):1–7, 2021.

[7] M Hashisaka, N Hiyama, T Akiho, K Muraki, and T Fujisawa. Waveform measurement of charge-and spin-density wavepackets in a chiral tomonaga– luttinger liquid. Nature Physics, 13(6):559–562, 2017.

[8] CL Kane, Matthew PA Fisher, and Joseph Polchinski. Randomness at the edge: Theory of quantum hall transport at filling ν= 2/3. Physical review letters, 72(26):4129, 1994.

[9] Aveek Bid, Nissim Ofek, Hiroyuki Inoue, Moty Heiblum, CL Kane, Vladimir Umansky, and Diana Mahalu. Observation of neutral modes in the fractional quantum hall regime. Nature, 466(7306):585–590, 2010.

[10] Yonatan Cohen, Yuval Ronen, Wenmin Yang, Daniel Banitt, Jinhong Park, Moty Heiblum, Alexander D Mirlin, Yuval Gefen, and Vladimir Umansky. Synthesizing a ν= 2/3 fractional quantum hall effect edge state from counterpropagating ν= 1 and ν= 1/3 states. Nature communications, 10(1):1–6, 2019.

[11] Vivek Venkatachalam, Sean Hart, Loren Pfeiffer, Ken West, and Amir Yacoby. Local thermometry of neutral modes on the quantum hall edge. Nature Physics, 8(9):676–681, 2012.

[12] Sankar Das Sarma, Michael Freedman, and Chetan Nayak. Topologically protected qubits from a possible non-abelian fractional quantum hall state. Physical review letters, 94(16):166802, 2005.

[13] Masayuki Hashisaka, Hiroshi Kamata, Norio Kumada, Kazuhisa Washio, Ryuji Murata, Koji Muraki, and Toshimasa Fujisawa. Distributed-element circuit model of edge magnetoplasmon transport. Physical Review B, 88(23):235409, 2013.

[14] H Duprez, E Sivre, A Anthore, A Aassime, A Cavanna, A Ouerghi, U Gennser, and F Pierre. Macroscopic electron quantum coherence in a solid-state circuit. Physical Review X, 9(2):021030, 2019.

[15] James Nakamura, Shuang Liang, Geoffrey C Gardner, and Michael J Manfra. Direct observation of anyonic braiding statistics. Nature Physics, 16(9):931–936, 2020.

[16] Hugo Bartolomei, Manohar Kumar, R´emi Bisognin, Arthur Marguerite, J-M Berroir, Erwann Bocquillon, Bernard Placais, Antonella Cavanna, Q Dong, Ulf Gennser, et al. Fractional statistics in anyon collisions. Science, 368(6487):173– 177, 2020.

[17] Yuval Ronen, Thomas Werkmeister, Danial Haie Najafabadi, Andrew T Pierce, Laurel E Anderson, Young Jae Shin, Si Young Lee, Young Hee Lee, Bobae Johnson, Kenji Watanabe, et al. Aharonov–bohm effect in graphene-based fabry–p´erot quantum hall interferometers. Nature nanotechnology, 16(5):563– 569, 2021.

[18] Go Yusa, Wataru Izumida, and Masahiro Hotta. Quantum energy teleportation in a quantum hall system. Physical Review A, 84(3):032336, 2011.

[19] Masahiro Matsuura, Takaaki Mano, Takeshi Noda, Naokazu Shibata, Masahiro Hotta, and Go Yusa. Transmission and reflection of charge-density wave packets in a quantum hall edge controlled by a metal gate. Applied Physics Letters, 112(6):063104, 2018.

[20] K v Klitzing, Gerhard Dorda, and Michael Pepper. New method for highaccuracy determination of the fine-structure constant based on quantized hall resistance. Physical review letters, 45(6):494, 1980.

[21] MA Paalanen, DC Tsui, and AC Gossard. Quantized hall effect at low temperatures. Physical Review B, 25(8):5566, 1982.

[22] Daniel C Tsui, Horst L Stormer, and Arthur C Gossard. Two-dimensional magnetotransport in the extreme quantum limit. Physical Review Letters, 48(22):1559, 1982.

[23] Robert Willett, James P Eisenstein, Horst L St¨ormer, Daniel C Tsui, Arthur C Gossard, and JH English. Observation of an even-denominator quantum number in the fractional quantum hall effect. Physical review letters, 59(15):1776, 1987.

[24] DB Chklovskii, Boris I Shklovskii, and LI Glazman. Electrostatics of edge channels. Physical Review B, 46(7):4026, 1992.

[25] LI Glazman and IA Larkin. Lateral position control of an electron channel in a split-gate device. Semiconductor science and technology, 6(1):32, 1991.

[26] Erwann Bocquillon, Vincent Freulon, P Degiovanni, B Pla¸cais, A Cavanna, Y Jin, G F`eve, et al. Separation of neutral and charge modes in one-dimensional chiral edge channels. Nature communications, 4(1):1–7, 2013.

[27] Ngoc Han Tu, Masayuki Hashisaka, Takeshi Ota, Yoshiaki Sekine, Koji Muraki, Toshimasa Fujisawa, and Norio Kumada. Coupling between quantum hall edge channels on opposite sides of a hall bar. Solid State Communications, 283:32–36, 2018.

[28] Xiao-Gang Wen. Theory of the edge states in fractional quantum hall effects. International journal of modern physics B, 6(10):1711–1762, 1992.

[29] Xiao-Gang Wen. Topological orders and edge excitations in fractional quantum hall states. Advances in Physics, 44(5):405–473, 1995.

[30] AM Chang. Chiral luttinger liquids at the fractional quantum hall edge. Reviews of Modern Physics, 75(4):1449, 2003.

[31] VA Volkov and Sergey A Mikhailov. Edge magnetoplasmons: low frequency weakly damped excitations in inhomogeneous two-dimensional electron systems. Sov. Phys. JETP, 67(8):1639–1653, 1988.

[32] IL Aleiner and LI Glazman. Novel edge excitations of two-dimensional electron liquid in a magnetic field. Physical review letters, 72(18):2935, 1994.

[33] MD Johnson and Giovanni Vignale. Dynamics of dissipative quantum hall edges. Physical Review B, 67(20):205332, 2003.

[34] VK Talyanskii, M Wassermeier, Achim Wixforth, J Oshinowo, J¨org P Kotthaus, IE Batov, G Weimann, H Nickel, and W Schlapp. Edge magnetoplasmons in the quantum hall effect regime. Surface science, 229(1-3):40–42, 1990.

[35] M Wassermeier, J Oshinowo, JP Kotthaus, AH MacDonald, CT Foxon, and JJ Harris. Edge magnetoplasmons in the fractional-quantum-hall-effect regime. Physical Review B, 41(14):10287, 1990.

[36] VI Talyanskii, AV Polisski, DD Arnone, M Pepper, CG Smith, DA Ritchie, JE Frost, and GAC Jones. Spectroscopy of a two-dimensional electron gas in the quantum-hall-effect regime by use of low-frequency edge magnetoplasmons. Physical Review B, 46(19):12427, 1992.

[37] VI Talyanskii, MY Simmons, JEF Frost, M Pepper, DA Ritchie, AC Churchill, and GAC Jones. Experimental investigation of the damping of low-frequency edge magnetoplasmons in gaas-al x ga 1- x as heterostructures. Physical Review B, 50(3):1582, 1994.

[38] IV Andreev, VM Muravev, DV Smetnev, and IV Kukushkin. Acoustic magnetoplasmons in a two-dimensional electron system with a smooth edge. Physical Review B, 86(12):125315, 2012.

[39] Akira Endo, Keita Koike, Shingo Katsumoto, and Yasuhiro Iye. Frequencies of the edge-magnetoplasmon excitations in gated quantum hall edges. Journal of the Physical Society of Japan, 87(6):064709, 2018.

[40] Norio Kumada, P Roulleau, B Roche, M Hashisaka, H Hibino, I Petkovi´c, and DC Glattli. Resonant edge magnetoplasmons and their decay in graphene. Physical review letters, 113(26):266601, 2014.

[41] RC Ashoori, HL Stormer, LN Pfeiffer, KW Baldwin, and K West. Edge magnetoplasmons in the time domain. Physical Review B, 45(7):3894, 1992.

[42] G Ernst, RJ Haug, J Kuhl, KV von Klitzing, and K Eberl. Acoustic edge modes of the degenerate two-dimensional electron gas studied by time-resolved magnetotransport measurements. Physical review letters, 77(20):4245, 1996.

[43] G Ernst, NB Zhitenev, RJ Haug, and K Von Klitzing. Dynamic excitations of fractional quantum hall edge channels. Physical review letters, 79(19):3748, 1997.

[44] NB Zhitenev, RJ Haug, K v Klitzing, and K Eberl. Time-resolved measurements of transport in edge channels. Physical review letters, 71(14):2292, 1993.

[45] NB Zhitenev. Charge relaxation in two-dimensional electron gas under quantum hall effect conditions. JETP letters, 55(12):756–762, 1992.

[46] G Sukhodub, Frank Hohls, and Rolf J Haug. Observation of an interedge magnetoplasmon mode in a degenerate two-dimensional electron gas. Physical review letters, 93(19):196801, 2004.

[47] Hiroshi Kamata, Takeshi Ota, Koji Muraki, and Toshimasa Fujisawa. Voltagecontrolled group velocity of edge magnetoplasmon in the quantum hall regime. Physical Review B, 81(8):085329, 2010.

[48] N Kumada, H Kamata, and T Fujisawa. Edge magnetoplasmon transport in gated and ungated quantum hall systems. Physical Review B, 84(4):045314, 2011.

[49] I Petkovi´c, FIB Williams, K Bennaceur, F Portier, P Roche, and DC Glattli. Carrier drift velocity and edge magnetoplasmons in graphene. Physical review letters, 110(1):016801, 2013.

[50] N Kumada, S Tanabe, H Hibino, H Kamata, M Hashisaka, K Muraki, and T Fujisawa. Plasmon transport in graphene investigated by time-resolved electrical measurements. Nature communications, 4(1):1–6, 2013.

[51] N Kumada, N-H Tu, K-i Sasaki, T Ota, M Hashisaka, S Sasaki, K Onomitsu, and K Muraki. Suppression of gate screening on edge magnetoplasmons by highly resistive zno gate. Physical Review B, 101(20):205205, 2020.

[52] Chaojing Lin, Kyosuke Morita, Koji Muraki, and Toshimasa Fujisawa. Generation and detection of edge magnetoplasmons in a quantum hall system using a photoconductive switch. Japanese Journal of Applied Physics, 57(4S):04FK02, 2018.

[53] EV Deviatov, VT Dolgopolov, FIB Williams, B Jager, A Lorke, JP Kotthaus, and AC Gossard. Excitation of edge magnetoplasmons in a two-dimensional electron gas by inductive coupling. Applied physics letters, 71(25):3655–3657, 1997.

[54] Junichiro Hayakawa, Koji Muraki, and Go Yusa. Real-space imaging of frac tional quantum hall liquids. Nature Nanotechnology, 8(1):31–35, 2013.

[55] Akinori Kamiyama, Kazunobu Kojima, Shigefusa F Chichibu, and Go Yusa. Analyzing oxygen and silicon incorporation in gan microstructures composed of c-planes and angled facets by confocal magneto-photoluminescence microscopy. AIP Advances, 10(3):035215, 2020.

[56] Tomoyuki Tanikawa, Kazuki Ohnishi, Masaya Kanoh, Takashi Mukai, and Takashi Matsuoka. Three-dimensional imaging of threading dislocations in gan crystals using two-photon excitation photoluminescence. Applied Physics Express, 11(3):031004, 2018.

[57] Tomas Kristijonas Uˇzdavinys, Saulius Marcinkeviˇcius, Mounir Mensi, Lise Lahourcade, Jean-Fran¸cois Carlin, Denis Martin, Rapha¨el Butt´e, and Nicolas Grandjean. Impact of surface morphology on the properties of light emission in ingan epilayers. Applied Physics Express, 11(5):051004, 2018.

[58] T Henn, T Kiessling, W Ossau, LW Molenkamp, K Biermann, and PV Santos. Ultrafast supercontinuum fiber-laser based pump-probe scanning magnetooptical kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. Review of Scientific Instruments, 84(12):123903, 2013.

[59] Akihide Hamano, Seigo Ohno, Hiroaki Minamide, and Hiromasa Ito. Semiconductor property imaging on as-grown wafer with monochromatic tunable thz-wave source. Review of Scientific Instruments, 89(7):073701, 2018.

[60] E Ahlswede, J Weis, K v Klitzing, and K Eberl. Hall potential distribution in the quantum hall regime in the vicinity of a potential probe contact. Physica E: Low-dimensional Systems and Nanostructures, 12(1-4):165–168, 2002.

[61] Keji Lai, Worasom Kundhikanjana, Michael A Kelly, Zhi-Xun Shen, Javad Shabani, and Mansour Shayegan. Imaging of coulomb-driven quantum hall edge states. Physical review letters, 107(17):176809, 2011.

[62] Katsushi Hashimoto, Toru Tomimatsu, Ken Sato, and Yoshiro Hirayama. Scanning nuclear resonance imaging of a hyperfine-coupled quantum hall system. Nature communications, 9(1):1–7, 2018.

[63] Katsushi Hashimoto, K Muraki, T Saku, and Yoshiro Hirayama. Electrically controlled nuclear spin polarization and relaxation by quantum-hall states. Physical review letters, 88(17):176601, 2002.

[64] Go Yusa, Koji Muraki, Kei Takashina, Katsushi Hashimoto, and Yoshiro Hirayama. Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature, 434(7036):1001–1005, 2005.

[65] Takashi Kawamura and Go Yusa. Imaging of multinuclear spin system (i¿ 1/2) in semiconductor microstructures using longitudinal-magnetization-detection nuclear magnetic resonance. Applied Physics Letters, 97(11):112108, 2010.

[66] RT Harley, OZ Karimov, and M Henini. Optical control of spins in semiconductors. Journal of Physics D: Applied Physics, 36(18):2198, 2003.

[67] Sergiu Anghel, Akshay Singh, Felix Passmann, Hikaru Iwata, John N Moore, Go Yusa, Xiaoqin Li, and Markus Betz. Enhanced spin-polarization lifetimes in a two-dimensional electron gas in a gate-controlled gaas quantum well. Physical Review B, 94(3):035303, 2016.

[68] NH Schiller and RR Alfano. Picosecond characteristics of a spectrograph measured by a streak camera/video readout system. Optics Communications, 35(3):451–454, 1980.

[69] D Sanvitto, RA Hogg, AJ Shields, DM Whittaker, MY Simmons, DA Ritchie, and M Pepper. Rapid radiative decay of charged excitons. Physical Review B, 62(20):R13294, 2000.

[70] A Wysmolek, KP Korona, R Stepniewski, JM Baranowski, J B loniarz, M Potemski, RL Jones, David C Look, J Kuhl, SS Park, et al. Recombination of excitons bound to oxygen and silicon donors in freestanding gan. Physical Review B, 66(24):245317, 2002.

[71] AJ Shields, M Pepper, MY Simmons, and DA Ritchie. Spin-triplet negatively charged excitons in gaas quantum wells. Physical Review B, 52(11):7841, 1995.

[72] Arkadiusz W´ojs, John J Quinn, and Pawel Hawrylak. Charged excitons in a dilute two-dimensional electron gas in a high magnetic field. Physical Review B, 62(7):4630, 2000.

[73] Go Yusa, Hadas Shtrikman, and Israel Bar-Joseph. Charged excitons in the fractional quantum hall regime. Physical review letters, 87(21):216402, 2001.

[74] Christian Sch¨uller, K-B Broocks, Ch Heyn, and Detlef Heitmann. Oscillator strengths of dark charged excitons at low electron filling factors. Physical Review B, 65(8):081301, 2002.

[75] Junichiro Hayakawa. PhD thesis, Tohoku University, Japan, 2012.

[76] John N Moore, Junichiro Hayakawa, Takaaki Mano, Takeshi Noda, and Go Yusa. Optically imaged striped domains of nonequilibrium electronic and nuclear spins in a fractional quantum hall liquid. Physical review letters, 118(7):076802, 2017.

[77] John N Moore, Junichiro Hayakawa, Takaaki Mano, Takeshi Noda, and Go Yusa. Hyperfine-controlled domain-wall motion observed in real space and time. Physical Review B, 94(20):201408, 2016.

[78] John N Moore, Hikaru Iwata, Junichiro Hayakawa, Takaaki Mano, Takeshi Noda, Naokazu Shibata, and Go Yusa. Evidence for a correlated phase of skyrmions observed in real space. Physical Review B, 98(16):161402, 2018.

[79] Masahiro Matsuura. PhD thesis, Tohoku University, Japan, 2020.

[80] J Weis and K Von Klitzing. Metrology and microscopic picture of the integer quantum hall effect. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1953):3954–3974, 2011.

[81] CL Kane and Matthew PA Fisher. Impurity scattering and transport of fractional quantum hall edge states. Physical Review B, 51(19):13449, 1995.

[82] M Kamada, T Suzuki, F Nakamura, Y Mori, and M Arai. Investigation of orientation effect on contact resistance in selectively doped algaas/gaas heterostructures. Applied physics letters, 49(19):1263–1265, 1986.

[83] Arnaud Valeille, Koji Muraki, and Yoshiro Hirayama. Highly reproducible fabrication of back-gated ga as/ al ga as heterostructures using augeni ohmic contacts with initial ni layer. Applied Physics Letters, 92(15):152106, 2008.

[84] Oktay G¨okta¸s, Jochen Weber, J¨urgen Weis, and Klaus von Klitzing. Alloyed ohmic contacts to two-dimensional electron system in algaas/gaas heterostructures down to submicron length scale. Physica E: Low-dimensional Systems and Nanostructures, 40(5):1579–1581, 2008.

[85] J´erˆome Faist, Pierre Gu´eret, and Heinz P Meier. Interior contacts for probing the equilibrium between magnetic edge channels in the quantum hall effect. Physical Review B, 43(11):9332, 1991.

[86] SP Kurochka, MV Stepushkin, and VI Borisov. Features of creating ohmic contacts for gaas/algaas heterostructures with a two-dimensional electron gas. Russian Microelectronics, 46(8):600–607, 2017.

[87] P Haremski, M Mausser, A Gauß, K von Klitzing, and J Weis. Electrically induced breakdown of the quantum hall effect at different hall bar widths: Visualizing the edge-and bulk-dominated regimes within a quantum hall plateau. Physical Review B, 102(20):205306, 2020.

[88] Motoi Takahashi. PhD thesis, Tohoku University, Japan, 2020.

[89] RP Taylor, PT Coleridge, M Davies, Y Feng, JP McCaffrey, and PA Marshall. Physical and electrical investigation of ohmic contacts to algaas/gaas heterostructures. journal of Applied Physics, 76(12):7966–7972, 1994.

[90] LJvd Pauw. A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Research Reports, 13(1):1–9, 1958.

[91] John Nicholas MOORE. PhD thesis, Tohoku University, Japan, 2018.

[92] Akinori. Kamiyama. Master thesis, tohoku university, japan, 2019.

[93] Kazunobu Kojima, Tomomi Ohtomo, Ken-ichiro Ikemura, Yoshiki Yamazaki, Makoto Saito, Hirotaka Ikeda, Kenji Fujito, and Shigefusa F Chichibu. Determination of absolute value of quantum efficiency of radiation in high quality gan single crystals using an integrating sphere. Journal of Applied Physics, 120(1):015704, 2016.

[94] SM Girvin, AH MacDonald, and PM Platzman. Magneto-roton theory of collective excitations in the fractional quantum hall effect. Physical Review B, 33(4):2481, 1986.

[95] MG Prokudina, S Ludwig, V Pellegrini, L Sorba, G Biasiol, and VS Khrapai. Tunable nonequilibrium luttinger liquid based on counterpropagating edge channels. Physical Review Letters, 112(21):216402, 2014.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る