リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「食道扁平上皮癌におけるsignal regulatory protein alpha(SIRPα)発現の臨床的意義」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

食道扁平上皮癌におけるsignal regulatory protein alpha(SIRPα)発現の臨床的意義

古賀, 直道 KOGA, Naomichi コガ, ナオミチ 九州大学

2023.12.31

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Clinical significance of signal regulatory
protein alpha(SIRPα) expression in esophageal
squamous cell carcinoma
古賀, 直道

https://hdl.handle.net/2324/7165096
出版情報:Kyushu University, 2023, 博士(医学), 課程博士
バージョン:
権利関係:Creative Commons Attribution-NonCommercial-NoDerivatives International

氏 名:

古賀 直道

論文名:

Clinical significance of signal regulatory protein alpha(SIRPα)
expression in esophageal squamous cell carcinoma
(食道扁平上皮癌におけるsignal regulatory protein alpha(SIRPα)発現の
臨床的意義)

区 分:



論 文 内 容 の 要 旨

Signal regulatory protein alpha(SIRPα)はI型膜貫通蛋白質であり、CD47との相互作用によりマ
クロファージによる腫瘍細胞の貪食を抑制する。CD47-SIRPα経路はがんにおける免疫チェックポイン
ト因子として機能している。本研究の目的は、食道扁平上皮癌(ESCC)におけるSIRPα発現の臨床的
意義を明らかにすることである。まず、The Cancer Genome Atlas(TCGA)に掲載された95のESCC組織
のRNA-seqデータと、131人のESCC患者からなる我々の患者コホートの免疫組織化学的解析データを用
いて、SIRPαの発現を評価した。次に、SIRPαの発現と臨床病理学的因子、患者の生存期間、腫瘍免
疫細胞の浸潤、programmed cell death-ligand 1(PD-L1)の発現との相関を調べた。全生存期間は、
TCGAと我々の患者コホートの両方において、SIRPαの高発現群が低発現群よりも有意に不良であった
(それぞれ、P < 0.001およびP = 0.027)。SIRPαの高発現は腫瘍浸潤深度(T因子)と関連していた
(P = 0.0017)。加えてSIRPα発現は、M1マクロファージ、M2マクロファージおよびCD8陽性T細胞の
免疫細胞の腫瘍浸潤、またPD-L1発現と有意に相関していた(それぞれP < 0.001、P < 0.001、P =
0.03、P < 0.001)。さらに、SIRPα/PD-L1が共に発現している患者は、どちらか一方のみが発現して
いる患者やどちらも発現していない患者よりも予後が悪い傾向があった。以上から、SIRPαは、マク
ロファージによる腫瘍細胞の貪食を阻害し、抗腫瘍免疫の抑制を誘導することによって、ESCCの予後
不良に関わっている可能性が示唆された。SIRPαは、特にPD-1/PD-L1経路の阻害薬と組み合わせるこ
とで、ESCCの新規の治療標的となる可能性がある。

この論文で使われている画像

参考文献

1. Fitzmaurice C, Akinyemiju TF, Al Lami FH, et al. Global, regional,

and national cancer incidence, mortality, years of life lost, years

lived with disability, and disability-­adjusted life-­years for 29 cancer

groups, 1990 to 2016: a systematic analysis for the global burden of

disease study. JAMA Oncol. 2018;4:1553-­1568.

2. Rustgi A, El-­Serag HB. Esophageal carcinoma. N Engl J Med.

2015;372:1472-­1473.

3. Short MW, Burgers KG, Fry VT. Esophageal cancer. Am Fam

Physician. 2017;95:22-­28.

4. Kato K, Cho BC, Takahashi M, et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell

carcinoma refractory or intolerant to previous chemotherapy

(ATTRACTION-­3): a multicentre, randomised, open-­label, phase 3

trial. Lancet Oncol. 2019;20:1506-­1517.

5. Kojima T, Shah MA, Muro K, et al. Randomized phase III

KEYNOTE-­181 study of pembrolizumab versus chemotherapy in

advanced esophageal cancer. J Clin Oncol. 2020;38:4138–­4148.

6. Moynihan KD, Irvine DJ. Roles for innate immunity in combination

immunotherapies. Cancer Res. 2017;77:5215-­5221.

7. Jalil AR, Andrechak JC, Discher DE. Macrophage checkpoint blockade: results from initial clinical trials, binding analyses, and CD47-­

SIRPalpha structure-­function. Antib Ther. 2020;3:80-­94.

8. Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mechanisms of the CD47-­SIRPalpha signalling pathway. Trends

Cell Biol. 2009;19:72-­8 0.

9. Barclay AN, Van den Berg TK. The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and

therapeutic target. Annu Rev Immunol. 2014;32:25-­50.

10. Murata Y, Saito Y, Kotani T, Matozaki T. Blockade of CD47 or

SIRPalpha: a new cancer immunotherapy. Expert Opin Ther Targets.

2020;24:945-­951.

11. Murata Y, Kotani T, Ohnishi H, Matozaki T. The CD47-­SIRPalpha signalling system: its physiological roles and therapeutic application. J

Biochem. 2014;155:335-­3 44.

12. Chao MP, Alizadeh AA, Tang C, et al. Anti-­CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-­

Hodgkin lymphoma. Cell. 2010;142:699-­713.

13. Willingham SB, Volkmer JP, Gentles AJ, et al. The CD47-­s ignal

regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA.

2012;109:6662-­6 667.

14. Zhao XW, van Beek EM, Schornagel K, et al. CD47-­signal regulatory protein-­alpha (SIRPalpha) interactions form a barrier for

antibody-­mediated tumor cell destruction. Proc Natl Acad Sci USA.

2011;108:18342-­18347.

15. Sim J, Sockolosky JT, Sangalang E, et al. Discovery of high affinity,

pan-­allelic, and pan-­mammalian reactive antibodies against the myeloid checkpoint receptor SIRPalpha. MAbs. 2019;11:1036-­1052.

16. Ho CC, Guo N, Sockolosky JT, et al. "Velcro" engineering of high

affinity CD47 ectodomain as signal regulatory protein alpha

(SIRPalpha) antagonists that enhance antibody-­dependent cellular

phagocytosis. J Biol Chem. 2015;290:12650-­12663.

17. Ring NG, Herndler-­Brandstetter D, Weiskopf K, et al. Anti-­

SIRPalpha antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci USA. 2017;114:E1057

8-­E10585.

18. Murata Y, Tanaka D, Hazama D, et al. Anti-­human SIRPalpha

antibody is a new tool for cancer immunotherapy. Cancer Sci.

2018;109:1300-­1308.

19. Yanagita T, Murata Y, Tanaka D, et al. Anti-­SIRPalpha antibodies as a potential new tool for cancer immunotherapy. JCI Insight.

2017;2:e89140.

20. Alvey CM, Spinler KR, Irianto J, et al. SIRPA-­inhibited, marrow-­

derived macrophages engorge, accumulate, and differentiate in

13497006, 2021, 8, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/cas.14971 by Kyushu University, Wiley Online Library on [05/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

3027

KOGA et al.

21. 22. 23. 24. 25. 26. 27. 28. 29. 3 0. 31. 32. 33. 3 4. 35. antibody-­targeted regression of solid tumors. Curr Biol. 2017;27:2065-­

2077.e6.

Ando N, Kato H, Igaki H, et al. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-­fluorouracil

versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann

Surg Oncol. 2012;19:68-­74.

Ishida K, Ando N, Yamamoto S, Ide H, Shinoda M. Phase II study

of cisplatin and 5-­fluorouracil with concurrent radiotherapy in

advanced squamous cell carcinoma of the esophagus: a Japan

Esophageal Oncology Group (JEOG)/Japan Clinical Oncology

Group trial (JCOG9516). Jpn J Clin Oncol. 2004;34:615-­619.

Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or

with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and

neck (KEYNOTE-­0 48): a randomised, open-­label, phase 3 study.

Lancet (London, England). 2019;394:1915-­1928.

Kulangara K, Zhang N, Corigliano E, et al. Clinical utility of the combined positive score for programmed death ligand-­1 expression and

the approval of pembrolizumab for treatment of gastric cancer. Arch

Pathol Lab Med. 2019;143:330-­337.

Suzuki S, Yokobori T, Tanaka N, et al. CD47 expression regulated

by the miR-­133a tumor suppressor is a novel prognostic marker in

esophageal squamous cell carcinoma. Oncol Rep. 2012;28:465-­472.

Chao MP, Alizadeh AA, Tang C, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia.

Cancer Res. 2011;71:1374-­1384.

Goto H, Kojima Y, Matsuda K, et al. Efficacy of anti-­CD47 antibody-­

mediated phagocytosis with macrophages against primary effusion

lymphoma. Eur J Cancer. 2014;50:1836-­1846.

Liu J, Wang L, Zhao F, et al. Pre-­clinical development of a humanized

anti-­CD47 antibody with anti-­c ancer therapeutic potential. PLoS

One. 2015;10:e0137345.

Zhang X, Fan J, Wang S, et al. Targeting CD47 and autophagy

elicited enhanced antitumor effects in non-­small cell lung cancer.

Cancer Immunol Res. 2017;5:363-­375.

Petrova PS, Viller NN, Wong M, et al. TTI-­621 (SIRPαFc): a CD47-­

blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res.

2017;23:1068-­1079.

Russ A, Hua AB, Montfort WR, et al. Blocking "don't eat me" signal

of CD47-­SIRPα in hematological malignancies, an in-­depth review.

Blood Rev. 2018;32:480-­489.

Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39-­51.

Noy R, Pollard JW. Tumor-­associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49-­61.

Zhang QW, Liu L, Gong CY, et al. Prognostic significance of tumor-­

associated macrophages in solid tumor: a meta-­analysis of the literature. PLoS One. 2012;7:e50946.

Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage

polarization: tumor-­associated macrophages as a paradigm

for polarized M2 mononuclear phagocytes. Trends Immunol.

2002;23:549-­555.

KOGA et al.

36. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-­associated

macrophages are a distinct M2 polarised population promoting

tumour progression: potential targets of anti-­c ancer therapy. Eur J

Cancer. 2006;42:717-­727.

37. Miyashita T, Tajima H, Shah FA, et al. Impact of inflammation-­

metaplasia-­adenocarcinoma sequence and inflammatory microenvironment in esophageal carcinogenesis using surgical rat models.

Ann Surg Oncol. 2014;21:2012-­2019.

38. Shigeoka M, Urakawa N, Nakamura T, et al. Tumor associated

macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci.

2013;104:1112-­1119.

39. Chen YP, Kim HJ, Wu H, et al. SIRPα expression delineates subsets of intratumoral monocyte/macrophages with different functional and prognostic impact in follicular lymphoma. Blood Cancer J.

2019;9:84.

4 0. Pan YF, Tan YX, Wang M, et al. Signal regulatory protein alpha

is associated with tumor-­polarized macrophages phenotype

switch and plays a pivotal role in tumor progression. Hepatology.

2013;58:680-­691.

41. Gordon SR, Maute RL, Dulken BW, et al. PD-­1 expression by

tumour-­associated macrophages inhibits phagocytosis and tumour

immunity. Nature. 2017;545:495-­499.

42. Hartley GP, Chow L, Ammons DT, Wheat WH, Dow SW.

Programmed cell death ligand 1 (PD-­L1) signaling regulates macrophage proliferation and activation. Cancer Immunol Res. 2018;6:

1260-­1273.

43. Papalampros A, Vailas M, Ntostoglou K, et al. Unique spatial immune profiling in pancreatic ductal adenocarcinoma with enrichment of exhausted and senescent T cells and diffused CD47-­SIRPα

expression. Cancers. 2020;12:1825.

4 4. Liu B, Guo H, Xu J, et al. Elimination of tumor by CD47/PD-­L1 dual-­

targeting fusion protein that engages innate and adaptive immune

responses. MAbs. 2018;10:315-­324.

45. Sockolosky JT, Dougan M, Ingram JR, et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation.

Proc Natl Acad Sci USA. 2016;113:E2646-­E2654.

46. Liu X, Liu L, Ren Z, et al. Dual targeting of innate and adaptive checkpoints on tumor cells limits immune evasion. Cell Rep.

2018;24:2101-­2111.

S U P P O R T I N G I N FO R M AT I O N

Additional supporting information may be found online in the

Supporting Information section.

How to cite this article: Koga N, Hu Q, Sakai A, et al. Clinical

significance of signal regulatory protein alpha (SIRPα)

expression in esophageal squamous cell carcinoma. Cancer

Sci. 2021;112:3018–­3028. https://doi.org/10.1111/cas.14971

13497006, 2021, 8, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/cas.14971 by Kyushu University, Wiley Online Library on [05/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

3028 ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る