リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「小型肺腺癌における画像的浸潤度と腫瘍浸潤リンパ球の関連」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

小型肺腺癌における画像的浸潤度と腫瘍浸潤リンパ球の関連

小野, 雄生 ONO, Yuki オノ, ユウキ 九州大学

2022.11.30

概要

背景:肺腺癌のCT画像において、全腫瘍径と充実成分径の比率(CTR)は癌の進行や病理学的浸潤度と関連している。しかし、小型肺腺癌における、CTRと腫瘍浸潤リンパ球(TIL)の密度、腫瘍細胞のprogrammed death ligand 1 (PD-L1)、indoleamine 2,3-dioxygenase 1 (IDO1)発現を含む免疫関連因子との関係は、ほとんど知られていない。

対象と方法:本研究では、3cm未満の肺腺癌を有し、手術を施行された患者258例を対象とした。患者を4群(CTR = 0; 0 < CTR < 0.5; 0.5 ≤ CTR < 1 (ground-glass opacity [GGO] 群); CTR = 1[pure-solid群])に分類した。TIL (CD4+、CD8+、FoxP3+)の密度 、腫瘍細胞のPD-L1、IDO1発現を免疫組織化学染色で評価した。

結果:GGO群では、CD8+およびFoxP3+ TILの密度は、CTRの増加とともに有意に増大した(各々P <0.001, P < 0.001)。また、PD-L1およびIDO1の発現は、GGO群よりもpure-solid群で有意に高かった(各々P < 0.001, P < 0.001)。

結論:GGO群において、CTRはCD8+およびFoxP3+ TILsの密度と相関した。PD-L1およびIDO1陽性率は、GGO群よりpure-solid群で有意に高かった。CTRの増加は、免疫抑制状態と相関する可能性がある。

この論文で使われている画像

参考文献

1. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.

2. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomo- graphic screening. N Engl J Med. 2011;365(5):395–409.

3. Aokage K, Yoshida J, Ishii G, Matsumura Y, Haruki T, Hishida T, et al. Identification of early T1b lung adenocarcinoma based on thin- section computed tomography findings. J Thorac Oncol. 2013;8(10): 1289–94.

4. Hattori A, Matsunaga T, Takamochi K, Oh S, Suzuki K. Importance of ground glass opacity component in clinical stage IA radiologic inva- sive lung cancer. Ann Thorac Surg [Internet] 2017;104(1):313–20. https://doi.org/10.1016/j.athoracsur.2017.01.076

5. Eguchi T, Kadota K, Park BJ, Travis WD, Jones DR, Adusumilli PS. The new IASLC-ATS-ERS lung adenocarcinoma classification: what the surgeon should know. Semin Thorac Cardiovasc Surg. 2014;26(3): 210–22.

6. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236(1):219–42.

7. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. The combined effects of tryptophan starvation and tryptophan catabolites Down-regulate T cell receptor ζ-chain and induce a regula- tory phenotype in naive T cells. J Immunol. 2006;176(11):6752–61.

8. Della Chiesa M, Carlomagno S, Frumento G, Balsamo M, Cantoni C, Conte R, et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood. 2006;108(13):4118-25.

9. Takada K, Okamoto T, Shoji F. Clinical Signi fi cance of PD-L1 pro- tein expression in surgically resected primary lung adenocarcinoma. J Thorac Oncol [Internet]. 2016;11(11):1879–90. https://doi.org/10. 1016/j.jtho.2016.06.006

10. Kozuma Y, Takada K, Toyokawa G, Kohashi K, Shimokawa M, Hirai F, Tagawa T, Okamoto T, Oda Y, Maehara Y Indoleamine 2,3 dioxygenase 1 and programmed cell death-ligand 1 co-expression correlates with aggressive features in lung adenocarcinoma. Eur J Cancer [Internet]. 2018;101:20–9. https://doi.org/10.1016/j.ejca.2018. 06.020

11. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csöszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD- L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19): 1823–33.

12. Kim HJ, Cantor H. CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol Res. 2014;2:91–8.

13. Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol. 2006;6(12): 940–52.

14. Kim CH. FOXP3 and its role in the immune system. Adv Exp Med Biol. 2009;665:17–29.

15. Kinoshita F, Takada K, Yamada Y, Oku Y, Kosai K, Ono Y, Tanaka K, Wakasu S, Oba T, Osoegawa A, Tagawa T, Shimokawa M, Oda Y, Mori M Combined evaluation of tumor-infiltrating CD8+ and FoxP3+ lymphocytes provides accurate prognosis in stage IA lung adenocarcinoma. Ann Surg Oncol [Internet]. 2020;27(6):2102–9. https://doi.org/10.1245/s10434-019-08029-9

16. Suda K, Shimoji M, Shimizu S, Sato K, Chiba M, Tomizawa K, et al. Comparison of PD-L1 expression status between pure-solid versus part-solid lung adenocarcinomas. Biomolecules. 2019;9(9):5–11.

17. Chansky K, Detterbeck FC, Nicholson AG, Rusch VW, Vallières E, Groome P, et al.The IASLC lung cancer staging project: external validation of the revision of the TNM stage groupings in the eighth edition of the TNM classification of lung cancer. J Thorac Oncol 2017;12(7):1109–21.

18. Kohno M, Okamoto T, Suda K, Shimokawa M, Kitahara H, Shimamatsu S, et al. Prognostic and therapeutic implications of aromatase expression in lung adenocarcinomas with EGFR mutations. Clin Cancer Res. 2014;20(13):3613–22.

19. Takada K, Kohashi K, Shimokawa M, Haro A, Osoegawa A, Tagawa T, et al. Co-expression of IDO1 and PD-L1 in lung squamous cell carcinoma: potential targets of novel combination therapy. Lung Cancer. 2019;128(December 2018):26–32.

20. Aherne EA, Plodkowski AJ, Montecalvo J, Hayan S, Zheng J, Capanu M, Adusumilli PS, Travis WD, Ginsberg MS What CT char- acteristics of lepidic predominant pattern lung adenocarcinomas cor- relate with invasiveness on pathology? Lung Cancer [Internet]. 2018. https://doi.org/10.1016/j.lungcan.2018.01.013, 118, 83, 89

21. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.

22. Dejima H, Hu X, Chen R, Zhang J, Fujimoto J, Parra ER, et al. Immune evolution from preneoplasia to invasive lung adenocarci- nomas and underlying molecular features. Nat Commun [Internet] 2021;12(1):1–11. https://doi.org/10.1038/s41467-021-22890-x

23. Mo RJ, Han ZD, Liang YK, Ye JH, Wu SL, Lin SX, et al. Expression of PD-L1 in tumor-associated nerves correlates with reduced CD8+ tumor-associated lymphocytes and poor prognosis in prostate cancer. Int J Cancer. 2019;144(12):3099–110.

24. Feng X, Tang R, Zhang R, Wang H, Ji Z, Shao Y, et al. A comprehen- sive analysis of IDO1 expression with tumour-infiltrating immune cells and mutation burden in gynaecologic and breast cancers. J Cell Mol Med. 2020;24(9):5238–48.

25. Kinoshita F, Toyokawa G, Matsubara T, Kozuma Y, Haratake N, Takamori S, et al. Prognosis of early-stage part-solid and pure-solid lung adenocarcinomas. Anticancer Res. 2019;39(5):2665–70.

26. Hsu KH, Chen KC, Yang TY, Yeh YC, Chou TY, Chen HY, Tsai CR, Chen CY, Hsu CP, Hsia JY, Chuang CY, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Hsiung CA, Chang GC, Chen CJ, Yang PC Epidermal growth factor receptor mutation status in stage i lung adenocarcinoma with different image patterns. J Thorac Oncol [Internet] 2011;6(6): 1066–72. https://doi.org/10.1097/JTO.0b013e31821667b0

27. Dong ZY, Zhang JT, Liu SY, Su J, Zhang C, Xie Z, et al. EGFR muta- tion correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Onco Targets Ther. 2017;6(11):e1356145. https://doi.org/10. 1080/2162402X.2017.1356145

28. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014;515(7528):568–71.

29. Steele KE, Tan TH, Korn R, Dacosta K, Brown C, Kuziora M, et al. Mea- suring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis. J Immunother Cancer 2018;6(1):20.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る