リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ショウジョウバエ原腸胚における1細胞トランスクリプトームとその細胞間差異」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ショウジョウバエ原腸胚における1細胞トランスクリプトームとその細胞間差異

坂口, 峻太 京都大学 DOI:10.14989/doctor.k24942

2023.09.25

概要

多くの動物の胚発生ではモルフォゲンの勾配に基づく位置情報に依存して、細胞は特定
の振る舞いや機能を示す。この過程では、転写因子の組み合わせが細胞の転写制御を介し
てトランスクリプトームを確立し、それに基づいて細胞の振る舞いが決定されると考えら
れている。しかし、転写因子がトランスクリプトームを介して細胞の振る舞いを制御する
ルールの理解は不十分である。その原因として、トランスクリプトームの細胞間差異が十
分な空間解像度で明らかになっていないことが挙げられる。
そこで、ショウジョウバエ原腸胚をモデルに、1 細胞トランスクリプトームの細胞間差異
を明らかにすることを本研究の目的とする。本研究では第一に、クオリティーの高い 1 細
胞トランスクリプトームデータを取得するため、独自に 1 細胞 RNA-seq を行った。第二に、
このデータに対して、クラスタリングとアノテーションを行い、胚における位置に対応す
る 77 のクラスタに細胞を分類できた。これにより高い空間解像度で細胞のトランスクリプ
トームが明らかになった。第三に、どのような遺伝子が細胞間の差異に寄与するかを調べ
るため、細胞間で発現の差が大きい遺伝子にどのカテゴリの遺伝子が多く含まれているか
を調べたところ、転写因子に加え、細胞膜関連遺伝子が多く含まれていた。このことから、
細胞間の差異に細胞膜関連遺伝子の発現の差異が強く寄与することが明らかになった。ま
た、遺伝子がその種類ごとにどのような情報を持っているかを調べるため、特定のカテゴ
リの遺伝子のみを用いてクラスタリング解析を行ったところ、転写因子の発現パターンは
空間に対応したクラスタを生じて事前知識なしに三胚葉を識別できないのに対し、細胞膜
関連遺伝子の発現パターンは三胚葉を識別できた。この結果は転写因子の発現と細胞膜関
連遺伝子の発現の間の非線形な変換の存在を示唆する。第四に、胚帯伸長を制御すること
が知られている 8 細胞列からなる遺伝子発現の空間的繰り返し単位内における遺伝子発現
の差異を明らかにするため、この遺伝子発現の繰り返し単位をゲノムワイドに再構成した。
これを用いて細胞列間で発現の異なる遺伝子を検出したところ、多くの細胞膜関連遺伝子
が検出された。 ...

この論文で使われている画像

参考文献

Adam, M., Potter, A.S., Potter, S.S., 2017. Psychrophilic proteases dramatically reduce single-cell

RNA-seq artifacts: A molecular atlas of kidney development. Dev. Camb. 144, 3625–3632.

https://doi.org/10.1242/dev.151142

Aibar, S., González-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G.,

Rambow, F., Marine, J.C., Geurts, P., Aerts, J., Van Den Oord, J., Atak, Z.K., Wouters, J., Aerts, S.,

2017. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–

1086. https://doi.org/10.1038/nmeth.4463

Alberga, A., Boulay, J.L., Kempe, E., Dennefeld, C., Haenlin, M., 1991. The snail gene required

for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ

layers. Development 111, 983–992. https://doi.org/10.1242/dev.111.4.983

Albright, A.R., Stadler, M.R., Eisen, M.B., 2022. Single-nucleus RNA-sequencing in precellularization Drosophila melanogaster embryos. PLoS ONE 17, 1–13.

https://doi.org/10.1371/journal.pone.0270471

Ashton, J.M., Rehrauer, H., Myers, Jason, Myers, Jacqueline, Zanche, M., Balys, M., Foox, J.,

Mason, C.E., Steen, R., Kuentzel, M., Aquino, C., Garcia-Reyero, N., Chittur, S.V., 2021.

Comparative Analysis of Single-Cell RNA Sequencing Platforms and Methods. J. Biomol. Tech.

JBT 32, 3fc1f5fe.3eccea01. https://doi.org/10.7171/3fc1f5fe.3eccea01

Bailles, A., Collinet, C., Philippe, J.-M., Lenne, P.-F., Munro, E., Lecuit, T., 2019. Genetic

induction and mechanochemical propagation of a morphogenetic wave. Nature 572, 467–473.

https://doi.org/10.1038/s41586-019-1492-9

Bakken, T.E., Hodge, R.D., Miller, J.A., Yao, Z., Nguyen, T.N., Aevermann, B., Barkan, E.,

Bertagnolli, D., Casper, T., Dee, N., Garren, E., Goldy, J., Graybuck, L.T., Kroll, M., Lasken, R.S.,

Lathia, K., Parry, S., Rimorin, C., Scheuermann, R.H., Schork, N.J., Shehata, S.I., Tieu, M., Phillips,

J.W., Bernard, A., Smith, K.A., Zeng, H., Lein, E.S., Tasic, B., 2018. Single-nucleus and single-cell

transcriptomes compared in matched cortical cell types. PLOS ONE 13, e0209648.

https://doi.org/10.1371/journal.pone.0209648

Basile, G., Kahraman, S., Dirice, E., Pan, H., Dreyfuss, J.M., Kulkarni, R.N., 2021. Using singlenucleus RNA-sequencing to interrogate transcriptomic profiles of archived human pancreatic islets.

Genome Med. 13, 128. https://doi.org/10.1186/s13073-021-00941-8

Beliveau, B.J., Kishi, J.Y., Nir, G., Sasaki, H.M., Saka, S.K., Nguyen, S.C., Wu, C.-T., Yin, P.,

2018. OligoMiner provides a rapid, flexible environment for the design of genome-scale

143

oligonucleotide in situ hybridization probes. Proc. Natl. Acad. Sci. U. S. A. 115, E2183–E2192.

https://doi.org/10.1073/pnas.1714530115

Berleth, T., Burri, M., Thoma, G., Bopp, D., Richstein, S., Frigerio, G., Noll, M., NüssleinVolhard, C., 1988. The role of localization of bicoid RNA in organizing the anterior pattern of the

Drosophila embryo. EMBO J. 7, 1749–1756. https://doi.org/10.1002/j.1460-2075.1988.tb03004.x

Bertet, C., Sulak, L., Lecuit, T., 2004. Myosin-dependent junction remodelling controls planar cell

intercalation and axis elongation. Nature. https://doi.org/10.1038/nature02590

Briggs, J.A., Weinreb, C., Wagner, D.E., Megason, S., Peshkin, L., Kirschner, M.W., Klein, A.M.,

2018. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution.

Science 360. https://doi.org/10.1126/science.aar5780

Briscoe, J., Small, S., 2015. Morphogen rules: Design principles of gradient-mediated embryo

patterning. Dev. Camb. 142, 3996–4009. https://doi.org/10.1242/dev.129452

Calderon, D., Blecher-Gonen, R., Huang, X., Secchia, S., Kentro, J., Daza, R.M., Martin, B.,

Dulja, A., Schaub, C., Trapnell, C., Larschan, E., O’Connor-Giles, K.M., Furlong, E.E.M., Shendure,

J., 2022. The continuum of Drosophila embryonic development at single-cell resolution. Science

377, 1–40. https://doi.org/10.1126/science.abn5800

Cammarota, C., Finegan, T.M., Wilson, T.J., Yang, S., Bergstralh, D.T., 2020. An AxonPathfinding Mechanism Preserves Epithelial Tissue Integrity. Curr. Biol. CB 30, 5049-5057.e3.

https://doi.org/10.1016/j.cub.2020.09.061

Casanova, J., Struhl, G., 1989. Localized surface activity of torso, a receptor tyrosine kinase,

specifies terminal body pattern in Drosophila. Genes Dev. 3, 2025–2038.

https://doi.org/10.1101/gad.3.12b.2025

Chen, S., Mar, J.C., 2018. Evaluating methods of inferring gene regulatory networks highlights

their lack of performance for single cell gene expression data. BMC Bioinformatics 19, 232.

https://doi.org/10.1186/s12859-018-2217-z

Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor.

Bioinforma. Oxf. Engl. 34, i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Clark, E., Akam, M., 2016. Odd-paired controls frequency doubling in Drosophila segmentation

by altering the pair-rule gene regulatory network. eLife 5, 1–42. https://doi.org/10.7554/eLife.18215

Cowden, J., Levine, M., 2002. The Snail repressor positions Notch signaling in the Drosophila

embryo. Development 129, 1785–1793. https://doi.org/10.1242/dev.129.7.1785

Del Álamo, D., Rouault, H., Schweisguth, F., 2011. Mechanism and significance of cis-inhibition

in notch signalling. Curr. Biol. 21, 40–47. https://doi.org/10.1016/j.cub.2010.10.034

144

Ding, X.B., Jin, J., Tao, Y.T., Guo, W.P., Ruan, L., Yang, Q.L., Chen, P.C., Yao, H., Zhang, H.B.,

Chen, X., 2020. Predicted Drosophila Interactome Resource and web tool for functional

interpretation of differentially expressed genes. Database J. Biol. Databases Curation 2020, 1–11.

https://doi.org/10.1093/database/baaa005

Driever, W., Nüsslein-Volhard, C., 1988. The bicoid protein determines position in the Drosophila

embryo in a concentration-dependent manner. Cell 54, 95–104.

Farrell, J.A., Wang, Y., Riesenfeld, S.J., Shekhar, K., Regev, A., Schier, A.F., 2018. Single-cell

reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360.

https://doi.org/10.1126/science.aar3131

Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K., Slichter, C.K., Miller,

H.W., McElrath, M.J., Prlic, M., Linsley, P.S., Gottardo, R., 2015. MAST: a flexible statistical

framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA

sequencing data. Genome Biol. 16, 278. https://doi.org/10.1186/s13059-015-0844-5

Finklstein, R., Perrimon, N., 1990. The orthodenticle gene is regulated by bicoid and torso and

specifies Drosophila head development. Nature 346, 485–488. https://doi.org/10.1038/346485a0

Fowlkes, C.C., Hendriks, C.L.L., Keränen, S.V.E., Weber, G.H., Rübel, O., Huang, M.-Y.,

Chatoor, S., DePace, A.H., Simirenko, L., Henriquez, C., Beaton, A., Weiszmann, R., Celniker, S.,

Hamann, B., Knowles, D.W., Biggin, M.D., Eisen, M.B., Malik, J., 2008. A Quantitative

Spatiotemporal Atlas of Gene Expression in the Drosophila Blastoderm. Cell 133, 364–374.

https://doi.org/10.1016/j.cell.2008.01.053

Frohnhöfer, H.G., Nüsslein-Volhard, C., 1986. Organization of anterior pattern in the Drosophila

embryo by the maternal gene bicoid. Nature 324, 120–125. https://doi.org/10.1038/324120a0

Ganguly, A., Jiang, J., Ip, Y.T., 2005. Drosophila WntD is a target and an inhibitor of the Dorsal /

Twist / Snail network in the gastrulating embryo 3419–3429. https://doi.org/10.1242/dev.01903

Gavis, E.R., Lehmann, R., 1992. Localization of nanos RNA controls embryonic polarity. Cell 71,

301–313. https://doi.org/10.1016/0092-8674(92)90358-J

Gilmour, D., Rembold, M., Leptin, M., 2017. From morphogen to morphogenesis and back.

Nature 541, 311–320. https://doi.org/10.1038/nature21348

Graham, P.L., Anderson, W.R., Brandt, E.A., Xiang, J., Pick, L., 2019. Dynamic expression of

Drosophila segmental cell surface-encoding genes and their pair-rule regulators. Dev. Biol. 447,

147–156. https://doi.org/10.1016/j.ydbio.2019.01.015

Hammonds, A.S., Bristow, C.A., Fisher, W.W., Weiszmann, R., Wu, S., Hartenstein, V., Kellis,

M., Yu, B., Frise, E., Celniker, S.E., 2013. Spatial expression of transcription factors in Drosophila

145

embryonic organ development. Genome Biol. 14, R140. https://doi.org/10.1186/gb-2013-14-12-r140

Heemskerk, J., DiNardo, S., 1994. Drosophila hedgehog acts as a morphogen in cellular

patterning. Cell 76, 449–460. https://doi.org/10.1016/0092-8674(94)90110-4

Heimberg, G., Bhatnagar, R., El-Samad, H., Thomson, M., 2016. Low Dimensionality in Gene

Expression Data Enables the Accurate Extraction of Transcriptional Programs from Shallow

Sequencing. Cell Syst. 2, 239–250. https://doi.org/10.1016/j.cels.2016.04.001

Hinck, L., 2004. The versatile roles of “axon guidance” cues in tissue morphogenesis. Dev. Cell 7,

783–93. https://doi.org/10.1016/j.devcel.2004.11.002

Hu, Y., Comjean, A., Perkins, L.A., Perrimon, N., Mohr, S.E., 2015. GLAD: an Online Database

of G ene L ist A nnotation for D rosophila. J. Genomics 3, 75–81. https://doi.org/10.7150/jgen.12863

Hunter, J.D., 2007. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95.

https://doi.org/10.1109/MCSE.2007.55

Ingham, P.W., Arias, A.M., 1992. Boundaries and fields in early embryos. Cell 68, 221–235.

https://doi.org/10.1016/0092-8674(92)90467-Q

Irvine, K.D., Wieschaus, E., 1994. Cell intercalation during Drosophila germband extension and

its regulation by pair-rule segmentation genes. Development 120, 827–841.

Islam, S., Zeisel, A., Joost, S., Manno, G.L., Zajac, P., Kasper, M., Lönnerberg, P., Linnarsson, S.,

2014. Quantitative single-cell RNA-seq with unique molecular identifiers 11.

https://doi.org/10.1038/nmeth.2772

Jack, T., McGinnis, W., 1990. Establishment of the Deformed expression stripe requires the

combinatorial action of coordinate, gap and pair-rule proteins. EMBO J. 9, 1187–1198.

https://doi.org/10.1002/j.1460-2075.1990.tb08226.x

Janssens, J., Aibar, S., Taskiran, I.I., Ismail, J.N., Gomez, A.E., Aughey, G., Spanier, K.I., De

Rop, F.V., González-Blas, C.B., Dionne, M., Grimes, K., Quan, X.J., Papasokrati, D., Hulselmans,

G., Makhzami, S., De Waegeneer, M., Christiaens, V., Southall, T., Aerts, S., 2022. Decoding gene

regulation in the fly brain. Nature 601, 630–636. https://doi.org/10.1038/s41586-021-04262-z

Kaminow, B., Yunusov, D., Dobin, A., Spring, C., 2021. STARsolo : accurate , fast and versatile

mapping / quantification of single-cell and single-nucleus RNA-seq data 1–35.

Karaiskos, N., Wahle, P., Alles, J., Boltengagen, A., Ayoub, S., Kipar, C., Kocks, C., Rajewsky,

N., Zinzen, R.P., 2017. The Drosophila embryo at single-cell transcriptome resolution. Science 358,

194–199. https://doi.org/10.1126/science.aan3235

Keleman, K., Rajagopalan, S., Cleppien, D., Teis, D., Paiha, K., Huber, L.A., Technau, G.M.,

Dickson, B.J., 2002. Comm sorts robo to control axon guidance at the Drosophila midline. Cell 110,

146

415–27. https://doi.org/10.1016/s0092-8674(02)00901-7

Keleman, K., Ribeiro, C., Dickson, B.J., 2005. Comm function in commissural axon guidance:

cell-autonomous sorting of Robo in vivo. Nat. Neurosci. 8, 156–63. https://doi.org/10.1038/nn1388

Kishi, J.Y., Lapan, S.W., Beliveau, B.J., West, E.R., Zhu, A., Sasaki, H.M., Saka, S.K., Wang, Y.,

Cepko, C.L., Yin, P., 2019. SABER amplifies FISH: enhanced multiplexed imaging of RNA and

DNA in cells and tissues. Nat. Methods 16, 533–544. https://doi.org/10.1038/s41592-019-0404-0

Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C., Teichmann, S.A., 2015. The

Technology and Biology of Single-Cell RNA Sequencing. Mol. Cell 58, 610–620.

https://doi.org/10.1016/j.molcel.2015.04.005

Kondo, T., Hayashi, S., 2019. Two-step regulation of trachealess ensures tight coupling of cell fate

with morphogenesis in the drosophila trachea. eLife 8, 1–23. https://doi.org/10.7554/eLife.45145

Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner,

M., Loh, P. ru, Raychaudhuri, S., 2019. Fast, sensitive and accurate integration of single-cell data

with Harmony. Nat. Methods 16, 1289–1296. https://doi.org/10.1038/s41592-019-0619-0

Krueger, D., Tardivo, P., Nguyen, C., De Renzis, S., 2018. Downregulation of basal myosin‐II is

required for cell shape changes and tissue invagination. EMBO J. 37, 1–16.

https://doi.org/10.15252/embj.2018100170

Leptin, M., Grunewald, B., 1990. Cell shape changes during gastrulation in Drosophila.

Development 110, 73–84.

Letsou, W., Cai, L., 2016. Noncommutative Biology: Sequential Regulation of Complex

Networks. PLOS Comput. Biol. 12, e1005089. https://doi.org/10.1371/journal.pcbi.1005089

Li, B., Dewey, C.N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with or

without a reference genome. BMC Bioinformatics 12, 323. https://doi.org/10.1186/1471-2105-12323

Liu, W., Morgan, K.M., Pine, S.R., 2014. Activation of the Notch1 Stem Cell Signaling Pathway

during Routine Cell Line Subculture. Front. Oncol. 4, 1–4. https://doi.org/10.3389/fonc.2014.00211

Long, H.K., Prescott, S.L., Wysocka, J., 2016. Ever-Changing Landscapes: Transcriptional

Enhancers in Development and Evolution. Cell 167, 1170–1187.

https://doi.org/10.1016/j.cell.2016.09.018

Luengo Hendriks, C.L., Keränen, S.V.E., Fowlkes, C.C., Simirenko, L., Weber, G.H., DePace,

A.H., Henriquez, C., Kaszuba, D.W., Hamann, B., Eisen, M.B., Malik, J., Sudar, D., Biggin, M.D.,

Knowles, D.W., 2006. Three-dimensional morphology and gene expression in the Drosophila

blastoderm at cellular resolution I: Data acquisition pipeline. Genome Biol. 7.

147

https://doi.org/10.1186/gb-2006-7-12-r123

Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas,

A.R., Kamitaki, N., Martersteck, E.M., Trombetta, J.J., Weitz, D.A., Sanes, J.R., Shalek, A.K.,

Regev, A., McCarroll, S.A., 2015. Highly Parallel Genome-wide Expression Profiling of Individual

Cells Using Nanoliter Droplets. Cell 161, 1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

Manning, A.J., Peters, K.A., Peifer, M., Rogers, S.L., 2013. Regulation of Epithelial

Morphogenesis by the G Protein–Coupled Receptor Mist and Its Ligand Fog. Sci. Signal. 6, 1–11.

https://doi.org/10.1126/scisignal.2004427

Martin, A.C., Kaschube, M., Wieschaus, E.F., 2009. Pulsed contractions of an actin–myosin

network drive apical constriction. Nature 457, 495–499. https://doi.org/10.1038/nature07522

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.

EMBnet.journal 17, 10. https://doi.org/10.14806/ej.17.1.200

Martinez-Arias, A., Lawrence, P.A., 1985. Parasegments and compartments in the Drosophila

embryo. Nature 313, 639–642. https://doi.org/10.1038/313639a0

Morel, V., Schweisguth, F., 2000. Repression by suppressor of hairless and activation by Notch

are required to define a single row of single-minded expressing cells in the Drosophila embryo.

Genes Dev. 14, 377–88.

Moriel, N., Senel, E., Friedman, N., Rajewsky, N., Karaiskos, N., Nitzan, M., 2021. NovoSpaRc:

flexible spatial reconstruction of single-cell gene expression with optimal transport. Nat. Protoc. 16,

4177–4200. https://doi.org/10.1038/s41596-021-00573-7

Nüsslein-Volhard, C., Wieschaus, E., 1980. Mutations affecting segment number and polarity in

Drosophila. Nature 287, 795–801. https://doi.org/10.1038/287795a0

O’Flanagan, C.H., Campbell, K.R., Zhang, A.W., Kabeer, F., Lim, J.L.P., Biele, J., Eirew, P., Lai,

D., McPherson, A., Kong, E., Bates, C., Borkowski, K., Wiens, M., Hewitson, B., Hopkins, J., Pham,

J., Ceglia, N., Moore, R., Mungall, A.J., McAlpine, J.N., Shah, S.P., Aparicio, S., 2019. Dissociation

of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved

collagenase-associated stress responses. Genome Biol. 20, 210. https://doi.org/10.1186/s13059-0191830-0

Okochi, Y., Sakaguchi, S., Nakae, K., Kondo, T., Naoki, H., 2021. Model-based prediction of

spatial gene expression via generative linear mapping. Nat. Commun. 12, 1–13.

https://doi.org/10.1038/s41467-021-24014-x

Packer, J.S., Zhu, Q., Huynh, C., Sivaramakrishnan, P., Preston, E., Dueck, H., Stefanik, D., Tan,

K., Trapnell, C., Kim, J., Waterston, R.H., Murray, J.I., 2019. A lineage-resolved molecular atlas of

148

C. elegans embryogenesis at single-cell resolution. Science 365.

https://doi.org/10.1126/science.aax1971

Paré, A.C., Naik, P., Shi, J., Mirman, Z., Palmquist, K.H., Zallen, J.A., 2019. An LRR ReceptorTeneurin System Directs Planar Polarity at Compartment Boundaries. Dev. Cell 51, 208-221.e6.

https://doi.org/10.1016/j.devcel.2019.08.003

Paré, A.C., Vichas, A., Fincher, C.T., Mirman, Z., Farrell, D.L., Mainieri, A., Zallen, J.A., 2014.

A positional Toll receptor code directs convergent extension in Drosophila. Nature 515, 523–527.

https://doi.org/10.1038/nature13953

Paroush, Z., Mark Wainwright, S., Ish-Horowicz, D., 1997. Torso signalling regulates terminal

patterning in Drosophila by antagonising Groucho-mediated repression. Development 124, 3827–

3834.

Petkova, M.D., Tkačik, G., Bialek, W., Wieschaus, E.F., Gregor, T., 2019. Optimal Decoding of

Cellular Identities in a Genetic Network. Cell 176, 844-855.e15.

https://doi.org/10.1016/j.cell.2019.01.007

Rahimi, N., Averbukh, I., Haskel-Ittah, M., Degani, N., Schejter, E.D., Barkai, N., Shilo, B.-Z.,

2016. A WntD-Dependent Integral Feedback Loop Attenuates Variability in Drosophila Toll

Signaling. Dev. Cell 36, 401–414. https://doi.org/10.1016/j.devcel.2016.01.023

Rauzi, M., Lenne, P.-F., Lecuit, T., 2010. Planar polarized actomyosin contractile flows control

epithelial junction remodelling. Nature 468, 1110–1114. https://doi.org/10.1038/nature09566

Reeves, G.T., Stathopoulos, A., 2009. Graded Dorsal and Differential Gene Regulation in the

Drosophila Embryo. Cold Spring Harb. Perspect. Biol. 1, a000836–a000836.

https://doi.org/10.1101/cshperspect.a000836

Reuter, R., Grunewald, B., Leptin, M., 1993. A role for the mesoderm in endodermal migration

and morphogenesis in Drosophila. Dev. Camb. Engl. 119, 1135–45.

https://doi.org/10.1242/dev.119.4.1135

Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR: a Bioconductor package for

differential expression analysis of digital gene expression data. Bioinforma. Oxf. Engl. 26, 139–40.

https://doi.org/10.1093/bioinformatics/btp616

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., Regev, A., 2015. Spatial reconstruction of

single-cell gene expression data. Nat. Biotechnol. 33, 495–502. https://doi.org/10.1038/nbt.3192

Schaerlinger, B., Launay, J.M., Vonesch, J.I., Maroteaux, L., 2007. Gain of affinity point mutation

in the serotonin receptor gene 5-HT 2Dro accelerates germband extension movements during

Drosophila gastrulation. Dev. Dyn. 236, 991–999. https://doi.org/10.1002/dvdy.21110

149

Staller, M.V., Fowlkes, C.C., Bragdon, M.D.J., Wunderlich, Z., Estrada, J., DePace, A.H., 2015. A

gene expression atlas of a bicoid -depleted Drosophila embryo reveals early canalization of cell fate.

Development 142, 587–596. https://doi.org/10.1242/dev.117796

Stedden, C.G., Menegas, W., Zajac, A.L., Williams, A.M., Cheng, S., Özkan, E., HorneBadovinac, S., 2019. Planar-Polarized Semaphorin-5c and Plexin A Promote the Collective

Migration of Epithelial Cells in Drosophila. Curr. Biol. CB 29, 908-920.e6.

https://doi.org/10.1016/j.cub.2019.01.049

Stern, T., Shvartsman, S.Y., Wieschaus, E.F., 2022. Deconstructing gastrulation at single-cell

resolution. Curr. Biol. CB 32, 1861–1868. https://doi.org/10.1016/j.cub.2022.02.059

Stricker, S.H., Köferle, A., Beck, S., 2016. From profiles to function in epigenomics. Nat. Rev.

Genet. 18, 51–66. https://doi.org/10.1038/nrg.2016.138

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y.,

Stoeckius, M., Smibert, P., Satija, R., 2019. Comprehensive Integration of Single-Cell Data. Cell

177, 1888-1902.e21. https://doi.org/10.1016/j.cell.2019.05.031

Sweeton, D., Parks, S., Costa, M., Wieschaus, E., 1991. Gastrulation in Drosophila: The formation

of the ventral furrow and posterior midgut invaginations. Development 112, 775–789.

Tanay, A., Regev, A., 2017. Scaling single-cell genomics from phenomenology to mechanism.

Nature 541, 331–338. https://doi.org/10.1038/nature21350

Tetley, R.J., Blanchard, G.B., Fletcher, A.G., Adams, R.J., Sanson, B., 2016. Unipolar

distributions of junctional myosin II identify cell stripe boundaries that drive cell intercalation

throughout drosophila axis extension. eLife 5, 1–28. https://doi.org/10.7554/eLife.12094

Thisse, B., Stoetzel, C., Gorostiza-Thisse, C., Perrin-Schmitt, F., 1988. Sequence of the twist gene

and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO

J. 7, 2175–2183. https://doi.org/10.1002/j.1460-2075.1988.tb03056.x

Tomancak, P., Beaton, A., Weiszmann, R., Kwan, E., Shu, S., Lewis, S.E., Richards, S.,

Ashburner, M., Hartenstein, V., Celniker, S.E., Rubin, G.M., 2002. Systematic determination of

patterns of gene expression during Drosophila embryogenesis. Genome Biol. 3, RESEARCH0088.

https://doi.org/10.1186/gb-2002-3-12-research0088

Tomancak, P., Berman, B.P., Beaton, A., Weiszmann, R., Kwan, E., Hartenstein, V., Celniker,

S.E., Rubin, G.M., 2007. Global analysis of patterns of gene expression during Drosophila

embryogenesis. Genome Biol. 8, R145. https://doi.org/10.1186/gb-2007-8-7-r145

Vaughen, J., Igaki, T., 2016. Slit-Robo Repulsive Signaling Extrudes Tumorigenic Cells from

Epithelia. Dev. Cell 39, 683–695. https://doi.org/10.1016/j.devcel.2016.11.015

150

Vincent, A., Blankenship, J.T., Wieschaus, E., 1997. Integration of the head and trunk

segmentation systems controls cephalic furrow formation in Drosophila. Development 124, 3747–

3754.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,

E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J.,

Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore,

E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris,

C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli,

A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N.,

Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik,

D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A.,

Ingold, G.-L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T.,

Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J.V., Reimer,

J., Harrington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M.,

Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N.,

Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S.,

Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J.,

Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U.,

Halchenko, Y.O., Vázquez-Baeza, Y., 2020. SciPy 1.0: fundamental algorithms for scientific

computing in Python. Nat. Methods 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Wang, Y.C., Khan, Z., Kaschube, M., Wieschaus, E.F., 2012. Differential positioning of adherens

junctions is associated with initiation of epithelial folding. Nature 484, 390–393.

https://doi.org/10.1038/nature10938

Weigel, D., Jürgens, G., Klingler, M., Jäckle, H., 1990. Two gap genes mediate maternal terminal

pattern information in Drosophila. Science 248, 495–498. https://doi.org/10.1126/science.2158673

Wu, Y.E., Pan, L., Zuo, Y., Li, X., Hong, W., 2017. Detecting Activated Cell Populations Using

Single-Cell RNA-Seq. Neuron 96, 313-329.e6. https://doi.org/10.1016/j.neuron.2017.09.026

Yazdani, U., Terman, J.R., 2006. The semaphorins. Genome Biol. 7, 211.

https://doi.org/10.1186/gb-2006-7-3-211

Yoo, S.K., Pascoe, H.G., Pereira, T., Kondo, S., Jacinto, A., Zhang, X., Hariharan, I.K., 2016.

Plexins function in epithelial repair in both Drosophila and zebrafish. Nat. Commun. 7, 12282.

https://doi.org/10.1038/ncomms12282

Zallen, J.A., Wieschaus, E., 2004. Patterned Gene Expression Directs Bipolar Planar Polarity in

Drosophila. Dev. Cell 6, 343–355.

Zhang, M.J., Ntranos, V., Tse, D., 2020. Determining sequencing depth in a single-cell RNA-seq

151

experiment. Nat. Commun. 11, 774. https://doi.org/10.1038/s41467-020-14482-y

Zinzen, R.P., Cande, J., Ronshaugen, M., Papatsenko, D., Levine, M., 2006. Evolution of the

Ventral Midline in Insect Embryos. Dev. Cell 11, 895–902.

https://doi.org/10.1016/j.devcel.2006.10.012

注釈

本研究は複数の共同研究者とともに行った。本研究において、scRNA-seqデータの取得

は近藤武史博士と共同で行った。また、バルクRNA-seqの実行と解析は近藤武史博士が行

った。加えて、図 24のFISH実験と画像の取得は水野苑子さんが行った。

謝辞

本研究に関して、上村匡教授には私が学部生の頃から非常に熱心な指導をしていただき

ました。ラボセミナーやミーティングでの議論を介して、研究者としての姿勢を学ばせて

いただきました。近藤武史博士には、実験手法、データの取り扱い、文書の作成、研究発

表のしかたなど研究活動を行うにあたって必要な多くの事項を指導していただきました。

また、日々の研究の結果に関して、熱心かつ綿密な議論をしていただき、そのうえで研究

計画について数々の助言をいただきました。碓井理夫博士と坪井有寿博士、春本敏之博士

にはグループミーティングにおいて本研究に関する議論をしていただきました。二股真由

美さん、三木雅代さんには、実験の補助をしていただきました。沖かなえさん、森口良子

さん、今井博子さんには教務関連の補佐をしていただきました。また、他の上村研究室の

メンバーの方々にも多くの有意義な助言をいただきました。以上の上村研究室の皆様の手

助けがなければ、本研究を遂行することはできませんでした。心より感謝申し上げます。

本研究を行うにあたり、上村研究室以外の方々にもお世話になりましたのでお名前を上

げさせていただきます。本研究で用いた空間再構成手法 Perler は広島大学の本田直樹教授

と京都大学医学部附属病院の大河内康史医師との共同研究によるものであり、今回の適用

152

に関しても議論と助言をしていただきました。理化学研究所生命機能科学研究センターの

種子島千春さん、西村理さん、門田満隆さんには scRNA-seq 手法の開発の手助けをしてい

ただきました。井垣研究室の山銅ゆかりさんには、qPCR によるライブラリの定量方法、次

世代シーケンサーの使用法に関して指導をしていただきました。Fluidigm 社の甲斐渉さん

には、C1HT のプライマー設計について助言をいただきました。理化学研究所生命機能科学

研究センターの Yu-Chiun Wang 博士にも本研究に関して助言をいただきました。皆様に厚

くお礼申し上げます。 また、本研究は 2020 年 4 月から 2023 年 3 月までの期間、日本学術振興会の特別研究員

DC1 としての支援を受けて行いました。 最後に、支えてくださった家族や友人にも感謝の言葉を述べさせていただきます。本当

にありがとうございました。 本学位論文は以下の学術論文の内容に基づいて書かれたものです。

Shunta Sakaguchi, Sonoko Mizuno, Yasushi Okochi, Chiharu Tanegashima, Osamu Nishimura,

Tadashi Uemura, Mitsutaka Kadota, Honda Naoki and Takefumi Kondo

Single-cell transcriptome atlas of Drosophila gastrula 2.0

Cell Reports, in press, 2023

坂口

153

峻太 ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る