リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「長期安定性に優れた新型原子核乾板の開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

長期安定性に優れた新型原子核乾板の開発

西尾, 晃 Nishio, Akira 名古屋大学

2020.04.02

概要

原子核乾板は、銀塩写真技術を用いた三次元の放射線飛跡検出器であり、これまで放射線計測やニュートリノなど素粒子の実験的研究で使用され成果をあげてきた。その一方で写真のデジタル化により製造メーカが撤退し、原子核乾板の開発から製造までを大学で一貫して担当する時代となり、原子核乾板の特性をその用途に最適化する開発がユーザー自身の手で行われるようになってきた。その結果、宇宙γ線を観測する気球実験GRAINE や宇宙線ミューオンを用いて巨大構造物の内部密度構造を調べる宇宙線イメージングなどの理学研究にとどまらない従来に無い領域の開拓に貢献する時代となってきている。これらの領域では、−20℃から 50℃にわたる様々な温度環境下での使用が想定され、それに対応出来る耐環境性・長期安定性の高い原子核乾板が必要とされていた。

私は、まず従来型原子核乾板の耐環境性/長期間特性を調べ、30℃で 14 日程度置かれると、潜像退行によって一度記録された飛跡が消えてしまうことを明らかにした。次に長期間特性を改善するために、長期間特性に影響を与える要因について調べ、ゼラチン、添加薬品、包装材料の 3 つが重要である事を明らかにした。

原子核乾板は主にハロゲン化銀結晶とゼラチンの混合物であり、ゼラチンを少なくする事で結晶の充填密度を高くし飛跡の認識性を上げる方法がとられてきた。結晶体積充填率 55%の従来型原子核乾板と、それにゼラチンを加えた体積充填率 45 及び 30%の原子核乾板について長期間特性を比較し、結晶体積充填率 55%の原子核乾板で顕著に潜像退行及び感度劣化特性が悪化していることを明らかにした。また原子核乾板に添加されている添加薬品についてその効果を調べ、従来型原子核乾板に添加されているベンゼンチオスルホン酸ナトリウム(BTS)が潜像退行を促進していたことを明らかにし、BTS による潜像核の硫化、及び残留した銀核により潜像核が補強された可能性を指摘した。また新たな添加薬品についてその効果を調べ、長期間特性の向上に有用な薬品を見出し、最適な添加量を示した。さらにそれらの機能を大気中光電子分光測定によって明らかにし、潜像退行のメカニズムについてイオン過程と電子過程に分けて論じた。また原子核乾板は、遮光と含水量保持の目的で、アルミラミネート袋の中に入れて真空パックして使用されるが、袋の種類によってフォグ(飛跡と関係のない現像銀粒子でノイズとなる)の増加の仕方が異なり、無添加低密度ポリエチレンを最内層に用いたアルミラミネート袋ではフォグ増加がほとんど起こらないことを見出した。

以上の結果をもとに、長期安定な原子核乾板を設計し、実測によって 30℃40%RH 環境下で 180 日経過した時点でも感度ならびにフォグが実用可能な値であることを示した。また温度依存性を測定し、アレニウス則に基づく予測を行なった。その結果 10℃及び 20℃では 1 年以上、 30℃では 260 日間の長期にわたり実用可能であることを示した。これは従来型と比べて約 20倍の期間にわたって観測が可能になったことになる。

開発した原子核乾板は、クフ王のピラミッドの宇宙線イメージングに用いられ、長期にわたり高いミューオンの検出効率を実現し、結果として未知の大空洞の発見に貢献した。

参考文献

[1] A. H. Becquerel. On the invisible rays emitted by phosphorescent bodies. Comptes Rendus, Vol. 122, pp. 501–503, 1896.

[2] S. Kinoshita. The photographic action of the α-particles emitted from radio-active sub-stances. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 83, No. 564, pp. 432–453, 1910.

[3] Reinganum. Phys. Zeit., Vol. xii, pp. 1076–77, 1911.

[4] C. M. G. Lattes, H. Muirhead, G. P. S. Occhialini, and C. F. Powell. Processes involving charged mesons. Nature, Vol. 159, No. 4047, p. 694, 1947.

[5] K. Niu, E. Mikumo, and Y. Maeda. A possible decay in flight of a new type particle. Progress of Theoretical Physics, Vol. 46, No. 5, pp. 1644–1646, 1971.

[6] K. Hoshino, N. Ushida, K. Niwa, Y. Maeda, S. Kuramata, K. Niu, E. Mikumo, and S. Tasaka. X-particle production in 205-gev/c proton interactions. Prog. Theor. Phys., Vol. 53, No. FERMILAB-PUB-75-150-E, p. 1859, 1975.

[7] S. Aoki, R. Arnold, G. Baroni, M. Barth, J.H. Bartley, G. Bertrand-Coremans, V. Bisi, A.C. Breslin, G. Carboni, E. Chesi, et al. The double associated production of charmed particles by the interaction of 350 gev/cπ- mesons with emulsion nuclei. Physics Letters B, Vol. 187, No. 1-2, pp. 185–190, 1987.

[8] H. Harari. Light neutrinos as cosmological dark matter. a crucial experimental test. Physics Letters B, Vol. 216, No. 3-4, pp. 413–418, 1989.

[9] E. Eskut, A. Kayis-Topaksu, G. O¨ nengu¨t, M.G. van Beuzekom, R. van Dantzig, M. de Jong, J. Konijn, O. Melzer, RUDOLF GERHARD CHRISTIAAN Oldeman, E. Pe- sen, et al. Final results on νµ → ντ oscillation from the chorus experiment. Nuclear physics B, Vol. 793, No. 1-2, pp. 326–343, 2008.

[10] K. Kodama, N. Ushida, C. Andreopoulos, N. Saoulidou, G. Tzanakos, P. Yager, B. Baller, D. Boehnlein, W. Freeman, B. Lundberg, et al. Observation of tau neutrino interactions. Physics Letters B, Vol. 504, No. 3, pp. 218–224, 2001.

[11] K.S. Hirata, T. Kajita, M. Koshiba, M. Nakahata, S. Ohara, Y. Oyama, N. Sato, A. Suzuki, M. Takita, Y. Totsuka, et al. Experimental study of the atmospheric neutrino flux. Physics Letters B, Vol. 205, No. 2-3, pp. 416–420, 1988.

[12] R. Acquafredda, N. Agafonova, M. Ambrosio, A. Anokhina, S. Aoki, A. Ariga, L. Arra- bito, D. Autiero, A. Badertscher, E. Baussan, et al. First events from the cngs neutrino beam detected in the opera experiment. New Journal of Physics, Vol. 8, No. 12, p. 303, 2006.

[13] N. Agafonova, A. Aleksandrov, A. Anokhina, S. Aoki, A. Ariga, T. Ariga, D. Bender, A. Bertolin, I. Bodnarchuk, C. Bozza, et al. Discovery of τ neutrino appearance in the cngs neutrino beam with the opera experiment. Physical review letters, Vol. 115, No. 12, p. 121802, 2015.

[14] Myssowsky and Tschishow. . Z. Phys., Vol. 44, p. 408, 1927.

[15] M. Blau and H. Wambacher. Photographic desensitisers and oxygen. Nature, Vol. 134, No. 3388, p. 538, 1934.

[16] R.W. Berriman. Recording of charged particles of minimum ionizing power in photo- graphic emulsions. Nature, Vol. 162, No. 4130, pp. 992–993, 1948.

[17] R. Brown, U. Camerini, P. H. Fowler, H. Muirhead, C. F. Powell, and D. M. Ritson. Observations with electron-sensitive plates exposed to cosmic radiation. Nature, Vol. 163, No. 4132, p. 47, 1949.

[18] T. Nakamura, A. Ariga, T. Ban, T. Fukuda, T. Fukuda, T. Fujioka, T. Furukawa, K. Hamada, H. Hayashi, S. Hiramatsu, et al. The opera film: New nuclear emulsion for large-scale, high-precision experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 556, No. 1, pp. 80–86, 2006.

[19] K. Kuwabara and S. Nishiyama. Development of new nuclear emulsion film for detection of neutrinos by opera experiment. Journal of The Society of Photographic Science and Technology of Japan, Vol. 67, No. 6, pp. 521–526 (in Japanese), 2004.

[20] N. Naganawa and K. Kuwabara. Development of new high-sensitivity nuclear emulsion. Abstracts of Autumn Meeting of The Society of Photography and Imaging of Japan, p. 10 (in Japanese), 2010.

[21] T. Asada, T. Naka, K. Kuwabara, and M. Yoshimoto. The development of a super-fine- grained nuclear emulsion. Progress of Theoretical and Experimental Physics, Vol. 2017, No. 6, p. 063H01, 2017.

[22] M. Natsume, K. Hoshino, K. Kuwabara, M. Nakamura, T. Nakano, K. Niwa, O. Sato, T. Tani, and T. Toshito. Low-velocity ion tracks in fine grain emulsion. Nuclear Instru- ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detec- tors and Associated Equipment, Vol. 575, No. 3, pp. 439–443, 2007.

[23] A. Aleksandrov, A. Anokhina, T. Asada, D. Bender, I. Bodnarchuk, A. Buonaura, S. Buontempo, M. Chernyavskii, A. Chukanov, L. Consiglio, et al. News: Nuclear emul- sions for wimp search. arXiv preprint arXiv:1604.04199, 2016.

[24] N. Naganawa, T. Ariga, S. Awano, M. Hino, K. Hirota, H. Kawahara, M. Kitaguchi, K. Mishima, H.M. Shimizu, S. Tada, et al. A cold/ultracold neutron detector using fine-grained nuclear emulsion with spatial resolution less than 100 nm. The European Physical Journal C, Vol. 78, No. 11, p. 959, 2018.

[25] K. Niwa, K. Hoshino, and K. Niu. Auto scanning and measuring system for the emulsion chamber. In the proceedings of the International Cosmic ray Symposium of High Energy Phenomena, Tokyo, Vol. 149, 1974.

[26] S. Aoki, K. Hoshino, M. Nakamura, K. Niu, K. Niwa, and N. Torii. Fully automated emulsion analysis system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 51, No. 4, pp. 466–472, 1990.

[27] T. Nakano. Ph.d. thesis. Nagoya University, 1997.

[28] M. Yoshimoto, T. Nakano, R. Komatani, and H. Kawahara. Hyper-track selector nuclear emulsion readout system aimed at scanning an area of one thousand square meters. Progress of Theoretical and Experimental Physics, Vol. 2017, No. 10, 2017.

[29] K. Morishima and T. Nakano. Development of a new automatic nuclear emulsion scan- ning system, S-UTS, with continuous 3d tomographic image read-out. Journal of Instru- mentation, Vol. 5, No. 04, p. P04011, 2010.

[30] V. F. Hess. Observations in low level radiation during seven free balloon flights. Phys. Zeit, Vol. 13, pp. 1084–1091, 1912.

[31] E.P. George. Cosmic rays measure overburden of tunnel. Commonwealth Engineer, Vol. 455, , 1955.

[32] L. W. Alvarez, J. A. Anderson, F. E.l. Bedwei, J. Burkhard, A. Fakhry, A. Girgis, A. Goneid, F. Hassan, D. Iverson, G. Lynch, et al. Search for hidden chambers in the pyramids. Science, Vol. 167, No. 3919, pp. 832–839, 1970.

[33] S. Minato. Bulk density estimates of buildings using cosmic rays. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, Vol. 37, No. 9, pp. 941–946, 1986.

[34] S. Minato. Feasibility study on cosmic-ray nondestructive testing through structural analysis of subway. NDT international, Vol. 20, No. 4, p. 231, 1987.

[35] K. Nagamine, M. Iwasaki, K. Shimomura, and K. Ishida. Method of probing inner- structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption prediction. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 356, No. 2-3, pp. 585–595, 1995.

[36] H. K. M. Tanaka, T. Nakano, S. Takahashi, J. Yoshida, M. Takeo, J. Oikawa, T. Ohmi- nato, Y. Aoki, E. Koyama, H. Tsuji, et al. High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: The density structure below the volcanic crater floor of mt. asama, japan. Earth and Planetary Science Letters, Vol. 263, No. 1, pp. 104– 113, 2007.

[37] H.K.M. Tanaka, T. Nakano, S. Takahashi, J. Yoshida, H. Ohshima, T. Maekawa, H. Watanabe, and K. Niwa. Imaging the conduit size of the dome with cosmic-ray muons: The structure beneath Showa-Shinzan Lava Dome, Japan. Geophysical Research Letters, Vol. 34, No. 22, 2007.

[38] K. MORISHIMA. Cosmic-ray Imaging of Fukushima Daiichi Nuclear Power Plant. Jour- nal of The Society of Photographic Science and Technology of Japan, Vol. 79, No. 1, pp. 42–47 (in Japanese), 2016.

[39] K. Morishima, M. Kuno, A. Nishio, N. Kitagawa, Y. Manabe, M. Moto, F. Takasaki, H. Fujii, K. Satoh, H. Kodama, et al. Discovery of a big void in Khufu ’s Pyramid by observation of cosmic-ray muons. Nature, Vol. 552, No. 7685, p. 386, 2017.

[40] R. Nishiyama, A. Ariga, T. Ariga, S. K¨aser, A. Lechmann, D. Mair, P. Scampoli, M. Vla- dymyrov, A. Ereditato, and F. Schlunegger. First measurement of ice-bedrock interface of alpine glaciers by cosmic muon radiography. Geophysical Research Letters, Vol. 44, No. 12, pp. 6244–6251, 2017.

[41] S. Miyamoto, J. Barrancos, C. Bozza, L. Consiglio, C. De Sio, P. Hern´andez, R. Nishiyama, G. Padilla, E. Padr´on, C. Sirignano, et al. Muography of 1949 fault in la palma, canary islands, spain. Annals of Geophysics, Vol. 60, No. 1, p. 0110, 2017.

[42] K. Nagamine, H. K. M. Tanaka, S. N. Nakamura, K. Ishida, M. Hashimoto, A. Shinotake, M. Naito, and A. Hatanaka. Probing the inner structure of blast furnaces by cosmic-ray muon radiography. Proceedings of the Japan Academy, Series B, Vol. 81, No. 7, pp. 257–260, 2005.

[43] K. Ishiguro. Study of japanese tumulus by muon-radiography. Journal of The Society of Photographic Science and Technology of Japan, Vol. 81, No. 3, pp. 258–262(in Japanese), 2018.

[44] T. Fukuda, S. Aoki, S. Cao, N. Chikuma, Y. Fukuzawa, M. Gonin, T. Hayashino, Y. Hay- ato, A. Hiramoto, F. Hosomi, et al. First neutrino event detection with nuclear emulsion at J-PARC neutrino beamline. Progress of Theoretical and Experimental Physics, Vol. 2017, No. 6, 2017.

[45] A. Aguilar, L.B. Auerbach, R.L. Burman, D.O. Caldwell, E.D. Church, A.K. Cochran, J.B. Donahue, A. Fazely, G.T. Garvey, R.M. Gunasingha, et al. Evidence for neutrino oscillations from the observation of ν e appearance in a ν µ beam. Physical Review D, Vol. 64, No. 11, p. 112007, 2001.

[46] A.A. Aguilar-Arevalo, B.C. Brown, L. Bugel, G. Cheng, J.M. Conrad, R.L. Cooper, R. Dharmapalan, A. Diaz, Z. Djurcic, D.A. Finley, et al. Significant excess of electronlike events in the miniboone short-baseline neutrino experiment. Physical review letters, Vol. 121, No. 22, p. 221801, 2018.

[47] S. Takahashi, S. Aoki, GRAINE collaboration, et al. Graine project, prospects for scientific balloon-borne experiments. Advances in Space Research, Vol. 62, No. 10, pp. 2945–2953, 2018.

[48] S. Takahashi, S. Aoki, K. Kamada, S. Mizutani, R. Nakagawa, K. Ozaki, and H. Rokujo. Graine project: The first balloon-borne, emulsion gamma-ray telescope experiment. Progress of Theoretical and Experimental Physics, Vol. 2015, No. 4, p. 043H01, 2015.

[49] S. Takahashi, S. Aoki, K. Hamada, T. Hara, T. Inoue, K. Ishiguro, A. Iyono, H. Kawa- hara, K. Kodama, R. Komatani, et al. Graine 2015, a balloon-borne emulsion γ-ray telescope experiment in australia. Progress of Theoretical and Experimental Physics, Vol. 2016, No. 7, p. 073F01, 2016.

[50] H. Rokujo, M. Komiyama, Y. Nakamura, and S. Yamamoto. Gamma-ray imaging per- formance of nuclear emulsion telescope in graine-2018 balloon experiment. In 36th In- ternational Cosmic Ray Conference (ICRC2019), Vol. 36, 2019.

[51] K. Ozaki, S. Aoki, K. Kamada, T. Kosaka, F. Mizutani, E. Shibayama, S. Takahashi, Y. Tateishi, S. Tawa, K. Yamada, et al. Development of new-type nuclear emulsion for a balloon-borne emulsion gamma-ray telescope experiment. Journal of Instrumentation, Vol. 10, No. 12, p. P12018, 2015.

[52] M. Kuno. master’s thesis. Nagoya University, 2017.

[53] K. A. Yamakawa. Silver bromide crystal counters. Physical Review, Vol. 82, No. 4, p. 522, 1951.

[54] T. Tani. Photographic sensitivity: Theory and mechanisms. Oxford Univ. Press, 1995.

[55] T. Tani. Photographic science: advances in nanoparticles, J-aggregates, dye sensitization, and organic devices. Oxford University Press, 2011.

[56] G. Albouy and H. Faraggi. On the mechanism of the effacement of the latent image due to charged particles. Journal de Physique et le Radium (France) Changed to J. Phys.(Orsay, Fr.), Vol. 10, , 1949.

[57] C.F. Powell, G.P.S. Occhialini, D.L. Livesey, and L.V. Chilton. A new photographic emulsion for the detection of fast charged particles. Journal of Scientific Instruments, Vol. 23, No. 5, p. 102, 1946.

[58] T. Tani and T. Uchida. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles. Japanese Journal of Applied Physics, Vol. 54, No. 6, p. 065001, 2015.

[59] E.S. Brandt. Mechanistic studies of image stability. 3. oxidation of silver from the vantage point of corrosion theory. Journal of imaging science, Vol. 31, No. 5, pp. 199–207, 1987.

[60] M.R.Sahyun. Concerning the minimum gelatin concentration for silver halide emulsifi- cation. Photo. Sci. Eng. 20, 92, 1976.

[61] K. Muro and T. Tani. 2nd gelatin symposium. proceedings of the Second Symposium on Photographic Gelatin, 1970.

[62] S. Urabe and T. Sano. The physics and chemistry of gelatin. photographic characteristics of gelatin in comparison with synthetic protective colloids. Journal of The Society of Photographic Science and Technology of Japan, Vol. 62, No. 4, pp. 295–301 (in Japanese), 1999.

[63] J. Pouradier. Properties of gelatin in relation to its use in the preparation of photographic emulsions. The Theory of the Photographic Process, pp. 6–7, 1977.

[64] N. Naganawa and A. Nishio. Improvement of long-term characteristics of nuclear emul- sion. Journal of The Society of Photographic Science and Technology of Japan, Vol. 80, No. 2, p. 152 (in Japanese), 2017.

[65] S. Gahler. Veroff. wiss. photo-lab. Wolfen, Vol. X, pp. 63–72, 1965.

[66] T. Tani. A study of intensification of latent images in reduction-sensitized emulsions through delayed development. Journal of imaging science, Vol. 30, No. 2, pp. 41–46, 1986.

[67] N. Naganawa, K. Ohzeki and A. Nishio. A study on latent image stability of nuclear emulsion. Progr. Proc. 1st Int. Conf. on‘ Advanced Imaging ’(ICAI2015), pp. 675–678, 2015.

[68] A. Ariga. Ph.d. thesis. Nagoya University, 2008.

[69] D. Yamashita, A. Ishizaki, and T. Yamamoto. In situ measurements of work function of indium tin oxide after uv/ozone treatment. Materials transactions, Vol. 56, No. 9, pp. 1445–1447, 2015.

[70] T. Tani, T. Uchida, and T. Naka. Analyses and design of nuclear emulsions for dark matter detection. Radiation Measurements, Vol. 129, p. 106184, 2019.

[71] G.A. Somorjai. Hh farrell in advances in chemical physics (i. prigogine and sr rice eds.) vol. 20, 215, 1971.

[72] Y. Tomoda. Enhancement of print-out effect by bathing treatment. PHOTOGRAPHIC SCIENCE AND ENGINEERING, Vol. 5, No. 4, pp. 226–229, 1961.

[73] T. Tani, R. Kan, Y. Yamano, and T. Uchida. Stabilization of Ag nanostructures by tuning their Fermi levels. Japanese Journal of Applied Physics, Vol. 57, No. 5, p. 055001, 2018.

[74] H. Hirsch. Photographic emulsion grains with cores part 2. the identification of trapped iodine, complementary to print-out silver. the mechanism of its formation and regression. J. photogr. Sci, Vol. 10, pp. 134–146, 1962.

[75] R. R. Gupta, M. Kumar, and V. Gupta. Heterocyclic Chemistry: Volume II: Five- Membered Heterocycles. Springer Science & Business Media, 2013.

[76] T. Tani, A. Nishio, T. Uchida, K. Morishima. Latent image stabilization in nuclear emulsions for cosmic-ray imaging. Nuclear Instruments and Methods in Physics Research A, submitted.

[77] N. Naganawa. Long-term characteristics of nuclear emulsion. doctoral thesis Nagoya University, 2010.

[78] T.A. Babcock, P.M. Ferguson, W.C. Lewis, and T.H. James. A novel form of chemical sensitization using hydrogen gas. Photogr. Sci. Eng, Vol. 19, pp. 49–55, 1975.

[79] Y. Ohya and T. Koyama and Y. Kojima. The fundamentals of the aluminum corrosion : Relationship between the oxide film and the corrosion. UACJ technical reports, Vol. 3, No. 1, pp. 52–56 (in Japanese), 2016.

[80] A. Nishio, K. Morishima, K. Kuwabara, T. Yoshida, T. Funakubo, N. Kitagawa, M. Kuno, Y. Manabe, M. Nakamura. Nuclear emulsion with excellent long-term stability developed for cosmic-ray imaging. Nuclear Instruments and Methods in Physics Research A, submitted.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る