リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cellular calcium oscillations in droplets with different chemical concentrations supplied by droplet-array sandwiching technology」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cellular calcium oscillations in droplets with different chemical concentrations supplied by droplet-array sandwiching technology

Konishi, Satoshi Higuchi, Yuriko Tamayori, Asuka 京都大学 DOI:10.1016/j.snb.2022.132435

2022.11

概要

Digital microfluidics using droplets on a chip, such as droplet-array sandwiching technology, provide efficient tools for biochemistry from the perspective of time and sample consumption. Droplet-array sandwiching technology uses the fusion and separation of droplets on upper and lower substrates for high-throughput screening. In our previous work, we developed independent control of individual droplets for this technology using electrowetting-on-dielectric to control the droplet height and allow different chemical concentrations in droplets on the same chip. In this study, we explored the applicability of droplet-array sandwiching technology to cell-based analysis by observing cellular calcium oscillations in HeLa cells in droplets with different histamine concentrations. Histamine concentrations could be controlled by controlling contact time between upper and lower droplets. We found that calcium oscillations intensified with higher histamine concentrations prepared by controlling contact time. These results suggest that droplet-array sandwiching technology can be used for cell-based analysis, where the chemical concentration for cellular stimulation needs to be controlled.

この論文で使われている画像

参考文献

1. D. Mark, S. Haeberle, G. Roth, F. Stetten, R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chem. Soc. Rev. 39 (3) (2010) 1153–1182.

2. S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Droplet microfluidics, Lab Chip 8 (2008) 198–220.

3. W.C. Nelson, C.J. Kim, Droplet actuation by Electrowetting-Dielectric (EWOD): a review, J. Adhes. Sci. Technol. 26 (2012) 1747–1771.

4. M.G. Pollack, R.B. Fair, A.D. Shenderov, Electrowetting based actuation of liquid droplets for microfluidic applications, Appl. Phys. Let. 77 (2000) 1725–1726.

5. J. Lee, H. Moon, J. Fowler, T. Schoelhammer, C.J. Kim, Electrowetting and electrowetting-on-Dielectric for microscale liquid handling, Sens. Actuators A 95 (2002) 259–268.

6. S.K. Cho, H. Moon, C.J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, IEEE J. Miecroelectromech. Syst. 12 (1) (2000) 70–80.

7. U.C. Yi, C.J. Kim, Characterization of electrowetting actuation on addressable single-side coplanar electrodes, J. Micromech. Micro 16 (2006) 2053–2059.

8. F.L. Geyer, E. Ueda, U. Liebel, N. Grau, P.A. Levkin,Superhydrophobic–superhydrophilic micropatterning: towards genome-on-a-chip cell microarrays, Angew. Chem. Int. Ed. 50 (2011) 8424–8427.

9. A.A. Popova, S.M. Schillo, K. Demir, E. Ueda, A. Nesterov-Mueller, P.A. Levkin, D.A. Droplet-Array, Sandwich chip: a versatile platform for high-throughput cell screening based on superhydrophobic–superhydrophilic micropatterning, Adv. Mater. 27 (2015) 5217–5222.

10. W. Feng, L. Li, X. Du, A. Welle, P.A. Levkin, Single-step fabrication of high-density microdroplet arrays of low-surface-tension liquids, Adv. Mater. 28 (2016)3202–3208.

11. M. Benz, M.R. Molla, A. Bo¨ser, A. Rosenfeld, P.A. Levkin, Marrying chemistry with biology by combining on-chip solution-based combinatorial synthesis and cellular screening, Nat. Commun. 10 (2019) 2879, https://doi.org/10.1038/s41467-019-10685-0.

12. H. Maeda, C. Ohya, T. Kobayashi, S. Konishi, Contact fusion of droplets patterned on opposing plates for cellular transportation and medium exchange for hanging- droplet cell culture, in: Proceedings of the International Conference of Transducers, 2017, pp. 115–118.

13. C. Ohya, S. Konishi, Droplet height control by electrowetting-on-dielectric for selective contact fusion of drplets on facing substrates, in: Proceedings of the IEEE International Conference of MEMS, 2018, pp. 1201–1204.

14. S. Konishi, C. Ohya, T. Yamada, Selective control of contact and transport between droplet pairs by electrowetting-on-dielectric for droplet-array sandwiching technology, Sci. Rep. 11 (2021) 12355.

15. Y.C. Tung, A.Y. Hsiao, A.G. Allen, Y. Torisawa, M. Ho, S. Takayama, High- throughput 3D spheroid culture and drug testing using a 384 hanging-drop array, Analyst 136 (2011) 473–478.

16. A.Y. Hsiao, et al., Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging-drop array plates, Biomed. Micro 14 (2012) 313–323.

17. O. Frey, P.M. Misun, D.A. Fluri, J.G. Hengstler, A. Hierlemann, Reconfigurable microfluidic hanging-drop network for multi-tissue interaction and analysis, Nat. Commun. 5 (2014) 4250.

18. A. Birchler, et al., Seamless combination of fluorescence-activated cell sorting and hanging-drop networks for individual handling and culturing of stem cells and microtissue spheroids, Anal. Chem. 88 (2015) 1222–1229.

19. P. Zhang, et al., High-throughput superhydrophobic microwell arrays for investigating multifactorial stem cell niches, Lab Chip 16 (2016) 2996–3006.

20. M.J. Berridge, Calcium oscillations, J. Biol. Chem. 265 (17) (1990), 9583-9566.

21. S. Schuster, M. Marhl, T. Ho, Modelling of simple and complex calcium oscillations from single-cell responses to intercellular signalling, Eur. J. Biochem 269 (2002) 1333–1355.

22. C.L. Zhu, Y. Jia, Q. Liu, L.J. Yang, X. Zhan, A mesoscopic stochastic mechanism of cytosolic calcium oscillations, Biophys. Chem. 125 (2007) 201–212.

23. G. Dupont, L. Combettes, G.S. Bird, J.W. Putney, Calcium oscillations, Cold Spring Harb. Perspect. Biol. 3 (2011) a004226.

24. M. Yi, Q. Zhao, J. Tang, C. Wang, A theoretical modeling for frequency modulation of Ca2+ signal on activation of MAPK cascade, Biophys. Chem. 157 (2011) 33–42.

25. E. Smedler, P. Uhl´en, Frequency decoding of calcium oscillations, Biochim.Biophys. Acta 1840 (2014) 964–969.

26. L. Aguilera, et al., Robustness of frequency vs. amplitude coding of calcium oscillations during changing temperatures, Biophys. Chem. 245 (2019) 17–24.

27. S. Kupzig, et al., The frequencies of calcium oscillations are optimized for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade, Proc. Natl. Acad. Sci. USA 102 (2005) 7577–7582.

28. M.D. Bootman, et al., Extracellular calcium concentration controls the frequency of intracellular calcium spiking independentlyof inositol 1,4,5-trisphosphate production in HeLa cells, Biochem J. 314 (1996) 347–354.

参考文献をもっと見る