リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「水中カウンターコリジョンにより付与される両親媒性“ヤヌス型”セルロースナノファイバーの可視化法による表面特性解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

水中カウンターコリジョンにより付与される両親媒性“ヤヌス型”セルロースナノファイバーの可視化法による表面特性解析

辻󠄀, 翼 TSUJI, Tsubasa ツジ, ツバサ 九州大学

2021.03.24

概要

セルロースナノファイバー(CNF)を用いて新たな機能材料を設計するには,その表面特性の理解が必要とされる。近藤らにより開発された水中カウンターコリジョン(ACC)法は、セルロース素材のナノ微細化過程において、内包されていたファンデルワールス(200)面(=疎水面)をCNF表面に露出させる。その結果、得られるCNFは両親媒性の表面構造を有するようになる。この現象に対し、これまで直接的な立証はされていなかった。本論文は、その表面特性の可視化および定量による評価から上記のACC-CNF表面構造を立証した。また、ACC-CNFの表面構造を活かした疎水性ポリマー粒子に対する吸着挙動についても検証し、新たな機能材料展開への可能性を示した。

 第一章では、プローブを用いる蛍光顕微鏡観察によりシングルCNFの可視化を検討し、蛍光プローブを用いるCNF表面特性の可視化を可能とする手法を提案した。

 第二章では、酢酸菌由来ACC-BNCの疎水性表面に対して特異的に吸着する糖質結合モジュールまたはコンゴーレッド(CR)を用いるとともに、親水性表面に対して特異的に吸着するカルコフロールホワイト(CFW)をプローブとして用いて二重染色し、ACC-BNCの表面特性を可視化した。また、CRおよびCFWの単層吸着量の定量も併せて評価し、ACC-BNC表面は疎水面と親水面の両方を有する両親媒性“ヤヌス型”表面構造であることを立証した。

 第三章では、植物原料由来のACC-CNFにおいても、ACC-BNCと同様に両親媒性ヤヌス型の表面構造を有することを、可視化および定量により立証した。定量評価による疎水面/親水面の相対比率は原料種により異なり、これには元々含まれるヘミセルロースなどの非セルロース成分が影響している可能性が示唆された。

 第二章、第三章で立証した両親媒性ヤヌス型の表面構造を有するACC-CNFは、吸着現象を利用した新たな機能材料への展開が期待されるため、第四章では疎水性ポリマー粒子表面に対するACC-CNFの吸着挙動を検証した。すなわち、ACC-CNFが各種ポリマーの中でも特にポリプロピレン(i-PP)粒子に対して強い吸着特性を示すことから、熱力学的手法により相互作用を定量化した。この吸着現象を介した疎水性ポリマーとCNFの新たな融合は、今後の材料科学の発展に寄与できるものと期待される。

 以上、第一章から第三章を通して、ACC-CNFsが両親媒性“ヤヌス型”の表面構造を立証するとともに、第四章ではACC-CNFの吸着現象を介した疎水性ポリマーとの融合における基礎を築いた。これらの研究により、このヤヌス型表面構造を活かした機能材料展開を目指すとともに、ACC-CNFを利用したサスティナブルな社会構築への貢献も期待できる。

この論文で使われている画像

参考文献

1. Hahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact During Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179−199.

2. Marturano, V.; Cerruti, P.; Ambrogi, V. Polymer Additives. Phys. Sci. Rev. 2017, 2, 20160130.

3. Winey, KI; Vaia, RA. Polymer Nanocomposites. MRS bulletin. 2007, 32, 314−322.

4. Clemons, C. Wood-plastic Composites in the United States-The Interfacing of Two Industries. Forest Prod. J. 2002, 52, 10−18.

5. Klemm, D.; Cranston, E. D.; Fischer, D.; Gama, M; Kedzior, SA; Kralisch, D; Kramer, F; Kondo, T; Lindstrom, T; Nietzsche, S; Petzold-Welcke, K; Rauchfuss, F. Nanocellulose as A Natural Source for Groundbreaking Applications in Materials Science: Today's State. Mater. Today. 2018, 21, 720−748

6. Nechyporchuk, O.; Belgacem, M. N.; Bras, J. Production of Cellulose Nanofibrils: A Review of Recent Advances. Ind. Crops Prod. 2016, 93, 2−25.

7. Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent Developments on Nanocellulose Reinforced Polymer Nanocomposites: A Review. Polymer. 2017, 132, 368−393.

8. Kose, R.; Mitani, I.; Kasai, W.; Kondo, T. “Nanocellulose” As a Single Nanofiber Prepared from Pellicle Secreted by Gluconacetobacter xylinus Using Aqueous Counter Collision. Biomacromolecules. 2011, 12, 716−720.

9. Saito, T.; Kurame, R.; Wohlert, J.; Berglund, L. A.; Isogai, A. An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-induced Fragmentation. Biomacromolecules. 2013, 14, 248−253.

10. Nishino, T.; Matsuda, I.; Hirao, K. All-cellulose Composite. Macromolecules. 2004, 37, 7683−7687.

11. Yano, H.; Nakahara, S. Bio-composites Produced from Plant Microfiber Bundles with A Nanometer Unit Web−Like Network. J. Mater. Sci. 2004, 39, 1635−1638.

12. Nakagaito, A. N.; Yano, H. Novel High-strength Biocomposites Based on Microfibrillated Cellulose Having Nano-order-unit Web-like Network Structure. Appl. Phys. 2005, A 80, 155−159.

13. Nickerson, R. F.; Habrle, J. A. Cellulose Intercrystalline Structure: Study by Hydrolytic Methods. Ind. Eng. Chem. 1947, 39, 1507−1512.

14. Saito, T.; Isogai, A. TEMPO-mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of The Water-Insoluble Fractions. Biomacromolecules. 2004, 5, 1983−1989.

15. Saito, T.; Nishiyama, Y.; Putaux, J. L.; Vignon, M.; Isogai, A. Homogeneous Suspensions of Individualized Microfibrils from TEMPO−Catalyzed Oxidation of Native Cellulose. Biomacromolecules. 2006, 7, 1687−1691.

16. Kondo, T.; Morita, M.; Hayakawa, K.; Onda, Y. US Patent 7,357,339, 2005.

17. Kondo, T.; Kose, R.; Naito, H.; Kasai, W. Aqueous Counter Collision Using Paired Water Jets as A Novel Means of Preparing Bio-nanofibers. Carbohydr. Polym. 2014, 112, 284−290.

18. Oksman, K.; Aitomaki, Y.; Mathew, A. P.; Siqueira, G.; Zhou, Q.; Butylina, S.; Tanpichai, S.; Zhou, X. J.; Hooshmand, S. Review of The Recent Developments in Cellulose Nanocomposite. Composites, Part A. 2016, 83, 2−18.

19. Nodera, A.; Hashiba, H.; Tanaka, H. Japan Patent Application Publication No. 2016−79311, 2016.

20. Igarashi, Y.; Sato, A.; Okumura, H.; Nakatsubo, F.; Yano, H. Manufacturing Process Centered on Dry-Pulp Direct Kneading Method Opens A Door for Commercialization of Cellulose Nanofiber Reinforced Composites. Chem. Eng. J. 2018, 354, 563−568.

21. Huan, S. Q.; Yokota, S.; Bai, L.; Ago, M.; Borghei, M.; Kondo, T. Formulation and Composition Effects in Phase Transitions of Emulsions Costabilized by Cellulose Nanofibrils and an Ionic Surfactant. Biomacromolecules. 2017, 18, 4393–4404.

22. Tsuji, T.; Tsuboi, K.; Yokota, S.; Tagawa. S.; Kondo, T. Characterization of Amphiphilic Janus−type Surface in Cellulose Nanofibril Prepared by Aqueous Counter collision. Biomacromolecules. published in https://dx.doi.org/10.1021/acs.biomac.0c01464).

23. Yokota, S.; Tagawa, S.; Kondo, T. Facile Surface Modification of Amphiphilic Cellulose Nanofibrils Prepared by Aqueous Counter Collision. Carbohydr. Polym. 2021, 255, 117342.

24. Tsuboi, K.; Yokota, S.; Kondo, T. Difference between Bamboo- and Wood-derived Cellulose Nanofibers Prepared by The Aqueous Counter Collision Method. Nord Pulp. Pap. Res. J. 2014, 29, 69−76.

25. Yokota, S.; Kamada, K.; Sugiyama, A.; Kondo, T. Pickering Emulsion Stabilization by Using Amphiphilic Cellulose Nanofibrils Prepared by Aqueous Counter Collision. Carbohydr. Polym. 2019, 226, 115293.

26. Tagawa, S.; Ishida, K.; Tsuji, T.; Kondo, T. Facile Size Evaluation of Cellulose Nanofibrils Adsorbed on Polypropylene Substrates Using Fluorescence Microscopy. Cellulose. (2020 submitted).

27. Kose, R.; Kasai, W.; Kondo, T. Switching Surface Properties of Substrates by Coating with A Cellulose Nanofiber Having A High Adsorbability. Sen-i Gakkaishi. 2011, 67, 153−168.

28. Kondo, T.; Yokota, S.; Tanaka, H. Japan Patent Application Publication No. 2017−234450, 2017.

29. Paul, D. R.; Newman, S. Polymer Blends I & II, Academic Press, New York, 1978.

30. Olabisi, O.; Robson, L. M.; Shaw, M. T. Polymer-Polymer Miscibility, Academic Press, New York, 1979.

31. Flory, P. J. Thermodynamics of High Polymer Solutions. J. Chem. Phys. 1941, 9, 660−661.

32. Huggins, M. L. Theory of Solutions of High Polymers. ibid. 1941, 64, 1712−1719.

33. Scott, R. L. The Thermodynamics of High Polymer Solutions. V. Phase Equilibria in the Ternary System: Polymer 1-Polymer 2-Solvent. J. Chem. Phys. 1949, 17, 279−284.

34. Nishi, T.; Wang, T. T. Melting Point Depression and Kinetic Effects of Cooling Poly (vinylidene fluoride) Poly (methyl methacrylate) Mixtures. Macromolecules, 1975, 8, 909−915.

35. Ishikawa, G.; Kondo, T. Thermodynamic Effect on Interaction between Crystalline Phases in Size-controlled ACC-bacterial Nanocellulose and Poly (vinyl alcohol). Cellulose. 2017, 24, 5495−5503.

36. Ishikawa, G.; Kondo, T. Characterization of Dual Nano-size Effects of ACC-cellulose Nanofibrils on Crystallization Behavior of Hydrophilic Poly (vinyl alcohol). J. Wood Sci. (2020 submitted).

37. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350−356.

38. Saha, A. K.; Brewer, C. F. Determination of the Concentrations of the Oligosaccharides, Complex Type Carbohydrates, and Glycoproteins using the Phenol-Sulfuric Acid Method. Carbohydr. Res. 1994, 254, 157−167

39. Hughes, J.; McCully, M. E. The Use of an Optical Brightener in the Study of Plant Structure. Stain Technol. 1975, 50, 319–329.

40. Peretz, R.; Mamane, H.; Sterenzon, E.; Gerchman, Y. Rapid Quantification of Cellulose Nanocrystals by Calcofluor White Fluorescence Staining. Cellulose 2019, 26, 971−977.

41. Padden, F. J.; Keith, H. D. Spherulitic Crystallization in Polypropylene. J. Appl. Pjys. 1959, 30, 1479−1484.

42. Hoffman, J. D.; Weeks, J. J. Melting Process and Equilibrium Melting Temperature of Polychlorotrifluoroethylene. J. Res. Natl. Bur. Stand, 1962 Sect A, 66 (JAN-F), 13−28.

43. Yamaguchi, M. Effect of Molecular Structure in Branched Polyethylene on Adhesion Properties with Polypropylene. J. Apply. Polym. Sci., 1998, 70, 457−463.

44. Shanks, R. A.; Li, J.; Yu, L. Polypropylene-polyethylene Blend Morphology Controlled by Time-temperature-miscibility. Polymer, 2000, 41, 2133−2139.

45. Li, J.; Shanks, R. A.; Yu, L. Miscibility and Crystallization of Metallocene Polyethylene Blends with Polypropylene. J. Apply. Polym. Sci., 2003, 87, 1179−1189.

46. Amash, A.; Zugenmaier, P. Study on Cellulose and Xylan Filled Polypropylene Composites. Polym. Bull., 1998, 40, 251−258.

47. Dimitrusˇev, N.; Fra s Zemljicˇ, L.; Saake B.; Strnad, S. Study of Xylan Adsorption onto Poly (ethylene terephthalate) Using QCM-D, cellulose, 2018, 25, 4357−4374.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る