リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「視床と大脳基底核の灰白質体積に対するFK506結合タンパク質51(FKBP5)遺伝子の一塩基多型と母親の受容性の交互作用効果」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

視床と大脳基底核の灰白質体積に対するFK506結合タンパク質51(FKBP5)遺伝子の一塩基多型と母親の受容性の交互作用効果

松平 泉 東北大学

2020.03.25

概要

脳の機能や構造に対する遺伝要因と環境要因の交互作⽤効果を検討することは、精神障害の発症しやすさ(精神障害リスク)の個体差の理解に有⽤であると⾔われている。FK506結合タンパク質51は視床下部‒下垂体‒副腎系のストレス応答機能の制御に関与するタンパク質であり、その遺伝⼦の⼀塩基多型rs1360780(C/T)のマイナーアレルTは精神障害リスクを⾼めると考えられている。先⾏研究では、 rs1360780と虐待やネグレクトの被害経験の交互作⽤が脳の機能や構造に関与することが報告されてきた。しかし、虐待やネグレクトは極端に不適切な養育であるため、それらの知⾒が虐待を受けずに育った群の精神障害リスクの個体差をも説明できるとは限らない。そこで本研究は、202名の健常⼩児を対象とし、灰⽩質体積に対するrs1360780とポジティブな養育(⺟親の受容性)の交互作⽤効果を検討した。重回帰分析の結果、左視床、⼤脳基底核の灰⽩質体積に有意な交互作⽤効果が確認された。下位検定により、C/C群では⺟親の受容性の得点が⾼いほど当該領域の灰⽩質体積が⼩さいのに対し、Tアレルキャリア群では⺟親の受容性の得点が⾼いほど灰⽩質体積が⼤きいことが明らかとなった。また、⺟親の受容性の得点が全体の70パーセンタイル以下の場合において、Tアレルキャリア群はC/C群よりも当該領域の灰⽩質体積が有意に⼩さかった。視床と⼤脳基底核は⼤脳⽪質−⼤脳基底核−視床−⼤脳⽪質回路の中核として精神障害リスクに関わる領域であると⾔われている。本研究の結果は、精神障害リスクや脳の機能・構造に対する遺伝要因と環境要因の交互作⽤の研究において、虐待やネグレクトのような過度な逆境以外の環境要因に着⽬することの重要性を⽰唆していると⾔える。

参考文献

1. 野村総⼀郎:「精神医学とは」尾崎紀夫, 朝⽥隆, 村井俊哉(編)標準精神医学第6版. 医学書院, 東京, 2015; 3-12

2. 川上憲⼈:精神疾患の有病率等に関する⼤規模疫学調査研究:世界精神保険⽇本調査セカンド 総合研究報告書. 2016; 38

3. ⼩椋⼒:予防精神医学 脆弱要因の軽減とレジリエンスの増強. 星和書店, 東京, 2016

4. Seligman MEP & Maier SF:Failure to escape traumatic shock. J Experiment Psychol 1967; 74: 1-9

5. Hiroto DS & Seligman MEP:Locus of control and learned helplessness. J Experiment Psychol 1974; 102: 58-65

6. Seligman MEP : Helplessness: On depression, development, and death. W. H. Freeman and Company, New York, 1975

7. Bogdan R, Pagliaccio D, Baranger D, et al:Genetic moderation of stress effects on corticolimbic circuitry. Neuropsychopharmacol 2016; 41: 275-296

8. Gunaydin L & Kreitzer AC : Cortico-basal ganglia circuit function in psychiatric disease. Annu Rev Physiol 2016; 78: 327-350

9. Janak PH & Tye KM:From circuits to behavior in the amygdala. Nature 2015; 517: 284-292

10. Venkatraman A, Edlow BL, & Immordino-Yan MH:The brainstem in emotion: A Review. Front Neuroanat 2017; 11: 1-12

11. Duvarci S & Pare D:Amygdala microcircuits controlling learned fear. Neuron 2014; 82: 966-980

12. Nieuwenhuys R : The insular cortex: a review. Prog Brain Res 2012; 195: 123-63

13. Yang Y & Wang JZ : From structure to behavior in basolateral amygdala- hippocampus circuits. Front Neural Circuits 2017; 11:86

14. Kim MJ, Loucks RA, Palmer AL, et al : The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behav Brain Res 2011; 223: 403-410

15. Groenewold NA, Opmeer EM, Jonge P, et al : Emotional valence modulates brain functional abnormalities in depression: Evidence from a meta-analysis of fMRI studies. Neurosci Behav Rev 2013; 37: 152-163

16. Bruhl AB, Delsignore A, Komossa K, et al : Neuroimaging in social anxiety disoreder‒A meta-analytic review resulting in a new neurofunctional model. Neurosci Behav Rev 2014; 47: 260-280

17. Hayes JP, VanElzakker MB, & Shin LM : Emotion and cognition interaction in PTSD: a review of neurocognitive and neuroimaging studies. Front Integrative Neurosci 2012; 6:89

18. Schmaal L, Veltman DJ, van Erp TGM, et al : Subcortical brain alterations in major depressive disorder: finding from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry 2016; 21: 806-812

19. Wang X, Cheng B, Luo Q, et al : Gray matter structural alterations in social anxiety disorder: A voxel-based meta-analysis. Front Psychiatry 2018; 9:449

20. Bromis K, Calem M, Reinders AATS, et al : Meta-analysis of 89 structural MRI studies in posttraumatic stress disorder and comparison with major depressive disorder. Am J Psychiatry 2018; 175: 989-998

21. Servaas MN, van der Velde J, Costafreda SG, et al : Neuroticism and the brain: A quantitative meta-analysis of neuroimaging studies investigating emotion processing. Neurosci Behav Rev 2013; 37: 1518-1529

22. Mincic AM : Neuroanatomical correlates of negative emotionality-related traits: A systematic review and meta-analysis. Neuropsychologia 2015; 77: 97-118

23. Wichmann T & DeLong MR, 南部篤(訳):「⼤脳基底核」Kandell ER, Schwartz JH, Jessell TM et al (編) カンデル神経科学, メディカル・サイエンス・インターナショナル, 2014; 963-977

24. ⽇向野修⼀, ⾼橋昭喜, 吉⽥泰⼆, 他:「基底核・間脳」⾼橋昭喜(編)脳MRI 1.正常解剖 第2版, 学研メディカル秀潤社, 2017; 62-83

25. Marchand W, Lee JN, Suchy Y, et al : Aberrant functional connectivity of cortico- basal ganglia circuits in major depression. Neurosci Lett 2012; 514: 86-90

26. Bora E, Harrison BJ, Davey CG, et al : Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychol Med 2011; 42: 671-681

27. Hyde LW, Bogdan R, & Hariri AR : Understanding risk for psychopathology through imaging gene-environment interaction. Trend Cogn Sci 2011; 15: 417-427

28. Hariri AR : The neurobiology of individual differences in complex behavioral traits. Ann Rev Neurosci 2009; 32: 225-247

29. Bogdan R, Hyde LW, & Hariri AR : A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology. Mol Psychiatry 2013; 18: 288-299

30. Bogdan R, Salmeron BJ, Carey CE, et al : Imaging genetics and genomics in psychiatry: A critical review of progress and potential. Biol Psychiatry 2017; 82: 165-175

31. Hariri AR : Serotonin transporter genetic variation and the response of the human amygdala. Science 2002; 297: 400-403

32. Lesch KP, Bengel D, Heils A, et al : Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527-1531

33. Ulrich-Lai YM & Herman JP : Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 2009; 10: 397-409

34. 井樋慶⼀:「ストレス応答と⾏動」近藤保彦, ⼩川園⼦, 菊⽔健史, ⼭⽥⼀夫, 富原⼀哉(編)脳とホルモンの⾏動学 ⾏動神経内分泌学への招待, ⻄村書店, 東京, 2010; 206-217

35. de Kloet ER, Joels M, & Holsboer F : Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463-475

36. Doom JR & Gunnar MR : Stress physiology and developmental psychopathology; past, present, and the future. Dev Psychopathol 2013; 25: 1359-1373

37. Glaser YG, Zubieta JK, Hsu DT, et al : Indirect effect of corticotropin-releasing hormone receptor 1 gene variation on negative emotionality and alcohol use via right ventromedial prefrontal cortex. J Neurosci 2014; 34: 4099-4107

38. Bogdan R, Williamson DE, Hariri AR : Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. Am J Psychiatry 2012; 169: 515-22

39. Wirz L, Reuter M, Wacker J, et al : A haplotype associated with enhanced mineralocorticoid receptor expression facilitates the stress-induced shift from “cognitive” to “habit” learning. eNeuro 2017; 4(6) e0359-17.2017: 1-16

40. Fujii T, Ota M, Hori H, et al : Association between the common functional FKBP5 variant (rs1360780) and brain structure in a non-clinical population. J Psychiatric Res 2014; 58: 96-101

41. Di Iorio CR, Carey CE, Michalski LJ, et al : Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function. Psychoneuroendocrinol 2017; 80: 170-178

42. 遠藤利彦 : ⾮認知的(社会情緒的)能⼒の発達と科学的検討⼿法についての研究に関する報告書. 調査研究等特別推進経費調査研究報告書, 国⽴教育政策研究所, 2017

43. Bowlby J : Attachment and loss: Vol.1. Attachment. Basic Books, New York, 1969

44. Bowlby J : Attachment and loss: Vol.2. Separation: Anxiety and anger. Basic Books, New York, 1973

45. Bowlby J : Attachment and loss: Vol.3. Loss: Sadness and depression. Basic Books, New York,1980

46. Harms PD : Resilience and well-being. Diener E, Oishi S, & Tay L (Eds), Handbook of well-being. DEF Publishers, Salt Lake City, 2018

47. Spruit A, Goos L, Weenink N, et al : The relationship between attachment and depression in children and adolescents: A multilevel meta-analysis. Clin Child Fam Psychol Rev 2019 (Epub ahead of print)

48. Belsky J, de Haan M : Annual Research Review: Parenting and children's brain development: the end of the beginning. J Child Psychol Psychiatry 2011; 52: 409- 428

49. 松平泉, 瀧靖之:規範的な養育と⼦どもの脳発達. 周産期医学 2019 (印刷中)

50. Teicher MH, Samson JA : Childhood maltreatment and psychopathology: A case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. Am J Psychiatry 2013; 170: 1114-33

51. Dube S, Felitti VJ, Dong M, et al : The impact of adverse childhood experiences on health problems: evidence from four birth cohorts dating back to 1900. Prev Med 2003; 37: 268-277

52. Teicher MH, Samson JA, Anderson CM, et al : The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci 2016; 17: 652-666

53. Teicher MH & Samson JA : Annual Research Review: Enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry 2016; 57: 241- 66

54. Dillon DG, Holmes AJ, Birk JL, et al : Childhood adversity is associated with left basal ganglia dysfunction during reward anticipation in adulthood. Biol Psychiatry 2009; 66: 206-213

55. Mizuno K, Takiguchi S, Yamazaki M, et al : Impaired reward processing in children and adolescents with reactive attachment disorder: A pilot study. Asian J Psychiatr 2015; 17: 89-93

56. Edmiston EE, Wang F, Mazure CM, et al : Corticostriatal-limbic gray matter morphology in adolescents with self-reported exposure to childhood maltreatment. Arch Pediatr Adolesc Med 2011; 165(12): 1069-1077

57. Tomoda A, Sheu YS, Rabi K, et al : Exposure to parental verbal abuse is associated with increased gray matter volume in superior temporal gyrus. Neuroimage 2011; 54: S280-S286

58. Choi J, Jeong B, Rohan ML, et al : Preliminary evidence for white matter tract abnormalities in young adults exposed to parental verbal abuse. Biol Psychiatry 2009; 65: 227-234

59. Tomoda A, Polcari A, Anderson CM, et al : Reduced visual cortex gray matter volume and thickness in young adults who witnessed domestic violence during childhood. PLoS ONE 2012; 7: e52528

60. Choi J, Jeong B, Polcari A, et al : Reduced fractional anisotropy in the visual limbic pathway of young adults witnessing domestic violence in childhood. Neuroimage 2012; 59: 1071-1079

61. Tomoda A, Navalta CP, Polcari A, et al : Childhood sexual abuse is associated with gray matter volume in visual cortex of young women. Biol Psychiatry 2009; 66: 642-648

62. Heim CM, Mayberg HS, Mletzko, T, et al : Decreased cortical representation of genital somatosensory field after childhood sexual abuse. Am J Psychiatry 2013; 170: 616-623

63. Yap MB, Pilkington PD, Ryan SM, et al : Parental factors associated with depression and anxiety in young people: a systematic review and meta-analysis. J Affect Diord 2014; 156: 8-23

64. Romund L, Raufelder D, Flemming E, et al : Maternal parenting behavior and emotion processing in adolescents-An fMRI study. Biol Psychol 2016; 120: 120- 125

65. Morgan JK, Shaw DS, & Forbes EE : Maternal depression and warmth during childhood predict age 20 neural response to reward. J Am Acad Child Adolesc 2014; 53: 108-117

66. Schneider S, Brassen S, Bromberg U, et al : Maternal interpersonal affiliation is associated with adolescentsʼ brain structure and reward processing. Trans Psychiatry 2012; 2: e182

67. Moutsiana C, Johnstone T, Murray L, et al : Insecure attachment during nfancy predicts greater amygdala volume in earlyadulthood. J Child Psychol Psychiatry 2015; 56: 540-548

68. Lyons-Ruth K, Pechtel P, Yoon SA, et al : Disorganized attachment in infancy predicts greater amygdala volume in adulthood. Behav Brain Res 2016; 308: 83- 93

69. Whittle S, Simmons JG, Dennison M, et al : Positive parenting predicts the development of adolescent brain structure: a longitudinal study. Dev Cogn Neurosci 2014; 8: 7-17

70. Yang J, Wei D, Wang K, et al : Regional gray matter volume mediates the relationship between maternal emotional warmth and gratitude. Neuropsychologia. 2018; 109: 165-172

71. Denny BT, Fan J, Liu X, et al : Insula-amygdala functional connectivity is correlated with habituation to repeated negative images. Soc Cogn Affect Neurosci 2014; 9: 1660‒1667.

72. Matsudaira I, Yokota S, Hashimoto T et al : Parental praise correlates with posterior insular cortex gray matter volume in children and adolescents. PLoS ONE. 2016; 11: e0154220

73. Rao H, Betancourt L, Giannetta JM, et al : Early parental care is important for hippocampal maturation: Evidence from brain morphology in humans. Neuroimage 2010; 49: 1144-1150

74. Luby JL, Beldan A, Harms MP, et al : Preschool is a sensitive period for the influence of maternal support on the trajectory of hippocampal development. PNAS 2016; 113: 5742-5747

75. Wang Y, Song Y, Li X, et al : Influence of parental care on offspring hippocampal volume in young adults varies as a function of overproduction. Sci Rep 2017; 7: 46429

76. Maher B : Personal genomes: the case of the missing heritability. Nature 2008; 456: 18-21

77. Franke B, Stein JL, Ripke S, et al : Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nat Neurosci. 2016; 19: 420-431

78. Reus LM, Shen X, Gibson J, et al : Association of polygenic risk for major psychiatric illness with subcortical volumes and white matter integrity in UK Biobank. Sci Rep. 2017; 7: 42140

79. Moffitt TE, Caspi A, & Rutter M : Strategy for investigating interactions between measured genes and measured environments. Arch Gen Psychiatry 2005; 62: 473- 481

80. Caspi A, Sugden K, Moffitt TE, et al : Influence of life stress on depression: moderation by a polymorphism in the 5-HT gene. Science 2003; 301: 386-389

81. Caspi A, Hariri AR, Holmes A, et al : Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex disease and traits. Am J Pschiatry 2010; 167: 509-527

82. Tong M & Jiang Y : FK506-binding protein and their diverse functions. Curr Mol Pharmacol 2015; 9: 48-65

83. ⼭下道雄:タクロリムス(FK506)開発物語. ⽣物⼯学 2013; 3: 141-154

84. McKeon F : When world collide: Immunosuppressants meet protein phosphatases. Cell 1991; 5: 823-826

85. Harding MW, Galat A, Uehling DE, et al : A receptor for the immune-suppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 1989; 341: 758-760

86. Siekierka J, Hung, SH, Poe M, et al : A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 1989; 341: 755-757

87. Van Duyne GD, Standaert RF, Karplus PA, et al : Atomic structure of FKBP- FK506, an immunophilin-immunosuppressant complex. Science 1991; 252: 839-842

88. Dolinski K, Muir S, Cardenas M, et al : All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. PN♙S 1997; 94: 13093-13098

89. Galat A & Riviere S : Peptidyl-prolyl Cis/trans Isomerases. Oxford University Press, Oxford, 1998

90. 堀越正美, ⽇向亮介, 葛原隆:蛋⽩質構造変換酵素FKBPによる遺伝⼦発現制御機構. 蛋⽩質 核酸 酵素 2004; 49: 1195-1203

91. Scharf SH, Liebl C, Binder EB, et al : Expression and regulation of the Fkbp5 gene in the adult mouse brain. PLoS ONE 2011;6: e16883

92. Schiene-Fischer C & Yu C : Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS Lett 2001; 495: 1-6

93. Wochnik GM, Ruegg J, Abel GA, et al : FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem, 2005; 280: 4609-4616

94. Binder EB : The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinol. 2009; 34: S186-S195

95. Vermeer H, Hendriks-Stegeman BI, van der Burg B, et al : Glucocorticoid- induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: a potential marker for glucocorticoid sensitivity, potency, and bioavailability. J Clin Endocrinol Metab, 2003; 88: 277-284

96. Hubler TR & Scammell JG : Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids. Cell Stress Chaperones 2004; 9: 243-252

97. Binder EB, Salyakina D, Lichtner P, et al : Polymorphisms in FKBP5 are associated with increased recurrence of depressive episode and rapid response to antidepressant treatment. Nat Genetics 2004; 36: 1319-1325

98. Fujii T, Hori H, Ota M, et al : Effect of the common functional FKBP5 variant (rs1360780) on the hypothalamic-pituitary adrenal axis and peripheral blood gene expression. Psychoneuroendocrinol 2014; 42: 89-97

99. Klengel T, Mehta D, Anacker C, et al : Allele-specific FKBP5 DNA demethylation mediates gene‒childhood trauma interactions. Nat Neurosci. 2013; 16: 33-41

100. Young DA, Inslicht SS, Metzler TJ, et al : The effects of early trauma and the FKBP5 gene on PTSD and the HPA axis in a clinical sample of Gulf War veterans. Psychiatry Res 2018; 270:961-966

101. Appel K, Schwahn C, Mahler J, et al : Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population. Neuropsychopharmacology 2011; 36: 1982-1991

102. Roy A, Gorodetsky E, Yuan Q, et al : Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology 2010; 35:1674-1683

103. White MG, Bogdan R, Fisher PM, et al : FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes Brain Behav 2012; 11: 869-878

104. Holz NE, Buchmann AF, Boecker R, et al : Role of FKBP5 in emotion processing: results on amygdala activity, connectivity and volume. Brain Struct Funct 2015; 220: 1355-1368

105. Tozzi L, Carballedo A, Wetterling F, et al : Single-nucleotide polymorphism of the FKBP5 gene and childhood maltreatment as predictors of structural changes in brain areas involved in emotional processing in depression. Neuropsychopharmacology 2016; 41: 487-497

106. Grabe HJ, Wittfeld K, Van der Auwera S, et al : Effect of the interaction between childhood abuse and rs1360780 of the FKBP5 gene on gray matter volume in a general population sample. Hum Brain Mapp 2016; 37: 1602-1613

107. McGowan PO, Sasaki A, D'Alessio AC, et al : Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neurosci 2009; 12: 342-348

108. Perez-Perez B, Cristobal-Narvaez, P, Sheinbaum T, et al : Interaction between FKBP5 variability and recent life events in the anxiety spectrum: evidence for the differential susceptibility model. PLoS One 2018; 13: e0193044

109. Taki Y, Hashizume H, Sassa Y, et al : Breakfast staple types affect brain gray matter volume and cognitive function in healthy children. PLoS ONE 2010; 5: e15213

110. Oldfield RC : The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971; 9: 97-113

111. 東洋, 柏⽊惠⼦, 繁多進, 他:FDT親⼦関係診断検査. ⽇本⽂化科学社, 東京, 2002

112. 磯川桂太郎:「遺伝⼦とその継承」前野正夫, 磯川桂太郎(著)はじめの⼀歩の⽣化学・分⼦⽣物学第3版, ⽺⼟社, 東京, 2016; 113-115

113. 磯川桂太郎:「遺伝⼦の操作」前野正夫, 磯川桂太郎(著)はじめの⼀歩の⽣化学・分⼦⽣物学第3版, ⽺⼟社, 東京, 2016; 168-170

114. 勝本博:「遺伝⼦変異(SNP)タイピングの原理① TaqMan®プローブを使う」北條浩彦(編)原理からよくわかるリアルタイムPCR完全実験ガイド, ⽺⼟社, 東京, 2015; 36-41

115. 根本清貴:すぐできるVBM 精神・神経疾患の脳画像解析. 学研メディカル秀潤社, 東京, 2014

116. ⼭下典⽣:MRI構造画像を⽤いたVoxel-based morphometry. Med Imaging Tech 2016; 34: 3-7

117. Keller MC : Gene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution. Biol Psychiatry. 2014; 75: 18-24

118. Preacher KJ, Curran PJ, Bauer DJ : Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. J Educ Behav Stat 2006; 31: 437-448

119. Johnson PO, Neyman J : Tests of certain linear hypotheses and their applications to some educational problems. Statistical Research Memoirs 1936; 1: 57-93

120. Tadaka S, Katsuoka F, Ueki M, et al : 3.5KJPNv2: an allele frequency panel of 3552 Japanese individuals including the X chromosome. Hum Genome Var 2019; 6

121. Haber SN & Calzavara R : The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 2009; 78: 69-74

122. Peters SK, Dunlop K, Downar J : Cortico-striatal-thalamic loop circuits of the salience network: a central pathway in psychiatric disease and treatment. Front Sys Neurosci 2016; 10: 104

123. Morimoto M, Morita N, Ozawa H, et al : Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci Res 1996; 26: 235-269

124. Payer D, Williams B, Mansouri E, et al : Corticotropin-releasing hormone and dopamine release in healthy individuals. Psychoneuroendocrinol 2017; 76: 192-196

125. Lau WKW, Leung MK, Law ACK, et al : Moderating effects of cortisol on neural-cognitive association in cognitively normal elderly subjects. Front Aging Neurosci 2017; 9: 163

126. Chen R, Muetzel RL, El Marroun H, et al : No association between hair cortisol or cortisone and brain morphology in children. Psychoneuroendocrinol 2016; 74: 101-110

127. Saleh A, Potter GG, McQuoid DR : Effects of early life stress on depression, cognitive performance and brain morphology. Psychol Med 2017; 47: 171-181

128. Liao M, Yang F, Zhang Y, et al : Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder. PLoS ONE 2013; 8: e71898

129. Duarte DG, Neves Mde C, Albuquerque MR, et al : Gray matter brain volumes in childhood-maltreated patients with bipolar disorder type I: a voxel-based morphometric study. J Affect Disord 2016; 197: 74-80

130. Teicher MH, Tomoda A & Andersen SL : Neurobiological consequences of early stress and childhood maltreatment: are results from human and animal studies comparable? Ann N Y A cad Sci 2006; 1071: 313-323

131. Andersen SL & Teicher MH : Delayed effects of early stress on hippocampal development. Neuropsychopharmacology 2004; 29: 1988-1993

132. Rabl U, Meyer BM, Diers K, et al : Additive gene‒environment effects on hippocampal structure in healthy humans. J Neurosci 2014; 34: 9917-9926

133. Sheikh HI, Joanisse MF, Mackrell SM, et al : Links between white matter microstructure and cortisol reactivity to stress in early childhood: evidence for moderation by parenting. Neuroimage Clin 2014; 6: 77-85

134. Qiu B, Xu Y, Wang J, et al : Loss of FKBP5 affects neuron synaptic plasticity: An electrophysiology insight. Neurosci 2019; 402: 23-36

135. Ising M, Depping AM, Siebertz A, et al : Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. Eur J Neurosci 2008; 28: 389-398

136. Chen H, Lombes M, & Le Menuet D : Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells. Mol Brain 2017; 10:12

137. Numakawa T, Odaka H, & Adachi N : Actions of brain-derived neurotrophic factor and glucocorticoid stress in neurogenesis. Int J Mol Sci 2017; 18

138. Dahmen B, Puetz VB, Scharke W, et al : Effects of early-life adversity on hippocampal structures and associated HPA axis functions. Dev Neurosci 2018; 40: 13-22

139. Blankenship SL, Chad-Friedman E, Riggins T, et al : Early parenting predicts hippocampal subregion volume via stress reactivity in childhood. Dev Pscyhopathol 2018; 61: 125-140

140. Fani N, Gutman D, Tone EB, et al : FKBP5 and attention bias for threat: associations with hippocampal function and shape. JAMA Psychiatry 2013; 70: 392-400

141. Vogt BA : Midcingulate cortex: structure, connections, homologies, functions and diseases. J Chem Neuroanat 2016; 74: 28-46

142. Fani N, King TZ, Reiser E, et al : FKBP5 genotype and structural integrity of the posterior cingulum. Neuropsychopharmacology 2014; 39: 1206-1213

143. Heilbronner SR & Hayden BY : Dorsal anterior cingulate cortex: A bottom-up view. Annu Rev Neurosci 2016; 39: 149-170

144. Taki Y, Hashizume H, Thyreau B, et al: Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children. Hum Brain Mapp 2013; 34: 1857-1871

145. Tsujimoto S, Genovesio A, & Wise SP : Frontal pole cortex: encoding ends at the end of the endbrain. Trends Cogn Sci 2011; 15: 169-176

146. Morey RA, Haswell CC, Hooper SR, et al : Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology 2016; 41: 791-801

147. Sowell ER, Peterson BS, Thompson PM, et al : Mapping cortical change across the human life span. Nat Neurosci 2003; 6:309-315

148. Shaw P, Kabani NJ, Lerch JP, et al : Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 2008; 28: 3586-3594

149. Hiser J & Koenigs M : The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol Psychiatry 2018; 83: 638-647

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る