リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Concentration and Brightness Imaging for Fluorescent Molecules in Cells: Statistical Image Analysis by Empirical Bayes Method」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Concentration and Brightness Imaging for Fluorescent Molecules in Cells: Statistical Image Analysis by Empirical Bayes Method

福島, 綾介 北海道大学

2021.06.30

概要

Background:
 Fluorescence live cell imaging is useful for monitoring the localization and distribution of fluorescently labeled molecules in cells. However, monitoring the concentration and oligomeric state of these molecules is difficult. The concentration of molecules is strongly associated with the advancement of chemical reactions in cells, and these reactions regulate cellular functions. Furthermore, some proteins form oligomers during cell signaling, changing their oligomeric state. Thus, quantifying the concentration and oligomeric state would yield valuable information about the regulations and functions of cells. In this study, we have developed statistical methods for quantifying the concentration and oligomeric state of fluorescently labeled molecules in cells.

Problem and Solutions:
 Number and Brightness (N&B) analysis statistically determines the number and brightness of particles, which reflect the concentration and oligomeric state, respectively. N&B analysis is used to analyze the temporal fluctuation of fluorescence images obtained using confocal laser scanning microscopy (CLSM). However, because of low excitation and a limited number of images, the statistical accuracy and precision of this analysis are limited in actual experiments with fluorescent proteins. In one of our methods, we applied maximum a posteriori (MAP) estimation, along with the empirical Bayes (EB) method (referred to as EB−MAP). In EB−MAP, we constructed a statistical model for effectively using spatial information. We assumed that the number of particles at a pixel and that at the surrounding pixels are similar. The assumption of the similarity would be realistic because of the diffraction limit and overlap of confocal volume during sampling.

Results:
 We conducted simulations and experiments and compared results to evaluate the accuracy and precision of EB−MAP. The results showed that the precision of EB−MAP was greater by an order of magnitude in terms of the number of particles and 1.5 times higher in terms of the brightness of particles than conventional N&B analysis.

Conclusion:
 We have developed methods for monitoring the concentration and oligomeric state of fluorescently labeled molecules in cells. We have demonstrated that the developed methods are feasible and achieve high accuracy and precision. Our methods have a wide range of applications in the field of fluorescence live cell imaging. Furthermore, these methods would contribute to the understanding of the dynamic processes in protein oligomerization in cells.

この論文で使われている画像

参考文献

Chapter 1

1. Youker, R.T., and H. Teng. 2014. Measuring protein dynamics in live cells: protocols and practical considerations for fluorescence fluctuation microscopy. J. Biomed. Opt. 19:090801.

2. Bag, N., and T. Wohland. 2014. Imaging Fluorescence Fluctuation Spectroscopy: New Tools for Quantitative Bioimaging. Annu. Rev. Phys. Chem. 65:225–248.

3. Migueles-Ramirez, R.A., A.G. Velasco-Feliz, R. Pinto-Camara, C.D. Wood, and A. Guerrero. 2017. Fluorescence fluctuation spectroscopy in living cells. Microsc. imaging Sci. Pract. approaches to Appl. Res. Educ. 138–151.

4. Elson, E.L., and D. Magde. 1974. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers. 13:1–27.

5. Digman, M.A., R. Dalal, A.F. Horwitz, and E. Gratton. 2008. Mapping the Number of Molecules and Brightness in the Laser Scanning Microscope. Biophys. J. 94:2320–2332.

6. Oakley, R.H., and J.A. Cidlowski. 2013. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 132:1033–1044.

7. Robertson, S., J.P. Hapgood, and A. Louw. 2013. Glucocorticoid receptor concentration and the ability to dimerize influence nuclear translocation and distribution. Steroids. 78:182–194.

8. Nicolaides, N.C., Z. Galata, T. Kino, G.P. Chrousos, and E. Charmandari. 2010. The human glucocorticoid receptor: molecular basis of biologic function. Steroids. 75:1–12.

Chapter 2

1. Qian, H., and E.L. Elson. 1990. On the analysis of high order moments of fluorescence fluctuations. Biophys. J. 57:375–380.

2. Digman, M.A., R. Dalal, A.F. Horwitz, and E. Gratton. 2008. Mapping the Number of Molecules and Brightness in the Laser Scanning Microscope. Biophys. J. 94:2320–2332.

3. Hendrix, J., W. Schrimpf, M. Höller, and D.C. Lamb. 2013. Pulsed Interleaved Excitation Fluctuation Imaging. Biophys. J. 105:848–861.

4. Hillesheim, L.N., and J.D. Müller. 2003. The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy with Non-Ideal Photodetectors. Biophys. J. 85:1948–1958.

Chapter 3

Abdollah-Nia, F. (2016) Cumulant-based formulation of higher-order fluorescence correlation spectroscopy. arXiv.org e-Print Arch.

Abdollah-Nia, F., Gelfand, M.P., Van Orden, A. (2017a) Artifact-Free and Detection-Profile-Independent Higher-Order Fluorescence Correlation Spectroscopy for Microsecond-Resolved Kinetics. 1.Multidetector and Sub-Binning Approach. J. Phys. Chem. B 121:2373–2387. https://doi.org/10.1021/acs.jpcb.7b00407

Abdollah-Nia, F., Gelfand, M.P., Van Orden, A. (2017b) Artifact-Free and Detection-Profile-Independent Higher-Order Fluorescence Correlation Spectroscopy for Microsecond-Resolved Kinetics. 2.Mixtures and Reactions. J. Phys. Chem. B 121:2388–2399. https://doi.org/10.1021/acs.jpcb.7b00408

Bag, N., Wohland, T. (2014) Imaging Fluorescence Fluctuation Spectroscopy: New Tools for Quantitative Bioimaging. Annu. Rev. Phys. Chem. 65:225–248. https://doi.org/10.1146/annurev- physchem-040513-103641

Balleza, E., Kim, J.M., Cluzel, P. (2018) Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods 15:47–51. https://doi.org/10.1038/nmeth.4509

Bartoi, T., Augustinowski, K., Polleichtner, G., Grunder, S., Ulbrich, M.H. (2014) Acid-sensing ion channel (ASIC) 1a/2a heteromers have a flexible 2:1/1:2 stoichiometry. Proc. Natl. Acad. Sci. 111:8281–8286. https://doi.org/10.1073/pnas.1324060111

Caccia, M., Camozzi, E., Collini, M., Zaccolo, M., Chirico, G. (2005) Photon Moment Analysis in Cells in the Presence of Photo-Bleaching. Appl. Spectrosc. 59:227–236. https://doi.org/10.1366/0003702053084981

Campbell, L. (1992) Afterpulse measurement and correction. Rev. Sci. Instrum. 63:5794–5798. https://doi.org/10.1063/1.1143365

Chen, Y., Johnson, J., Macdonald, P., Wu, B., Mueller, J.D. (2010) Observing Protein Interactions and Their Stoichiometry in Living Cells by Brightness Analysis of Fluorescence Fluctuation Experiments. In: Single Molecule Tools: Fluorescence Based Approaches, Part A. Elsevier Inc., pp. 345–363

Chen, Y., Müller, J.D., Ruan, Q., Gratton, E. (2002) Molecular Brightness Characterization of EGFP In Vivo by Fluorescence Fluctuation Spectroscopy. Biophys. J. 82:133–144. https://doi.org/10.1016/S0006-3495(02)75380-0

Chen, Y., Müller, J.D., So, P.T.C., Gratton, E. (1999) The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy. Biophys. J. 77:553–567. https://doi.org/10.1016/S0006-3495(99)76912-2

Chen, Y., Wei, L.-N., Muller, J.D. (2003) Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy. Proc. Natl. Acad. Sci. 100:15492–15497. https://doi.org/10.1073/pnas.2533045100

Cutrale, F., Rodriguez, D., Hortigüela, V., Chiu, C.-L., Otterstrom, J., Mieruszynski, S., Seriola, A., Larrañaga, E., Raya, A., Lakadamyali, M., Fraser, S.E., Martinez, E., Ojosnegros, S. (2019) Using enhanced number and brightness to measure protein oligomerization dynamics in live cells. Nat. Protoc. 14:616–638. https://doi.org/10.1038/s41596-018-0111-9

Dalal, R.B., Digman, M.A., Horwitz, A.F., Vetri, V., Gratton, E. (2008) Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode. Microsc. Res. Tech. 71:69–81. https://doi.org/10.1002/jemt.20526

Das, S.K., Darshi, M., Cheley, S., Wallace, M.I., Bayley, H. (2007) Membrane Protein Stoichiometry Determined from the Step-Wise Photobleaching of Dye-Labelled Subunits. ChemBioChem 8:994– 999. https://doi.org/10.1002/cbic.200600474

Digman, M.A., Dalal, R., Horwitz, A.F., Gratton, E. (2008) Mapping the Number of Molecules and Brightness in the Laser Scanning Microscope. Biophys. J. 94:2320–2332. https://doi.org/10.1529/biophysj.107.114645

Dunsing, V., Luckner, M., Zühlke, B., Petazzi, R.A., Herrmann, A., Chiantia, S. (2018) Optimal fluorescent protein tags for quantifying protein oligomerization in living cells. Sci. Rep. 8:10634. https://doi.org/10.1038/s41598-018-28858-0

Elson, E.L., Magde, D. (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory.Biopolymers 13:1–27. https://doi.org/10.1002/bip.1974.360130102

Fang, Y.-S., Tsai, K.-J., Chang, Y.-J., Kao, P., Woods, R., Kuo, P.-H., Wu, C.-C., Liao, J.-Y., Chou, S.-C., Lin, V., Jin, L.-W., Yuan, H.S., Cheng, I.H., Tu, P.-H., Chen, Y.-R. (2014) Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat. Commun. 5:4824. https://doi.org/10.1038/ncomms5824

Foo, Y.H., Naredi-Rainer, N., Lamb, D.C., Ahmed, S., Wohland, T. (2012) Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys. J. 102:1174–1183. https://doi.org/10.1016/j.bpj.2012.01.040

Fukushima, R., Yamamoto, J., Ishikawa, H., Kinjo, M. (2018) Two-detector number and brightness analysis reveals spatio-temporal oligomerization of proteins in living cells. Methods 140–141:161–171. https://doi.org/10.1016/j.ymeth.2018.03.007

Gambin, Y., Polinkovsky, M., Francois, B., Giles, N., Bhumkar, A., Sierecki, E. (2016) Confocal Spectroscopy to Study Dimerization, Oligomerization and Aggregation of Proteins: A Practical Guide. Int. J. Mol. Sci. 17:655. https://doi.org/10.3390/ijms17050655

Hendrix, J., Flors, C., Dedecker, P., Hofkens, J., Engelborghs, Y. (2008) Dark States in Monomeric Red Fluorescent Proteins Studied by Fluorescence Correlation and Single Molecule Spectroscopy.Biophys. J. 94:4103–4113. https://doi.org/10.1529/biophysj.107.123596

Hendrix, J., Schrimpf, W., Höller, M., Lamb, D.C. (2013) Pulsed Interleaved Excitation Fluctuation Imaging. Biophys. J. 105:848–861. https://doi.org/10.1016/j.bpj.2013.05.059

Hennen, J., Hur, K.-H., Saunders, C.A., Luxton, G.W.G., Mueller, J.D. (2017) Quantitative Brightness Analysis of Protein Oligomerization in the Nuclear Envelope. Biophys. J. 113:138–147. https://doi.org/10.1016/j.bpj.2017.05.044

Hillesheim, L.N., Müller, J.D. (2003) The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy with Non-Ideal Photodetectors. Biophys. J. 85:1948–1958. https://doi.org/10.1016/S0006-3495(03)74622-0

Huet, S., Avilov, S. V., Ferbitz, L., Daigle, N., Cusack, S., Ellenberg, J. (2010) Nuclear Import and Assembly of Influenza A Virus RNA Polymerase Studied in Live Cells by Fluorescence Cross- Correlation Spectroscopy. J. Virol. 84:1254–1264. https://doi.org/10.1128/JVI.01533-09

Hur, K.-H., Macdonald, P.J., Berk, S., Angert, C.I., Chen, Y., Mueller, J.D. (2014) Quantitative Measurement of Brightness from Living Cells in the Presence of Photodepletion. PLoS One 9:e97440. https://doi.org/10.1371/journal.pone.0097440

Hur, K.-H., Mueller, J.D. (2015) Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli. PLoS One 10:e0130063. https://doi.org/10.1371/journal.pone.0130063

Kannan, B., Har, J.Y., Liu, P., Maruyama, I., Ding, J.L., Wohland, T. (2006) Electron Multiplying Charge-Coupled Device Camera Based Fluorescence Correlation Spectroscopy. Anal. Chem. 78:3444–3451. https://doi.org/10.1021/ac0600959

Kitamura, A., Kinjo, M. (2018) State-of-the-art fluorescence fluctuation-based spectroscopic techniques for the study of protein aggregation. Int. J. Mol. Sci. 19. https://doi.org/10.3390/ijms19040964

Krmpot, A.J., Nikolić, S.N., Vitali, M., Papadopoulos, D.K., Oasa, S., Thyberg, P., Tisa, S., Kinjo, M., Nilsson, L., Gehring, W.J., Terenius, L., Rigler, R., Vukojević, V. (2015) Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy.In: Advanced Microscopy Techniques IV; and Neurophotonics II. OSA, Washington, D.C., p. 95360O

Macdonald, P., Johnson, J., Smith, E., Chen, Y., Mueller, J.D. (2013) Brightness Analysis. In: Methods in Enzymology. Elsevier Inc., pp. 71–98

Macdonald, P.J., Chen, Yun, Wang, X., Chen, Yan, Mueller, J.D. (2010) Brightness Analysis by Z-Scan Fluorescence Fluctuation Spectroscopy for the Study of Protein Interactions within Living Cells. Biophys. J. 99:979–988. https://doi.org/10.1016/j.bpj.2010.05.017

Melnykov, A. V., Hall, K.B. (2009) Revival of High-Order Fluorescence Correlation Analysis: Generalized Theory and Biochemical Applications. J. Phys. Chem. B 113:15629–15638. https://doi.org/10.1021/jp906539k

Meseth, U., Wohland, T., Rigler, R., Vogel, H. (1999) Resolution of Fluorescence Correlation Measurements. Biophys. J. 76:1619–1631. https://doi.org/10.1016/S0006-3495(99)77321-2

Müller, J.D. (2004) Cumulant Analysis in Fluorescence Fluctuation Spectroscopy. Biophys. J. 86:3981– 3992. https://doi.org/10.1529/biophysj.103.037887

Nolan, R., Alvarez, L.A.J., Elegheert, J., Iliopoulou, M., Jakobsdottir, G.M., Rodriguez-Muñoz, M., Aricescu, A.R., Padilla-Parra, S. (2017a) nandb—number and brightness in R with a novel automatic detrending algorithm. Bioinformatics 33:3508–3510. https://doi.org/10.1093/bioinformatics/btx434

Nolan, R., Iliopoulou, M., Alvarez, L., Padilla-Parra, S. (2017b) Detecting protein aggregation and interaction in live cells: A guide to number and brightness. Methods :1–6. https://doi.org/10.1016/j.ymeth.2017.12.001

O’Donnell, K.A. (1986) Correction of dead-time effects in photoelectric-counting distributions. J. Opt.Soc. Am. A 3:113. https://doi.org/10.1364/JOSAA.3.000113

Oh, D., Zidovska, A., Xu, Y., Needleman, D.J. (2011) Development of Time-Integrated Multipoint Moment Analysis for Spatially Resolved Fluctuation Spectroscopy with High Time Resolution. Biophys. J. 101:1546–1554. https://doi.org/10.1016/j.bpj.2011.08.013

Ojosnegros, S., Cutrale, F., Rodríguez, D., Otterstrom, J.J., Chiu, C.L., Hortigüela, V., Tarantino, C., Seriola, A., Mieruszynski, S., Martínez, E., Lakadamyali, M., Raya, A., Fraser, S.E. (2017) Eph- ephrin signaling modulated by polymerization and condensation of receptors. Proc. Natl. Acad. Sci. 114:13188–13193. https://doi.org/10.1073/pnas.1713564114

Ossato, G., Digman, M.A., Aiken, C., Lukacsovich, T., Marsh, J.L., Gratton, E. (2010) A Two-Step Path to Inclusion Formation of Huntingtin Peptides Revealed by Number and Brightness Analysis.Biophys. J. 98:3078–3085. https://doi.org/10.1016/j.bpj.2010.02.058

Pack, C., Saito, K., Tamura, M., Kinjo, M. (2006) Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs. Biophys. J. 91:3921–3936. https://doi.org/10.1529/biophysj.105.079467

Palmer, A.G., Thompson, N.L. (1987) Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy. Biophys. J. 52:257–270. https://doi.org/10.1016/S0006- 3495(87)83213-7

Palmer, A.G., Thompson, N.L. (1989a) High-order fluorescence analysis of model protein clusters. Proc.Natl. Acad. Sci. USA 86:6148–6152

Palmer, A.G., Thompson, N.L. (1989b) Intensity dependence of high order autocorrelation functions in fluorescence correlation spectroscopy. Rev. Sci. Instrum. 60:624–633

Petrášek, Z., Schwille, P. (2008) Photobleaching in Two-Photon Scanning Fluorescence Correlation Spectroscopy. ChemPhysChem 9:147–158. https://doi.org/10.1002/cphc.200700579

Qian, H., Elson, E.L. (1990a) On the analysis of high order moments of fluorescence fluctuations.Biophys. J. 57:375–380. https://doi.org/10.1016/S0006-3495(90)82539-X

Qian, H., Elson, E.L. (1990b) Distribution of molecular aggregation by analysis of fluctuation moments.Proc. Natl. Acad. Sci. 87:5479–5483. https://doi.org/10.1073/pnas.87.14.5479

Saffarian, S., Elson, E.L. (2003) Statistical Analysis of Fluorescence Correlation Spectroscopy: The Standard Deviation and Bias. Biophys. J. 84:2030–2042. https://doi.org/10.1016/S0006- 3495(03)75011-5

Sanchez-Andres, A., Chen, Y., Müller, J.D. (2005) Molecular Brightness Determined from a Generalized Form of Mandel’s Q-Parameter. Biophys. J. 89:3531–3547. https://doi.org/10.1529/biophysj.105.067082

Schätzel, K., Drewel, M., Stimac, S. (1988) Photon Correlation Measurements at Large Lag Times: Improving Statistical Accuracy. J. Mod. Opt. 35:711–718. https://doi.org/10.1080/09500348814550731

Skinner, J.P., Chen, Y., Müller, J.D. (2008) Fluorescence Fluctuation Spectroscopy in the Presence of Immobile Fluorophores. Biophys. J. 94:2349–2360. https://doi.org/10.1529/biophysj.107.115642

Slaughter, B.D., Schwartz, J.W., Li, R. (2007) Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc. Natl. Acad. Sci. 104:20320–20325. https://doi.org/10.1073/pnas.0710336105

Thompson, N.L. (1991) Fluorescence Correlation Spectroscopy. In: Lakowics, J.R. (Ed.), Topics in Fluorescence Spectroscopy, Volume 1 Techniques. Plenum Press, pp. 337–378

Trullo, A., Corti, V., Arza, E., Caiolfa, V.R., Zamai, M. (2013) Application limits and data correction in number of molecules and brightness analysis. Microsc. Res. Tech. 76:1135–1146. https://doi.org/10.1002/jemt.22277

Ulbrich, M.H., Isacoff, E.Y. (2007) Subunit counting in membrane-bound proteins. Nat. Methods 4:319–321. https://doi.org/10.1038/nmeth1024

Unruh, J.R., Gratton, E. (2008) Analysis of Molecular Concentration and Brightness from Fluorescence Fluctuation Data with an Electron Multiplied CCD Camera. Biophys. J. 95:5385–5398.https://doi.org/10.1529/biophysj.108.130310

Vámosi, G., Mücke, N., Müller, G., Krieger, J.W., Curth, U., Langowski, J., Tóth, K. (2016) EGFP oligomers as natural fluorescence and hydrodynamic standards. Sci. Rep. 6:33022. https://doi.org/10.1038/srep33022

van Kempen, G.M., van Vliet, L.J. (2000) Mean and variance of ratio estimators used in fluorescence ratio imaging. Cytometry 39:300–5

Wawrezinieck, L., Rigneault, H., Marguet, D., Lenne, P.-F. (2005) Fluorescence Correlation Spectroscopy Diffusion Laws to Probe the Submicron Cell Membrane Organization. Biophys. J. 89:4029–4042. https://doi.org/10.1529/biophysj.105.067959

Widengren, J., Mets, Ü., Rigler, R. (1999) Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem. Phys. 250:171–186. https://doi.org/10.1016/S0301-0104(99)00255-4

Wu, B., Chen, Y., Müller, J.D. (2009) Fluorescence Fluctuation Spectroscopy of mCherry in Living Cells. Biophys. J. 96:2391–2404. https://doi.org/10.1016/j.bpj.2008.12.3902

Wu, B., Müller, J.D. (2005) Time-Integrated Fluorescence Cumulant Analysis in Fluorescence Fluctuation Spectroscopy. Biophys. J. 89:2721–2735. https://doi.org/10.1529/biophysj.105.063685

Yamamoto, J., Mikuni, S., Kinjo, M. (2018) Multipoint fluorescence correlation spectroscopy using spatial light modulator. Biomed. Opt. Express 9:5881. https://doi.org/10.1364/BOE.9.005881

Youker, R.T., Teng, H. (2014) Measuring protein dynamics in live cells: protocols and practical considerations for fluorescence fluctuation microscopy. J. Biomed. Opt. 19:090801. https://doi.org/10.1117/1.JBO.19.9.090801

Zamai, M., Trullo, A., Giordano, M., Corti, V., Arza Cuesta, E., Francavilla, C., Cavallaro, U., Caiolfa,V.R. (2019) Number and brightness analysis reveals that NCAM and FGF2 elicit different assembly and dynamics of FGFR1 in live cells. J. Cell Sci. 132:jcs220624. https://doi.org/10.1242/jcs.220624

Zhou, J., Tang, Y., Zheng, Q., Li, M., Yuan, T., Chen, L., Huang, Z., Wang, K. (2015) Different KChIPs Compete for Heteromultimeric Assembly with Pore-Forming Kv4 Subunits. Biophys. J. 108:2658– 2669. https://doi.org/10.1016/j.bpj.2015.04.024

Chapter 4

[1] E.L. Elson, D. Magde, Fluorescence correlation spectroscopy. I. Conceptual basis and theory, Biopolymers. 13 (1974) 1–27. doi:10.1002/bip.1974.360130102.

[2] D. Magde, E.L. Elson, W.W. Webb, Fluorescence correlation spectroscopy. II. An experimental realization, Biopolymers. 13 (1974) 29–61. doi:10.1002/bip.1974.360130103.

[3] N.O. Petersen, P.L. Höddelius, P.W. Wiseman, O. Seger, K.E. Magnusson, Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,Biophys. J. 65 (1993) 1135–1146. doi:10.1016/S0006-3495(93)81173-1.

[4] M.A. Digman, P. Sengupta, P.W. Wiseman, C.M. Brown, A.R. Horwitz, E. Gratton, Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure, Biophys. J. 88 (2005) L33–L36. doi:10.1529/biophysj.105.061788.

[5] M.A. Digman, C.M. Brown, P. Sengupta, P.W. Wiseman, A.R. Horwitz, E. Gratton, Measuring Fast Dynamics in Solutions and Cells with a Laser Scanning Microscope, Biophys. J. 89 (2005) 1317–1327. doi:10.1529/biophysj.105.062836.

[6] P.W. Wiseman, J.A. Squier, M.H. Ellisman, K.R. Wilson, Two-photon image correlation spectroscopy and image cross-correlation spectroscopy, J. Microsc. 200 (2000) 14–25. doi:10.1046/j.1365-2818.2000.00736.x.

[7] B. Kannan, J.Y. Har, P. Liu, I. Maruyama, J.L. Ding, T. Wohland, Electron Multiplying Charge-Coupled Device Camera Based Fluorescence Correlation Spectroscopy, Anal. Chem. 78 (2006) 3444–3451. doi:10.1021/ac0600959.

[8] M.A. Digman, R. Dalal, A.F. Horwitz, E. Gratton, Mapping the Number of Molecules and Brightness in the Laser Scanning Microscope, Biophys. J. 94 (2008) 2320–2332. doi:10.1529/biophysj.107.114645.

[9] P. Nagy, J. Claus, T.M. Jovin, D.J. Arndt-Jovin, Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis, Proc. Natl. Acad. Sci. 107 (2010) 16524–16529. doi:10.1073/pnas.1002642107.

[10] G. Ossato, M.A. Digman, C. Aiken, T. Lukacsovich, J.L. Marsh, E. Gratton, A Two-Step Path to Inclusion Formation of Huntingtin Peptides Revealed by Number and Brightness Analysis, Biophys. J. 98 (2010) 3078–3085. doi:10.1016/j.bpj.2010.02.058.

[11] D.M. Jones, L.A. Alvarez, R. Nolan, M. Ferriz, R. Sainz Urruela, X. Massana-Muñoz, H. Novak-Kotzer, M.L. Dustin, S. Padilla-Parra, Dynamin-2 Stabilizes the HIV-1 Fusion Pore with a Low Oligomeric State, Cell Rep. 18 (2017) 443–453. doi:10.1016/j.celrep.2016.12.032.

[12] J. Hendrix, W. Schrimpf, M. Höller, D.C. Lamb, Pulsed Interleaved Excitation Fluctuation Imaging, Biophys. J. 105 (2013) 848–861. doi:10.1016/j.bpj.2013.05.059.

[13] L.N. Hillesheim, J.D. Müller, The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy with Non-Ideal Photodetectors, Biophys. J. 85 (2003) 1948–1958. doi:10.1016/S0006-3495(03)74622-0.

[14] K.-H. Hur, P.J. Macdonald, S. Berk, C.I. Angert, Y. Chen, J.D. Mueller, Quantitative Measurement of Brightness from Living Cells in the Presence of Photodepletion, PLoS One. 9 (2014) e97440. doi:10.1371/journal.pone.0097440.

[15] R.B. Dalal, M.A. Digman, A.F. Horwitz, V. Vetri, E. Gratton, Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode, Microsc. Res. Tech. 71 (2008) 69–81. doi:10.1002/jemt.20526.

[16] M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, M. Kinjo, Polarization- dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell, Sci. Rep. 6 (2016) 31091. doi:10.1038/srep31091.

[17] C.B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, J. Enderlein, Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy, Europhys. Lett. 83 (2008) 46001. doi:10.1209/0295-5075/83/46001.

[18] C.T. Culbertson, S.C. Jacobson, J. Michael Ramsey, Diffusion coefficient measurements in microfluidic devices., Talanta. 56 (2002) 365–73. doi:10.1016/S0039-9140(01)00602-6.

[19] A. Trullo, V. Corti, E. Arza, V.R. Caiolfa, M. Zamai, Application limits and data correction in number of molecules and brightness analysis, Microsc. Res. Tech. 76 (2013) 1135–1146. doi:10.1002/jemt.22277.

[20] D.W. Cain, J.A. Cidlowski, Immune regulation by glucocorticoids, Nat. Rev. Immunol. 17 (2017) 233–247. doi:10.1038/nri.2017.1.

[21] M. Srinivasan, D.K. Lahiri, Glucocorticoid-Induced Leucine Zipper in Central Nervous System Health and Disease, Mol. Neurobiol. 54 (2017) 8063–8070. doi:10.1007/s12035-016- 0277-5.

[22] S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, M. Kinjo, Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells, FEBS Lett. 589 (2015) 2171–2178. doi:10.1016/j.febslet.2015.07.003.

[23] M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, M. Kinjo, A Quantitative Study of Internal and External Interactions of Homodimeric Glucocorticoid Receptor Using Fluorescence Cross- Correlation Spectroscopy in a Live Cell, Sci. Rep. 7 (2017) 4336. doi:10.1038/s41598-017- 04499-7.

[24] B.F. Luisi, W.X. Xu, Z. Otwinowski, L.P. Freedman, K.R. Yamamoto, P.B. Sigler, Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA, Nature. 352 (1991) 497–505. doi:10.1038/352497a0.

[25] C.M. Jewell, A.B. Scoltock, B.L. Hamel, M.R. Yudt, J.A. Cidlowski, Complex Human Glucocorticoid Receptor dim Mutations Define Glucocorticoid Induced Apoptotic Resistance in Bone Cells, Mol. Endocrinol. 26 (2012) 244–256. doi:10.1210/me.2011-1116.

[26] S. Robertson, J.M. Rohwer, J.P. Hapgood, A. Louw, Impact of Glucocorticoid Receptor Density on Ligand-Independent Dimerization, Cooperative Ligand-Binding and Basal Priming of Transactivation: A Cell Culture Model, PLoS One. 8 (2013) e64831. doi:10.1371/journal.pone.0064831.

Chapter 5

1. Youker, R.T., and H. Teng. 2014. Measuring protein dynamics in live cells: protocols and practical considerations for fluorescence fluctuation microscopy. J. Biomed. Opt. 19:090801.

2. Bag, N., and T. Wohland. 2014. Imaging Fluorescence Fluctuation Spectroscopy: New Tools for Quantitative Bioimaging. Annu. Rev. Phys. Chem. 65:225–248.

3. Migueles-Ramirez, R.A., A.G. Velasco-Feliz, R. Pinto-Camara, C.D. Wood, and A. Guerrero. 2017. Fluorescence fluctuation spectroscopy in living cells. Microsc. imaging Sci. Pract. approaches to Appl. Res. Educ. 138–151.

4. Elson, E.L., and D. Magde. 1974. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers. 13:1–27.

5. Krmpot, A.J., S.N. Nikolić, M. Vitali, D.K. Papadopoulos, S. Oasa, P. Thyberg, S. Tisa, M. Kinjo, L. Nilsson, W.J. Gehring, L. Terenius, R. Rigler, and V. Vukojević. 2015. Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy. In: Advanced Microscopy Techniques IV; and Neurophotonics II. OSA, Washington, D.C. p. 95360O.

6. Yamamoto, J., S. Mikuni, and M. Kinjo. 2018. Multipoint fluorescence correlation spectroscopy using spatial light modulator. Biomed. Opt. Express. 9:5881.

7. Digman, M.A., R. Dalal, A.F. Horwitz, and E. Gratton. 2008. Mapping the Number of Molecules and Brightness in the Laser Scanning Microscope. Biophys. J. 94:2320–2332.

8. Qian, H., and E.L. Elson. 1990. On the analysis of high order moments of fluorescence fluctuations. Biophys. J. 57:375–380.

9. Qian, H., and E.L. Elson. 1990. Distribution of molecular aggregation by analysis of fluctuation moments. Proc. Natl. Acad. Sci. 87:5479–5483.

10. Saleh, B. 1978. Photoelectron statistics with applications to spectroscopy and optical communication. Springer-Verlag Berlin Heidelberg GmbH, .

11. Fukushima, R., J. Yamamoto, H. Ishikawa, and M. Kinjo. 2018. Two-detector number and brightness analysis reveals spatio-temporal oligomerization of proteins in living cells. Methods. 140–141:161–171.

12. Strey, H.H. 2019. Estimation of parameters from time traces originating from an Ornstein- Uhlenbeck process. Phys. Rev. E. 100:062142.

13. Jazani, S., I. Sgouralis, O.M. Shafraz, M. Levitus, S. Sivasankar, and S. Pressé. 2019. An alternative framework for fluorescence correlation spectroscopy. Nat. Commun. 10:3662.

14. Santra, K., J. Zhan, X. Song, E.A. Smith, N. Vaswani, and J.W. Petrich. 2016. What Is the Best Method to Fit Time-Resolved Data? A Comparison of the Residual Minimization and the Maximum Likelihood Techniques As Applied to Experimental Time-Correlated, Single- Photon Counting Data. J. Phys. Chem. B. 120:2484–2490.

15. Santra, K., E.A. Smith, J.W. Petrich, and X. Song. 2017. Photon Counting Data Analysis: Application of the Maximum Likelihood and Related Methods for the Determination of Lifetimes in Mixtures of Rose Bengal and Rhodamine B. J. Phys. Chem. A. 121:122–132.

16. Shenton, L.R. 1949. On the efficiency of the method of moments and Neyman’s type A distribution. Biometrika. 36:450–454.

17. Shenton, L.R., and K.O. Bowman. 1967. Remarks on Large Sample Estimators for Some Discrete Distributions. Technometrics. 9:587–598.

18. Galindo Garre, F., and J.K. Vermunt. 2006. Avoiding Boundary Estimates in Latent Class Analysis by Bayesian Posterior Mode Estimation. Behaviormetrika. 33:43–59.

19. Allman, E., H.B. Cervantes, S. Hosten, K. Kubjas, D. Lemke, J. Rhodes, and P. Zwiernik. 2019. Maximum likelihood estimation of the Latent Class Model through model boundary decomposition. J. Algebr. Stat. 10:51–84.

20. Mandel, L. 1958. Fluctuations of Photon Beams and their Correlations. Proc. Phys. Soc.72:1037–1048.

21. Chen, Y., J.D. Müller, P.T.C. So, and E. Gratton. 1999. The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy. Biophys. J. 77:553–567.

22. Hillesheim, L.N., and J.D. Müller. 2005. The dual-color photon counting histogram with non-ideal photodetectors. Biophys. J. 89:3491–3507.

23. Neyman, J. 1939. On a new class of “contagious” distributions, applicable in entomology and bacteriology. Ann. Math. Stat. 10:35–57.

24. Adelson, R.. 1966. Compound Poisson Distributions. Oper. Res. Soc. 17:73–75.

25. Hendrix, J., W. Schrimpf, M. Höller, and D.C. Lamb. 2013. Pulsed Interleaved Excitation Fluctuation Imaging. Biophys. J. 105:848–861.

26. Bishop, C.M. 2006. Pattern Recognition and Machine Learning. Springer, Germany.

27. Gelman, A., J. Carlin, H. Stern, and D. Rubin. 2004. Bayesian data analysis. 3rd ed. Chapman & Hall/CRC, UK.

28. Chung, Y., S. Rabe-Hesketh, V. Dorie, A. Gelman, and J. Liu. 2013. A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models. Psychometrika. 78:685–709.

29. Hillesheim, L.N., and J.D. Müller. 2003. The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy with Non-Ideal Photodetectors. Biophys. J. 85:1948–1958.

30. Wooldridge, J.M. 2009. Introductory Econometrics: A Modern Approach. 5th ed. South- Western, Cengage Learning, USA.

31. Willmot, G.E. 1988. Parameter Orthogonality for a Family of Discrete Distributions. J. Am. Stat. Assoc. 83:517–521.

32. Widengren, J., Ü. Mets, and R. Rigler. 1999. Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem. Phys. 250:171–186.

33. Hur, K.-H., P.J. Macdonald, S. Berk, C.I. Angert, Y. Chen, and J.D. Mueller. 2014. Quantitative Measurement of Brightness from Living Cells in the Presence of Photodepletion. PLoS One. 9:e97440.

34. Balleza, E., J.M. Kim, and P. Cluzel. 2018. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods. 15:47–51.

35. Dunsing, V., M. Luckner, B. Zühlke, R.A. Petazzi, A. Herrmann, and S. Chiantia. 2018. Optimal fluorescent protein tags for quantifying protein oligomerization in living cells.Rep. 8:10634.

36. Foo, Y.H., N. Naredi-Rainer, D.C. Lamb, S. Ahmed, and T. Wohland. 2012. Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys. J. 102:1174–1183.

37. Vámosi, G., N. Mücke, G. Müller, J.W. Krieger, U. Curth, J. Langowski, and K. Tóth. 2016. EGFP oligomers as natural fluorescence and hydrodynamic standards. Sci. Rep. 6:33022.

38. Petrášek, Z., and P. Schwille. 2008. Scanning Fluorescence Correlation Spectroscopy. In: Single Molecules and Nanotechnology. Springer, Berlin, Heidelberg, . pp. 83–105.

39. Kannan, B., J.Y. Har, P. Liu, I. Maruyama, J.L. Ding, and T. Wohland. 2006. Electron Multiplying Charge-Coupled Device Camera Based Fluorescence Correlation Spectroscopy. Anal. Chem. 78:3444–3451.

40. Bédard, G. 1967. Dead-time corrections to the statistical distribution of photoelectrons. Proc. Phys. Soc. 90.

41. Ackermann, J., and H. Hogreve. 2010. Small dead-time expansion in counting distributions and moments. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 614:297–302.

42. Oura, M., J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo. 2016. Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell. Sci. Rep. 6:31091.

43. Pack, C., K. Saito, M. Tamura, and M. Kinjo. 2006. Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs. Biophys. J. 91:3921–3936.

44. Takahasi, H., and M. Mori. 1973. Double exponential formulas for numerical integration.Publ. Res. Inst. Math. Sci. 9:721–741.

45. Müller, C.B., A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J.Enderlein. 2008. Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. Europhys. Lett. 83:46001.

46. Culbertson, C.T., S.C. Jacobson, and J. Michael Ramsey. 2002. Diffusion coefficient measurements in microfluidic devices. Talanta. 56:365–73.

47. Amrhein, V., S. Greenland, and B. McShane. 2019. Scientists rise up against statistical significance. Nature. 567:305–307.

48. Johnson, D.H. 1999. The Insignificance of Statistical Significance Testing. J. Wildl. Manage.63:763.

49. Lemoine, N.P. 2019. Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. Oikos. 128:912–928.

50. Gelman, A. 2006. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1:515–534.

51. Polson, N.G., and J.G. Scott. 2012. On the Half-Cauchy Prior for a Global Scale Parameter.Bayesian Anal. 7:887–902.

52. R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.

53. Stan Development Team. 2020. RStan: the R interface to Stan. http://mc-stan.org/.

SUPPORTING REFERENCES

1. Bédard, G. 1967. Dead-time corrections to the statistical distribution of photoelectrons. Proc. Phys. Soc. 90.

2. Ackermann, J., and H. Hogreve. 2010. Small dead-time expansion in counting distributions and moments. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 614:297–302.

3. Hillesheim, L.N., and J.D. Müller. 2003. The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy with Non-Ideal Photodetectors. Biophys. J. 85:1948–1958.

4. Hillesheim, L.N., and J.D. Müller. 2005. The dual-color photon counting histogram with non- ideal photodetectors. Biophys. J. 89:3491–3507.

5. Bishop, C.M. 2006. Pattern Recognition and Machine Learning. Springer, Germany.

6. Fukushima, R., J. Yamamoto, H. Ishikawa, and M. Kinjo. 2018. Two-detector number and brightness analysis reveals spatio-temporal oligomerization of proteins in living cells. Methods. 140–141:161–171.

7. Oura, M., J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo. 2016. Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell. Sci. Rep. 6:31091.

8. Pack, C., K. Saito, M. Tamura, and M. Kinjo. 2006. Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs. Biophys. J. 91:3921–3936.

9. Takahasi, H., and M. Mori. 1973. Double exponential formulas for numerical integration. Publ. Res. Inst. Math. Sci. 9:721–741.

10. Müller, C.B., A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein. 2008. Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. Europhys. Lett. 83:46001.

11. Culbertson, C.T., S.C. Jacobson, and J. Michael Ramsey. 2002. Diffusion coefficient measurements in microfluidic devices. Talanta. 56:365–73.

12. Amrhein, V., S. Greenland, and B. McShane. 2019. Scientists rise up against statistical significance. Nature. 567:305–307.

13. Johnson, D.H. 1999. The Insignificance of Statistical Significance Testing. J. Wildl. Manage.63:763.

14. Lemoine, N.P. 2019. Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. Oikos. 128:912–928.

15. Gelman, A. 2006. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1:515–534.

16. Polson, N.G., and J.G. Scott. 2012. On the Half-Cauchy Prior for a Global Scale Parameter.Bayesian Anal. 7:887–902.

17. Gelman, A., J. Carlin, H. Stern, and D. Rubin. 2004. Bayesian data analysis. 3rd ed. Chapman & Hall/CRC, UK.

18. R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.

19. Stan Development Team. 2020. RStan: the R interface to Stan. http://mc-stan.org/.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る