リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of orthophosphosilicate glass/poly(lactic acid) composite anisotropic scaffolds for simultaneous reconstruction of bone quality and quantity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of orthophosphosilicate glass/poly(lactic acid) composite anisotropic scaffolds for simultaneous reconstruction of bone quality and quantity

Lee, Sungho 大阪大学

2020.07.27

概要

Reconstruction of organ-specific architecture is necessary to recover the original organ function. The anisotropic structure of bone tissue is strongly related to the collagen fibril alignment and bone apatite crystal direction. Bone regeneration indicates following two main process; first, restoration of bone mineral density (BMD; bone quantity), and second, restoring bone apatite c-axis orientation (bone quality). In addition to BMD, bone quality is the most important factor among bone mechanical properties. Recovery of the original bone function requires development of novel scaffolds with simultaneous reconstruction of bone quality and quantity. Herein, novel orthophosphosilicate glass (PSG)/poly(lactic acid) composite anisotropic scaffolds were developed to control cell alignment and enhance bone formation, which are important for the simultaneous reconstruction of bone quality and quantity. The strategy to control cell alignment and bone formation involved designing anisotropic scaffolds in combination with the release of therapeutic ions by PSGs. The morphology of fibrous scaffolds containing PSGs was quantitatively designed using electrospinning. This successfully modulated cell alignment and subsequent bone apatite c-axis orientation along the fiber-oriented direction. The released silicate and Mg2+ ions from PSGs in scaffolds improved cell adhesion, proliferation, and calcification. To best of our knowledge, this is the first report demonstrating that the anisotropic scaffolds containing bioactive glasses regenerate bone tissues with simultaneous reconstruction of bone quality and quantity via stimulating osteoblasts by inorganic ions and designing morphology of scaffolds.

この論文で使われている画像

参考文献

1. Weiner, S., & Wagner, H. D. (1998). The material bone: structure- mechanical function relations. Annu Rev Mater Sci, 28, 271–298.

2. Seto, J., Gupta, H. S., Zaslansky, P., Wagner, H. D., & Fratzl, P. (2008). Tough lessons from bone: extreme mechanical anisotropy at the mesoscale. Adv Funct Mater, 18, 1905–1911.

3. Nakano, T., Kaibara, K., Tabata, Y., Nagata, N., Enomoto, S., Marukawa, E., & Umakoshi, Y. (2002). Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam x-ray diffractometer system. Bone, 31, 479–487.

4. Ishimoto, T., Nakano, T., Umakoshi, Y., Yamamoto, M., & Tabata, Y. (2013). Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2. J Bone Miner Res, 28, 1170–1179.

5. Nakano, T., Kaibara, K., Ishimoto, T., Tabata, Y., & Umakoshi, Y. (2012). Biological apatite (BAp) crystallographic orientation and tex- ture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering. Bone, 51, 741–747.

6. Matsugaki, A., Isobe, Y., Saku, T., & Nakano, T. (2015). Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix struc- ture depends on the degree of osteoblast alignment on oriented colla- gen substrates. J Biomed Mater Res A, 103, 489–499.

7. Matsugaki, A., Aramoto, G., & Nakano, T. (2012). The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by disloca- tion motion. Biomaterials, 33, 7327–7335.

8. Nakanishi, Y., Matsugaki, A., Kawahara, K., Ninomiya, T., Sawada, H., & Nakano, T. (2019). Unique arrangement of bone matrix orthogonal to osteoblast alignment controlled by Tspan11-mediated focal adhesion assembly. Biomaterials, 209, 103–110.

9. Pham, Q. P., Sharma, U., & Mikos, D. A. G. (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tis- sue Eng, 12, 1197–1211.

10. Murugan, R., & Ramakrishna, S. (2006). Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng, 12, 435–447.

11. Lee, J.-h., Lee, Y. J., H-j, C., & Shin, H. (2013). Guidance of in vitro migra- tion of human mesenchymal stem cells and in vivo guided bone regenera- tion using aligned electrospun fibers. Tissue Eng Part A, 20, 2031–2042.

12. Madhurakkat Perikamana, S. K., Lee, J., Ahmad, T., Jeong, Y., Kim, D.- G., Kim, K., & Shin, H. (2015). Effects of immobilized BMP-2 and nanofiber morphology on in vitro osteogenic differentiation of hMSCs and in vivo collagen assembly of regenerated bone. ACS Appl Mater Interfaces, 7, 8798–8808.

13. Hench, L. L. (1998). Bioceramics. J Am Ceram Soc, 81, 1705–1728.

14. Hench, L. L. (2006). The story of bioglass. J Mater Sci Mater Med, 17, 967–978.

15. Hoppe, A., Güldal, N. S., & Boccaccini, A. R. (2011). A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 32, 2757–2774.

16. Xynos, I. D., Edgar, A. J., Buttery, L. D. K., Hench, L. L., & Polak, J. M. (2000). Ionic products of bioactive glass dissolution increase prolifera- tion of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun, 276, 461–465.

17. Xynos, I. D., Hukkanen, J. M. V., Batten, J. J., Buttery, D. L., Hench, L. L., & Polak, M. J. (2000). Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and appli- cations for bone tissue engineering. Calcif Tissue Int, 67, 321–329.

18. Julien, M., Khoshniat, S., Lacreusette, A., Gatius, M., Bozec, A., Wagner, E. F., et al. (2009). Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res, 24, 1856–1868.

19. Yamada, S., Ota, Y., Obata, A., & Kasuga, T. (2017). Osteoblast-like cell responses to ion products released from magnesium- and silicate- containing calcium carbonates. Biomed Mater Eng, 28, 47–56.

20. Hall, S. L., Dimai, H. P., & Farley, J. R. (1999). Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif Tissue Int, 64, 163–172.

21. Oh, S.-A., Won, J.-E., & Kim, H.-W. (2011). Composite membranes of poly(lactic acid) with zinc-added bioactive glass as a guiding matrix for osteogenic. J Biomater Appl, 27(4), 413–422.

22. Wu, X., Itoh, N., Taniguchi, T., Nakanishi, T., Tatsu, Y., Yumoto, N., & Tanaka, K. (2003). Zinc-induced sodium-dependent vitamin C trans- porter 2 expression: potent roles in osteoblast differentiation. Arch Biochem Biophys, 420, 114–120.

23. Kwun, I.-S., Cho, Y.-E., Lomeda, R.-A. R., Shin, H.-I., Choi, J.-Y., Kang, Y.-H., & Beattie, J. H. (2010). Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone, 46, 732–741.

24. Marie, P. J. (2010). The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone, 46, 571–576.

25. Maeno, S., Niki, Y., Matsumoto, H., Morioka, H., Yatabe, T., Funayama, A., … Tanaka, J. (2005). The effect of calcium ion concen- tration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials, 26, 4847–4855.

26. Kasuga, T., & Abe, Y. (1999). Calcium phosphate invert glasses with soda and titania. J Non-Cryst Solids, 243, 70–74.

27. Lee, S., Obata, A., & Kasuga, T. (2009). Ion release from SrO-CaO-TiO2- P2O5 glasses in Tris buffer solution. J Cerma Soc Jpn, 117, 935–938.

28. Maeda, H., Lee, S., Miyajima, T., Obata, A., Ueda, K., Narushima, T., & Kasuga, T. (2016). Structure and physicochemical properties of CaO– P2O5–Nb2O5–Na2O glasses. J Non-Cryst Solids, 432, 60–64.

29. Lee, S. (2020). Development of glass-related biomaterials for enhanced bone regeneration via stimulation of cell function. J Ceram Soc Jpn, 128, 349–356.

30. Lee, S., Maeda, H., Obata, A., Ueda, K., Narushima, T., & Kasuga, T. (2015). Structures and dissolution behaviors of CaO-P2O5- TiO2/Nb2O5 (ca/P ≥ 1) invert glasses. J Non-Cryst Solids, 426, 35–42.

31. Lee, S., Maeda, H., Obata, A., Ueda, K., Narushima, T., & Kasuga, T. (2015). Structure and dissolution behavior of MgO-P2O5-TiO2/Nb2O5 (mg/P ≥ 1) invert glasses. J Ceram Soc Jpn, 123, 942–948.

32. Lee, S., Maeda, H., Obata, A., Ueda, K., Narushima, T., & Kasuga, T. (2016). Structures and dissolution behaviors of MgO–CaO–P2O5– Nb2O5 glasses. J Non-Cryst Solids, 438, 18–25.

33. Obata, A., Takahashi, Y., Miyajima, T., Ueda, K., Narushima, T., & Kasuga, T. (2012). Effects of niobium ions released from calcium phosphate invert glasses containing Nb2O5 on osteoblast-like cell functions. ACS Appl Mater Interfaces, 4, 5684–5690.

34. Lee, S., Obata, A., Brauer, D. S., & Kasuga, T. (2015). Dissolution behavior and cell compatibility of alkali-free MgO-CaO-SrO-TiO2- P2O5 glasses for biomedical applications. Biomed Glasses, 1, 151–158.

35. Kasuga, T., Hattori, T., & Niinomi, M. (2012). Phosphate glasses and glass-ceramics for biomedical applications. Phosphorus Res Bull, 26, 8–15.

36. Lee, S., Maçon, A. L. B., & Kasuga, T. (2016). Structure and dissolution behavior of orthophosphate MgO–CaO–P2O5–Nb2O5 glass and glass-ceramic. Mater Lett, 175, 135–138.

37. Lee, S., Nakano, T., & Kasuga, T. (2017). Formation and structural analysis of 15MgO–15CaO–8P2O5–4SiO2 glass. J Non-Cryst Solids, 457, 73–76.

38. Lee, S., Ueda, K., Narushima, T., Nakano, T., & Kasuga, T. (2017). Prep- aration of orthophosphate glasses in the MgO-CaO-SiO2-Nb2O5- P2O5 system. Biomed Mater Eng, 28, 23–30.

39. Lee, S., Matsugaki, A., Kasuga, T., & Nakano, T. (2019). Development of bifunctional oriented bioactive glass/poly(lactic acid) composite scaffolds to control osteoblast alignment and proliferation. J Biomed Mater Res A, 107, 1031–1041.

40. Lee, S., Kiyokane, Y., Kasuga, T., & Nakano, T. (2019). Oriented siloxane-containing vaterite/poly(lactic acid) composite scaffolds for controlling osteoblast alignment and proliferation. J Asian Ceram Soc, 7, 228–237.

41. Lee, S., Nagata, F., Kato, K., & Nakano, T. (2020). Bone apatite aniso- tropic structure control via designing fibrous scaffolds. RSC Adv, 10, 13500–13506.

42. Sun, T., Norton, D., McKean, R. J., Haycock, J. W., Ryan, A. J., & MacNeil, S. (2007). Development of a 3D cell culture system for investigating cell interactions with electrospun fibers. Biotechnol Bio- eng, 97, 1318–1328.

43. Matsugaki, A., Fujiwara, N., & Nakano, T. (2013). Continuous cyclic stretch induces osteoblast alignment and formation of anisotropic collagen fiber matrix. Acta Biomater, 9, 7227–7235.

44. Lee, S., Nakano, T., & Kasuga, T. (2017). Structure, dissolution behav- ior, cytocompatibility, and antibacterial activity of silver-containing calcium phosphate invert glasses. J Biomed Mater Res A, 105, 3127–3135.

45. Wong, G., & Cohn, D. V. (1974). Separation of parathyroid hormone and calcitonin-sensitive cells from non-responsive bone cells. Nature, 252, 713–715.

46. Matsugaki, A., Aramoto, G., Ninomiya, T., Sawada, H., Hata, S., & Nakano, T. (2015). Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is con- structed by a nanoscale periodic surface structure. Biomaterials, 37, 134–143.

47. Miyazaki, T., Miyauchi, S., Tawada, A., Anada, T., Matsuzaka, S., & Suzuki, O. (2008). Oversulfated chondroitin sulfate-E binds to BMP-4 and enhances osteoblast differentiation. J Cell Physiol, 217, 769–777.

48. Ishimoto, T., Sato, B., Lee, J.-W., & Nakano, T. (2017). Co- deteriorations of anisotropic extracellular matrix arrangement and intrinsic mechanical property in c-src deficient osteopetrotic mouse femur. Bone, 103, 216–223.

49. Matsugaki, A., Harada, T., Kimura, Y., Sekita, A., & Nakano, T. (2018). Dynamic collision behavior between osteoblasts and tumor cells reg- ulates the disordered arrangement of collagen fiber/apatite crystals in metastasized bone. Int J Mol Sci, 19, 3474.

50. Umeno, A., Kotani, H., Iwasaka, M., & Ueno, S. (2001). Quantification of adherent cell orientation and morphology under strong magnetic fields. IEEE Trans Magn, 37, 2909–2911.

51. Karakassides, M. A., Saranti, A., & Koutselas, I. (2004). Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J Non-Cryst Solids, 347, 69–79.

52. Mysen, B. O., Virgo, D., & Scarfe, C. M. (1980). Relations between the anionic structure and viscosity of silicate melts – a Raman- spectroscopic study. Am Mineral, 65, 690–710.

53. Sun, Y., Zhang, Z., Liu, L., & Wang, X. (2015). FTIR, Raman and NMR investigation of CaO–SiO2–P2O5 and CaO–SiO2–TiO2–P2O5 glasses. J Non-Cryst Solids, 420, 26–33.

54. Hansen, M. R., Jakobsen, H. J., & Skibsted, J. (2003). 29Si chemical shift anisotropies in calcium silicates from high-field 29Si MAS NMR spectroscopy. Inorg Chem, 42, 2368–2377.

55. Sudarsanan, K., & Young, R. A. (1969). Significant precision in crystal structural details. Holly Springs hydroxyapatite. Acta Crystallogr B, 25, 1534–1543.

56. Chakraborty, I. N., & Condrate, R. A. (1985). Vibrational spectra of glasses in the Na2O-SiO2-P2O5 system with a 1:1 SiO2:P2O5 molar ratio. Phys Chem Glasses, 26, 68–73.

57. Dupree, R., Holland, D., & Mortuza, M. G. (1988). Six-coordinated sili- con in glasses. Nature, 328, 416–417.

58. Ahsan, M. R., & Mortuza, M. G. (2005). Infrared spectra of xCaO(1 − x– z)SiO2zP2O5 glasses. J Non-Cryst Solids, 351, 2333–2340.

59. Brow, R. K. (2000). Review: the structure of simple phosphate glasses. J Non-Cryst Solids, 263–264, 1–28.

60. Varshneya, A. K. (1994). Chapter 3 - Glass formation principles. In A. Varshneya & J. C. Mauro (Eds.), Fundamentals of Inorganic Glasses (pp. 27–59). San Diego, CA: Academic Press.

61. Brauer, D. S., Wilson, R. M., & Kasuga, T. (2012). Multicomponent phosphate invert glasses with improved processing. J Non-Cryst Solids, 358, 1720–1723.

62. Cacciotti, I. (2017). Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. J Mater Sci, 52, 8812–8831.

63. Shahrabi, S., Hesaraki, S., Moemeni, S., & Khorami, M. (2011). Struc- tural discrepancies and in vitro nanoapatite formation ability of sol– gel derived glasses doped with different bone stimulator ions. Ceram Int, 37, 2737–2746.

64. Watts, S. J., Hill, R. G., O'Donnell, M. D., & Law, R. V. (2010). Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids, 356, 517–524.

65. Chen, X., Brauer, D. S., Karpukhina, N., Waite, R. D., Barry, M., McKay, I. J., & Hill, R. G. (2014). 'Smart' acid-degradable zinc-releasing silicate glasses. Mater Lett, 126, 278–280.

66. Blochberger, M., Hupa, L., & Brauer Delia, S. (2015). Influence of zinc and magnesium substitution on ion release from bioglass 45S5 at physiological and acidic pH. Biomed Glasses, 1, 51–69.

67. Pedone, A., Malavasi, G., Menziani, M. C., Segre, U., & Cormack, A. N. (2008). Role of magnesium in soda-lime glasses: insight into struc- tural, transport, and mechanical properties through computer simula- tions. J Phys Chem C, 112, 11034–11041.

68. Pedone, A., Malavasi, G., & Menziani, M. C. (2009). Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses. J Phys Chem C, 113, 15723–15730.

69. Goel, A., Kapoor, S., Tilocca, A., Rajagopal, R. R., & Ferreira, J. M. F. (2013). Structural role of zinc in biodegradation of alkali-free bioac- tive glasses. J Mater Chem B, 1, 3073–3082.

70. Montagne, L., Palavit, G., & Delaval, R. (1997). 31P NMR in (100 - x) (NaPO3)-xZnO glasses. J Non-Cryst Solids, 215, 1–10.

71. Abou Neel, E. A., Pickup, D. M., Valappil, S. P., Newport, R. J., & Knowles, J. C. (2009). Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem, 19, 690–701.

72. Sales, B. C., Boatner, L. A., & Ramey, J. O. (2000). Chromatographic studies of the structures of amorphous phosphates: a review. J Non- Cryst Solids, 263–264, 155–166.

73. Aina, V., Malavasi, G., Fiorio Pla, A., Munaron, L., & Morterra, C. (2009). Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater, 5, 1211–1222.

74. Yunqi, W., Chenkai, Z., Andrew, P., Chris, R., Ifty, A., & Nusrat, S. (2019). Effects of ZnO addition on thermal properties, degradation and biocompatibility of P45Mg24Ca16Na(15−x)Znx glasses. Biomed Glasses, 5, 53–66.

75. Salih, V., Patel, A., & Knowles, J. C. (2007). Zinc-containing phosphate- based glasses for tissue engineering. Biomed Mater, 2, 11–20.

76. Takebe, H., Baba, Y., & Kuwabara, M. (2006). Dissolution behavior of ZnO–P2O5 glasses in water. J Non-Cryst Solids, 352, 3088–3094.

77. Chenu, S., Werner-Zwanziger, U., Calahoo, C., & Zwanziger, J. W. (2012). Structure and properties of NaPO3–ZnO–Nb2O5–Al2O3 glasses. J Non-Cryst Solids, 358, 1795–1805.

78. Lee, S., Uehara, H., Maçon, A. L. B., Maeda, H., Obata, A., Ueda, K., … Kasuga, T. (2016). Preparation of antibacterial ZnO-CaO-P2O5- Nb2O5 invert glasses. Mater Trans, 57, 2072–2076.

79. Masai, H., Shirai, R., Yoshida, K., Takahashi, Y., Ihara, R., Fujiwara, T., … Yoko, T. (2013). 31P NMR and IR study of highly water-stable SrO- BaO-Nb2O5-P2O5 glass and glass-ceramics. Chem Lett, 42, 1305–1307.

80. Liu, B., Zhang, X., Xiao, G.-y., & Lu, Y.-p. (2015). Phosphate chemical conversion coatings on metallic substrates for biomedical application: a review. Mater Sci Eng C, 47, 97–104.

81. Zhao, X.-c., Xiao, G.-y., Zhang, X., Wang, H.-y., & Lu, Y.-p. (2014). Ultra- sonic induced rapid formation and crystal refinement of chemical con- versed hopeite coating on titanium. J Phys Chem C, 118, 1910–1918.

82. Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49, 2387–2425.

83. Yang, X., Hu, J., Chen, S., & He, J. (2016). Understanding the percolation characteristics of nonlinear composite dielectrics. Sci Rep, 6, 30597.

84. Tanahashi, M., & Matsuda, T. (1997). Surface functional group depen- dence on apatite formation on self-assembled monolayers in a simu- lated body fluid. J Biomed Mater Res, 34, 305–315.

85. Yamamoto, A., Honma, R., & Sumita, M. (1998). Cytotoxicity evalua- tion of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res, 39, 331–340.

86. Aina, V., Perardi, A., Bergandi, L., Malavasi, G., Menabue, L., Morterra, C., & Ghigo, D. (2007). Cytotoxicity of zinc-containing bio- active glasses in contact with human osteoblasts. Chem Biol Interact, 167, 207–218.

87. Abou Neel, E., O'Dell, L., Smith, M., & Knowles, J. (2008). Processing, characterisation, and biocompatibility of zinc modified metaphos- phate based glasses for biomedical applications. J Mater Sci Mater Med, 19, 1669–1679.

88. Sato, P. S., Watanabe, T., Maeda, H., Obata, A., & Kasuga, T. (2020). Preparation of an antibacterial amorphous thin film by radiofrequency magnetron sputtering using a 65ZnO–30P2O5–5Nb2O5 glass. J Non- Cryst Solids, 528, 119724.

89. Moriishi, T., Ozasa, R., Ishimoto, T., Nakano, T., Hasegawa, T., Miyazaki, T., … Komori, H. . (2020). Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testos- terone synthesis, or muscle mass. PLoS Genet, 16, e1008586.others

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る