リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Innate cell-mediated cytotoxicity of CD8+ T cells against the protozoan parasite Ichthyophthirius multifiliis in the ginbuna crucian carp Carassius auratus langsdorfii」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Innate cell-mediated cytotoxicity of CD8+ T cells against the protozoan parasite Ichthyophthirius multifiliis in the ginbuna crucian carp Carassius auratus langsdorfii

Sukeda, Masaki 助田, 将樹 スケダ, マサキ Shiota, Koumei 塩田, 昂明 シオタ, コウメイ Kondo, Masakazu 近藤, 昌和 コンドウ, マサカズ Nagasawa, Takahiro 長澤, 貴宏 ナガサワ, タカヒロ Nakao, Miki 中尾, 実樹 ナカオ, ミキ Somamoto, Tomonori 杣本, 智軌 ソマモト, トモノリ 九州大学

2021.02

概要

Cytotoxic T cells are known to have the ability to kill microbe-infected host cells, which makes them essential in the adaptive immunity processes of various vertebrates. In this study, we demonstrate

参考文献

436

Ahmadpour, E., Ebrahimzadeh, M.A., Sharif, M., Edalatian, S., Sarvi, S., Montazeri,

437

M., Mehrzadi, S., Akbari, M., Rahimi, M.T., Daryani, A., 2019. Anti-Toxoplasma

438

activities of Zea mays and Eryngium caucasicum extracts, in vitro and in vivo. J.

439

Pharmacopuncture 22, 154–159. https://doi.org/10.3831/KPI.2019.22.020

440

Akula, S., Thorpe, M., Boinapally, V., Hellman, L., 2015. Granule associated serine

441

proteases of hematopoietic cells-an analysis of their appearance and diversification

442

during vertebrate evolution. PLoS One 10, 1–26.

443

https://doi.org/10.1371/journal.pone.0143091

444

Barbarin, A., Cayssials, E., Jacomet, F., Nunez, N.G., Basbous, S., Lefèvre, L.,

445

Abdallah, M., Piccirilli, N., Morin, B., Lavoue, V., Catros, V., Piaggio, E.,

446

Herbelin, A., Gombert, J.M., 2017. Phenotype of NK-like CD8(+) T cells with

447

innate features in humans and their relevance in cancer diseases. Front. Immunol.

448

8, 1–16. https://doi.org/10.3389/fimmu.2017.00316

449

Barreda, D.R., Hanington, P.C., Stafford, J.L., Belosevic, M., 2005. A novel soluble

450

form of the CSF-1 receptor inhibits proliferation of self-renewing macrophages of

451

goldfish (Carassius auratus L.). Dev. Comp. Immunol. 29, 879–894.

452

https://doi.org/10.1016/j.dci.2005.02.006

453

Beno, D.W.A., Mathews, H.L., 1992. Growth inhibition of Candida albicans by

454

interleukin-2-activated splenocytes. Infect. Immun. 60, 853–863.

455

https://doi.org/10.1128/iai.60.3.853-863.1992

456

457

Beno, D.W.A., Stover, A.G., Mathews, H.L., 1995. Growth inhibition of Candida

albicans hyphae by CD8+ lymphocytes. J. Immunol. 154, 5273–5281.

19

458

Buchmann, K., Sigh, J., Nielsen, C. V., Dalgaard, M., 2001. Host responses against the

459

fish parasitizing ciliate Ichthyophthirius multifiliis. Vet. Parasitol. 100, 105–116.

460

https://doi.org/10.1016/S0304-4017(01)00487-3

461

Cassidy-Hanley, D.M., Cordonnier-Pratt, M.M., Pratt, L.H., Devine, C., Mozammal

462

Hossain, M., Dickerson, H.W., Clark, T.G., 2011. Transcriptional profiling of

463

stage specific gene expression in the parasitic ciliate Ichthyophthirius multifiliis.

464

Mol. Biochem. Parasitol. 178, 29–39.

465

https://doi.org/10.1016/j.molbiopara.2011.04.004

466

467

468

Clark, T.G., Forney, J.D., 2003. Free-living and parasitic ciliates. Antigen. Var. 375–

402. https://doi.org/10.1016/B978-012194851-1/50042-1

Clark, T.G., Gao, Y., Gaertig, J., Wang, X, C.G., 2001. The I-antigens of

469

Ichthyophthirius multifiliis are GPI-anchored proteins. j eukaryot microbiol 48,

470

332–337.

471

472

473

Clayberger, C., Krensky, A.M., 2003. Granulysin. Curr. Opin. Immunol. 15, 560–565.

https://doi.org/10.1016/S0952-7915(03)00097-9

Coyne, R.S., Hannick, L., Shanmugam, D., Hostetler, J.B., Brami, D., Joardar, V.S.,

474

Johnson, J., Radune, D., Singh, I., Badger, J.H., Kumar, U., Saier, M., Wang, Y.,

475

Cai, H., Gu, J., Mather, M.W., Vaidya, A.B., Wilkes, D.E., Rajagopalan, V., Asai,

476

D.J., Pearson, C.G., Findly, R.C., Dickerson, H.W., Wu, M., Martens, C., Van de

477

Peer, Y., Roos, D.S., Cassidy-Hanley, D.M., Clark, T.G., 2011. Comparative

478

genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living

479

relatives and a host species provide insights into adoption of a parasitic lifestyle

480

and prospects for disease control. Genome Biol. 12, R100.

481

https://doi.org/10.1186/gb-2011-12-10-r100

20

482

Cross, M.L., Matthews, R.A., 1993. Localized leucocyte response to Ichthyophthirius

483

multifiliis establishment in immune carp Cyprinus carpio L. Vet. Immunol.

484

Immunopathol. 38, 341–358. https://doi.org/10.1016/0165-2427(93)90092-I

485

Dantzler, K.W., Jagannathan, P., 2018. γδ T cells in antimalarial immunity: New

486

insights into their diverse functions in protection and tolerance. Front. Immunol. 9,

487

1–14. https://doi.org/10.3389/fimmu.2018.02445

488

Davis, E.G., Sang, Y., Rush, B., Zhang, G., Blecha, F., 2005. Molecular cloning and

489

characterization of equine NK-lysin. Vet. Immunol. Immunopathol. 105, 163–169.

490

https://doi.org/10.1016/j.vetimm.2004.12.007

491

Dickerson, H., Clark, T., 1998. Ichthyophthirius multifiliis: A model of cutaneous

492

infection and immunity in fishes. Immunol. Rev. 166, 377–384.

493

https://doi.org/10.1111/j.1600-065X.1998.tb01277.x

494

Dickerson, H.W., 2006. Ichthyophthirius multifiliis and Cryptocaryon irritans (phylum

495

Ciliophora), Fish Diseases and Disorders.

496

https://doi.org/10.1079/9780851990156.0116

497

Dickerson, H.W., Findly, R.C., 2014. Immunity to Ichthyophthirius infections in fish: A

498

synopsis. Dev. Comp. Immunol. 43, 290–299.

499

https://doi.org/10.1016/j.dci.2013.06.004

500

Dotiwala, F., Lieberman, J., 2019. Granulysin: killer lymphocyte safeguard against

501

microbes. Curr. Opin. Immunol. 60, 19–29.

502

https://doi.org/10.1016/j.coi.2019.04.013

503

Dotiwala, F., Mulik, S., Polidoro, R.B., Ansara, J.A., Burleigh, B.A., Walch, M.,

504

Gazzinelli, R.T., Lieberman, J., 2016. Killer lymphocytes use granulysin, perforin

505

and granzymes to kill intracellular parasites. Nat. Med. 22, 210–216.

21

506

https://doi.org/10.1038/nm.4023

507

Ellner, J.J., Olds, G.R., Lee, C.W., Kleinhenz, M.E., Edmonds, K.L., 1982. Destruction

508

of the multicellular parasite Schistosoma mansoni by T lymphocytes. J. Clin.

509

Invest. 70, 369–378. https://doi.org/10.1172/JCI110626

510

Evans, D.L., Leary, J.H., Jaso-Friedmann, L., 1998. Nonspecific cytotoxic cell receptor

511

protein-1: A novel (predicted) type III membrane receptor on the teleost equivalent

512

of natural killer cells recognizes conventional antigen. Cell. Immunol. 187, 19–26.

513

https://doi.org/10.1006/cimm.1998.1310

514

Farouk, S.E., Mincheva-Nilsson, L., Krensky, A.M., Dieli, F., Troye-Blomberg, M.,

515

2004. γδ T cell inhibit in vitro growth of the asexual blood stages of Plasmodium

516

falciparum by a granule exocytosis-dependent cytotoxic pathway that requires

517

granulysin. Eur. J. Immunol. 34, 2248–2256. https://doi.org/10.1002/eji.200424861

518

Fischer, U., Koppang, E.O., Nakanishi, T., 2013. Teleost T and NK cell immunity. Fish

519

Shellfish Immunol. 35, 197–206. https://doi.org/10.1016/j.fsi.2013.04.018

520

Gonzalez SF, Buchmann K, Nielsen ME. Real-time gene expression analysis in carp

521

(Cyprinus carpio L.) skin: inflammatory responses caused by the ectoparasite

522

Ichthyophthirius multifiliis. 2007 Fish Shellfish Immunol. 22, 641-50. doi:

523

10.1016/j.fsi.2006.08.011.

524

Graves, S.S., Evans, D.L., Dawe, D.L., 1985. Antiprotozoan activity of nonspecific

525

cytotoxic cells (NCC) from the channel catfish (Ictalurus punctatus). J. Immunol.

526

134, 78–85.

527

Hong, Y.H., Lillehoj, H.S., Siragusa, G.R., Bannerman, D.D., Lillehoj, E.P., 2008.

528

Antimicrobial Activity of Chicken NK-Lysin Against Eimeria Sporozoites. Avian

529

Dis. Dig. 3, e16–e16. https://doi.org/10.1637/8324-808308-digest.1

22

530

Huang, Y., Zheng, Q., Niu, J., Tang, J., Wang, B., Abarike, E.D., Lu, Y., Cai, J., Jian,

531

J., 2018. NK-lysin from Oreochromis niloticus improves antimicrobial defence

532

against bacterial pathogens. Fish Shellfish Immunol. 72, 259–265.

533

https://doi.org/10.1016/j.fsi.2017.11.002

534

Hviid, L., Smith-Togobo, C., Willcox, B.E., 2019. Human Vδ1+T cells in the immune

535

response to plasmodium falciparum infection. Front. Immunol. 10.

536

https://doi.org/10.3389/fimmu.2019.00259

537

Jaso-Friedmann, L., Leary, J.H., Warren, J., McGraw, R.A., Evans, D.L., 1997.

538

Molecular characterization of a protozoan parasite target antigen recognized by

539

nonspecific cytotoxic cells. Cell. Immunol. 176, 93–102.

540

https://doi.org/10.1006/cimm.1996.1063

541

542

543

Kurup, S.P., Butler, N.S., Harty, J.T., 2019. T cell-mediated immunity to malaria. Nat.

Rev. Immunol. 19, 457–471. https://doi.org/10.1038/s41577-019-0158-z

Lama, R., Pereiro, P., Costa, M.M., Encinar, J.A., Medina-Gali, R.M., Pérez, L., Lamas,

544

J., Leiro, J., Figueras, A., Novoa, B., 2018. Turbot (Scophthalmus maximus) Nk-

545

lysin induces protection against the pathogenic parasite Philasterides dicentrarchi

546

via membrane disruption. Fish Shellfish Immunol. 82, 190–199.

547

https://doi.org/10.1016/j.fsi.2018.08.004

548

Lu, C.-C., Wu, T.-S., Hsu, Y.-J., Chang, C.-J., Lin, C.-S., Chia, J.-H., Wu, T.-L.,

549

Huang, T.-T., Martel, J., Ojcius, D.M., Young, J.D., Lai, H.-C., 2014. NK cells kill

550

mycobacteria directly by releasing perforin and granulysin. J. Leukoc. Biol. 96,

551

1119–1129. https://doi.org/10.1189/jlb.4a0713-363rr

552

553

Markham, R.B., Goellner. J., Pier, G.B., 1984. In vitro T cell-mediated killing of

Pseudomonas aeruginosa. I. Evidence that a lymphokine mediates killing. J.

23

554

Immunol. 133, 962–968. http://www.jimmunol.org/content/133/2/962

555

Matsuura, Y., Yabu, T., Shiba, H., Moritomo, T., Nakanishi, T., 2014. Identification of

556

a novel fish granzyme involved in cell-mediated immunity. Dev. Comp. Immunol.

557

46, 499–507. https://doi.org/10.1016/j.dci.2014.06.006

558

Miyazawa, R., Murata, N., Matsuura, Y., Shibasaki, Y., Yabu, T., Nakanishi, T., 2018.

559

Peculiar expression of CD3-epsilon in kidney of ginbuna crucian carp. Front.

560

Immunol. 9. https://doi.org/10.3389/fimmu.2018.01321

561

562

Mody, C.H., Oykhman, P., 2010. Direct microbicidal activity of cytotoxic Tlymphocytes. J. Biomed. Biotechnol. 2010. https://doi.org/10.1155/2010/249482

563

Mukura, L.R., Hickey, D.K., Rodriguez-Garcia, M., Fahey, J. V., Wira, C.R., 2017.

564

Chlamydia trachomatis regulates innate immune barrier integrity and mediates

565

cytokine and antimicrobial responses in human uterine ECC-1 epithelial cells. Am.

566

J. Reprod. Immunol. 78, 1–11. https://doi.org/10.1111/aji.12764

567

Nayak, S.K., Nakanishi, T., 2013. Direct antibacterial activity of CD8+/CD4+ T-cells in

568

ginbuna crucian carp, Carassius auratus langsdorfii. Fish Shellfish Immunol. 34,

569

136–141. https://doi.org/10.1016/j.fsi.2012.10.016

570

Nonaka, S., Somamoto, T., Kato-Unoki, Y., Ototake, M., Nakanishi, T., Nakao, M.,

571

2008. Molecular cloning of CD4 from ginbuna crucian carp Carassius auratus

572

langsdorfii. Fish. Sci. 74, 341–346. https://doi.org/10.1111/j.1444-

573

2906.2008.01530.x

574

Olsen, M.M., Kania, P.W., Heinecke, R.D., Skjoedt, K., Rasmussen, K.J., Buchmann,

575

K., 2011. Cellular and humoral factors involved in the response of rainbow trout

576

gills to Ichthyophthirius multifiliis infections: Molecular and immunohistochemical

577

studies. Fish Shellfish Immunol. 30, 859–869.

24

578

579

https://doi.org/10.1016/j.fsi.2011.01.010

Osińska, I., Popko, K., Demkow, U., 2014. Perforin: An important player in immune

580

response. Cent. Eur. J. Immunol. 39, 109–115.

581

https://doi.org/10.5114/ceji.2014.42135

582

Ouyang, H., Du, T., Zhou, H., Wilson, I.B.H., Yang, J., Latgé, J.P., Jin, C., 2019.

583

Aspergillus fumigatus phosphoethanolamine transferase gene gpi7 is required for

584

proper transportation of the cell wall GPI-anchored proteins and polarized growth.

585

Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-42344-1

586

Salata, R.A., Cox, J.G., Ravdin, J.I., 1987. The interaction of human T‐lymphocytes

587

and Entamoeba histolytica: killing of virulent amoebae by lectin‐dependent

588

lymphocytes. Parasite Immunol. 9, 249–261. https://doi.org/10.1111/j.1365-

589

3024.1987.tb00504.x

590

Scapigliati, G., Fausto, A.M., Picchietti, S., 2018. Fish lymphocytes: An evolutionary

591

equivalent of mammalian innate-like lymphocytes? Front. Immunol. 9, 1–8.

592

https://doi.org/10.3389/fimmu.2018.00971

593

Simon Lillico, M.C.F., Pat Blundell, Graham H. Coombs,

and J.C.M., 2003. Essential

594

Roles for GPI-anchored Proteins in African Trypanosomes Revealed Using

595

Mutants Deficient in GPI8. Mol. Biol. Cell 14, 1182–1194.

596

https://doi.org/10.1091/mbc.E02

597

Soleto, I., Fischer, U., Tafalla, C., Granja, A.G., 2018. Identification of a potential

598

common ancestor for mammalian cross-presenting dendritic cells in teleost

599

respiratory surfaces. Front. Immunol. 9, 1–13.

600

https://doi.org/10.3389/fimmu.2018.00059

601

Somamoto, T., Koppang, E.O., Fischer, U., 2014. Antiviral functions of CD8+

25

602

cytotoxic T cells in teleost fish. Dev. Comp. Immunol. 43, 197–204.

603

https://doi.org/10.1016/j.dci.2013.07.014

604

Somamoto, T., Miura, Y., Nakanishi, T., Nakao, M., 2015. Local and systemic adaptive

605

immune responses toward viral infection via gills in ginbuna crucian carp. Dev.

606

Comp. Immunol. 52, 81–87. https://doi.org/10.1016/j.dci.2015.04.016

607

Somamoto, T., Yoshiura, Y., Sato, A., Nakao, M., Nakanishi, T., Okamoto, N., Ototake,

608

M., 2006. Expression profiles of TCRβ and CD8α mRNA correlate with virus-

609

specific cell-mediated cytotoxic activity in ginbuna crucian carp. Virology 348,

610

370–377. https://doi.org/10.1016/j.virol.2006.01.019

611

St. Leger, A.J., Hansen, A.M., Karauzum, H., Horai, R., Yu, C.R., Laurence, A., Mayer-

612

Barber, K.D., Silver, P., Villasmil, R., Egwuagu, C., Datta, S.K., Caspi, R.R.,

613

2018. STAT-3-independent production of IL-17 by mouse innate-like αβ T cells

614

controls ocular infection. J. Exp. Med. 215, 1079–1090.

615

https://doi.org/10.1084/jem.20170369

616

Stenger, S., Hanson, D.A., Teitelbaum, R., Dewan, P., Niazi, K.R., Froelich, C.J., Ganz,

617

T., Thoma-Uszynski, S., Melián, A., Bogdan, C., Porcelli, S.A., Bloom, B.R.,

618

Krensky, A.M., Modlin, R.L., 1998. An antimicrobial activity of cytolytic T cells

619

mediated by granulysin. Science (80-. ). 282, 121–125.

620

https://doi.org/10.1126/science.282.5386.121

621

Sun, H.Y., Zhu, X.Q., Xie, M.Q., Wu, X.Y., Li, A.X., Lin, R.Q., Song, H.Q., 2006.

622

Characterization of Cryptocaryon irritans isolates from marine fishes in Mainland

623

China by ITS ribosomal DNA sequences. Parasitol. Res. 99, 160–166.

624

https://doi.org/10.1007/s00436-006-0151-x

625

Syahputra, K., Kania, P.W., Al-Jubury, A., Marnis, H., Setyawan, AC., Buchmann, K.,

26

626

2019. Differential immune gene response in gills, skin, and spleen of rainbow trout

627

Oncorhynchus mykiss infected by Ichthyophthirius multifiliis. PLoS One.

628

20;14(6):e0218630. doi: 10.1371/journal.pone.0218630. eCollection 2019.

629

Tanzer, R.J., Longbottom, D., Hatch, T.P., 2001. Identification of polymorphic outer

630

membrane proteins of Chlamydia psittaci 6BC. Infect. Immun. 69, 2428–2434.

631

https://doi.org/10.1128/IAI.69.4.2428-2434.2001

632

Tartor, H.M., Matsuura, Y., El-Nobi, G., Nakanishi, T., 2014. Lack of a contact

633

requirement for direct antibacterial activity of lymphocyte subpopulations in

634

ginbuna crucian carp. Fish Shellfish Immunol. 39, 178–184.

635

https://doi.org/10.1016/j.fsi.2014.05.006

636

Toda, H., Araki, K., Moritomo, T., Nakanishi, T., 2011a. Perforin-dependent cytotoxic

637

mechanism in killing by CD8 positive T cells in ginbuna crucian carp, Carassius

638

auratus langsdorfii. Dev. Comp. Immunol. 35, 88–93.

639

https://doi.org/10.1016/j.dci.2010.08.010

640

Toda, H., Saito, Y., Koike, T., Takizawa, F., Araki, K., Yabu, T., Somamoto, T.,

641

Suetake, H., Suzuki, Y., Ototake, M., Moritomo, T., Nakanishi, T., 2011b.

642

Conservation of characteristics and functions of CD4 positive lymphocytes in a

643

teleost fish. Dev. Comp. Immunol. 35, 650–660.

644

https://doi.org/10.1016/j.dci.2011.01.013

645

Toda, H., Shibasaki, Y., Koike, T., Ohtani, M., Takizawa, F., Ototake, M., Moritomo,

646

T., Nakanishi, T., 2009. Alloantigen-specific killing is mediated by CD8-positive T

647

cells in fish. Dev. Comp. Immunol. 33, 646–652.

648

https://doi.org/10.1016/j.dci.2008.11.008

649

Toda, H., Yabu, T., Shiba, H., Moritomo, T., Nakanishi, T., 2011c. Evaluating antigen27

650

specific cytotoxicity of CD8+ T cells in fish by granzyme B-like activity. Vet.

651

Immunol. Immunopathol. 141, 168–172.

652

https://doi.org/10.1016/j.vetimm.2011.02.020

653

Von Gersdorff Jørgensen, L., Heinecke, R.D., Skjødt, K., Rasmussen, K.J., Buchmann,

654

K., 2011. Experimental evidence for direct in situ binding of IgM and IgT to early

655

trophonts of Ichthyophthirius multifiliis (Fouquet) in the gills of rainbow trout,

656

Oncorhynchus mykiss (Walbaum). J. Fish Dis. 34, 749–755.

657

https://doi.org/10.1111/j.1365-2761.2011.01291.x

658

Voskoboinik, I., Whisstock, J.C., Trapani, J.A., 2015. Perforin and granzymes:

659

Function, dysfunction and human pathology. Nat. Rev. Immunol. 15, 388–400.

660

https://doi.org/10.1038/nri3839

661

Wan, F., Hu, C. Bin, Ma, J.X., Gao, K., Xiang, L.X., Shao, J.Z., 2017. Characterization

662

of γδ T cells from zebrafish provides insights into their important role in adaptive

663

humoral immunity. Front. Immunol. 7. https://doi.org/10.3389/fimmu.2016.00675

664

Wang, Q., Yu, Y., Zhang, X., Xu, Z., 2019. Immune responses of fish to

665

Ichthyophthirius multifiliis (Ich): A model for understanding immunity against

666

protozoan parasites. Dev. Comp. Immunol. 93, 93–102.

667

https://doi.org/10.1016/j.dci.2019.01.002

668

Xu, D.H., Klesius, P.H., Shelby, R.A., 2004. Immune responses and host protection of

669

channel catfish, Ictalurus punctatus (Rafinesque), against Ichthyophthirius

670

multifiliis after immunization with live theronts and sonicated trophonts. J. Fish

671

Dis. 27, 135-41. doi: 10.1111/j.1365-2761.2004.00523.x.

672

673

Xu, D.H., Klesius, P.H., 2013. Comparison of serum antibody responses and host

protection against parasite Ichthyophthirius multifiliis between channel catfish and

28

674

channel × blue hybrid catfish. Fish Shellfish Immunol. 34, 1356–1359.

675

https://doi.org/10.1016/j.fsi.2013.01.022

676

Xu, D.H., Klesius, P.H., Shoemaker, C.A., 2009. Effect of immunization of channel

677

catfish with inactivated trophonts on serum and cutaneous antibody titers and

678

survival against Ichthyophthirius multifiliis. Fish Shellfish Immunol. 26, 614–618.

679

https://doi.org/10.1016/j.fsi.2008.09.015

680

Yamaguchi, T., Takizawa, F., Furihata, M., Soto-Lampe, V., Dijkstra, J.M., Fischer, U.,

681

2019. Teleost cytotoxic T cells. Fish Shellfish Immunol. 95, 422–439.

682

https://doi.org/10.1016/j.fsi.2019.10.041

683

Yamasaki, M., Araki, K., Nakanishi, T., Nakayasu, C., Yamamoto, A., 2014. Role of

684

CD4+ and CD8α+ T cells in protective immunity against Edwardsiella tarda

685

infection of ginbuna crucian carp, Carassius auratus langsdorfii. Fish Shellfish

686

Immunol. 36, 299–304. https://doi.org/10.1016/j.fsi.2013.11.016

687

Yu, Y.Y., Kong, W., Yin, Y.X., Dong, F., Huang, Z.Y., Yin, G.M., Dong, S., Salinas, I.,

688

Zhang, Y.A., Xu, Z., 2018. Mucosal immunoglobulins protect the olfactory organ

689

of teleost fish against parasitic infection. PLoS Pathog. 14, 1–24.

690

https://doi.org/10.1371/journal.ppat.1007251

691

692

693

Figure legends

694

Figure 1. Expression profile of T cell markers in MACS-sorted leukocytes from the

695

kidney and gill cells of ginbuna crucian carp. DN indicates CD8 and CD4 double-negative

696

lymphocytes; NC indicates non-template control. EF1α was used as an internal control.

697

Numbers to the right indicate PCR cycles. Data from one fish are shown as representative

29

698

of the three fish analyzed.

699

700

Figure 2. Time course of cytotoxic activity of kidney (A) and gill (B) leukocytes against

701

I. multifiliis. Kidney and gill leukocytes from naïve ginbuna crucian carp were incubated

702

with I. multifiliis at various E:T ratios (2000:1, 1000:1, 300:1, and 100:1). Data from one

703

fish are shown as representative of the three fish analyzed.

704

705

Figure 3. Cytotoxic activity of unsorted and sorted effector cells from the kidneys (A)

706

and gills (B) against I. multifiliis. The mean activities of CD4+ cells, CD8+ cells, DN cells,

707

and unsorted cells are shown (gill, n = 3; kidney, n = 4). The effector cells were incubated

708

for 2 h with I. multifiliis at E:T ratio of 1000:1. Error bars indicate SD. Different letters

709

on each bar indicate significant differences among the groups (P < 0.05).

710

711

Figure 4. Contact of CD8+ cells from the kidneys and gills to the surface of I. multifiliis.

712

Arrows indicate CD8+ cells (red) and I. multifiliis (green). Kidney leukocytes and I.

713

multifiliis are shown in the upper panels (A, B, C). Scale bars indicate 10 µm.

714

715

Figure 5. Cytotoxic activity of the effector cells from the kidney (A and B) and the gill

716

(C and D) against I. multifiliis with or without the culture insert. CD8+ cells (A and C)

717

and CD8− cells (B and D) were used as the effector cells. CD8+ cells were co-cultured

718

with I. multifiliis at E:T ratio of 500:1. The results from the three individual fish are shown

719

as the mean of cell killing activities. White and black bars indicate the activities of the

720

effector cells in the absence (contact) and presence (non-contact) of the insert,

721

respectively. The asterisks indicate significant differences of the activities between non30

722

contact and contact (*P < 0.05).

723

724

Figure 6. Effect of DCI on the cytotoxic activity of CD8+ cells from the kidney (A) and

725

the gill (B). CD8+ cells were pre-incubated with various concentrations (0, 20, 40 µM) of

726

DCI. CD8+ cells were co-cultured with I. multifiliis at E:T ratio of 300:1. Data are shown

727

as the means of the activities from three (kidney) or four (gill) individual fish, respectively.

728

Error bars indicate SD. Asterisks indicate significant differences from control group (0

729

µM) (P < 0.05).

730

731

Figure 7. Effect of CMA on the cytotoxic activity of CD8+ cells from the kidney (A) and

732

the gill (B). CD8+ cells were pre-incubated with various concentrations (0, 0.5, 1.0 µM)

733

of CMA. CD8+ cells were co-cultured with I. multifiliis at E:T ratio of 300:1. Data are

734

shown as means of the activities from three (kidney) or four (gill) individual fish. Error

735

bars indicate SD. Asterisks indicate significant differences from control group (0 µM) (P

736

< 0.05).

31

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る