リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Distinct connectivity patterns in human medial parietal cortices: Evidence from standardized connectivity map using cortico-cortical evoked potential」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Distinct connectivity patterns in human medial parietal cortices: Evidence from standardized connectivity map using cortico-cortical evoked potential

Togo, Masaya Matsumoto, Riki Usami, Kiyohide Kobayashi, Katsuya Takeyama, Hirofumi Nakae, Takuro Shimotake, Akihiro Kikuchi, Takayuki Yoshida, Kazumichi Matsuhashi, Masao Kunieda, Takeharu Miyamoto, Susumu Takahashi, Ryosuke Ikeda, Akio 神戸大学

2022.11

概要

The medial parietal cortices are components of the default mode network (DMN), which are active in the resting state. The medial parietal cortices include the precuneus and the dorsal posterior cingulate cortex (dPCC). Few studies have mentioned differences in the connectivity in the medial parietal cortices, and these differences have not yet been precisely elucidated. Electrophysiological connectivity is essential for understanding cortical function or functional differences. Since little is known about electrophysiological connections from the medial parietal cortices in humans, we evaluated distinct connectivity patterns in the medial parietal cortices by constructing a standardized connectivity map using cortico-cortical evoked potential (CCEP). This study included nine patients with partial epilepsy or a brain tumor who underwent chronic intracranial electrode placement covering the medial parietal cortices. Single-pulse electrical stimuli were delivered to the medial parietal cortices (38 pairs of electrodes). Responses were standardized using the z-score of the baseline activity, and a response density map was constructed in the Montreal Neurological Institutes (MNI) space. The precuneus tended to connect with the inferior parietal lobule (IPL), the occipital cortex, superior parietal lobule (SPL), and the dorsal premotor area (PMd) (the four most active regions, in descending order), while the dPCC tended to connect to the middle cingulate cortex, SPL, precuneus, and IPL. The connectivity pattern differs significantly between the precuneus and dPCC stimulation (p<0.05). Regarding each part of the medial parietal cortices, the distributions of parts of CCEP responses resembled those of the functional connectivity database. Based on how the dPCC was connected to the medial frontal area, SPL, and IPL, its connectivity pattern could not be explained by DMN alone, but suggested a mixture of DMN and the frontoparietal cognitive network. These findings improve our understanding of the connectivity profile within the medial parietal cortices. The electrophysiological connectivity is the basis of propagation of electrical activities in patients with epilepsy. In addition, it helps us to better understand the epileptic network arising from the medial parietal cortices.

この論文で使われている画像

参考文献

Alkawadri, R., So, N.K., Van Ness, P.C., Alexopoulos, A.V., 2013. Cingulate epilepsy: report of 3 electroclinical subtypes with surgical outcomes. JAMA Neurol. 70, 995–1002.

Al-Ramadhani, R.R., Shivamurthy, V.K.N., Elkins, K., Gedela, S., Pedersen, N.P., Kheder, A., 2021. The precuneal cortex: anatomy and seizure semiology. Epileptic Disord. 23, 218–227.

Andrews-Hanna, J.R., Smallwood, J., Spreng, R.N., 2014. The default network and self- -generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29–52.

Arbune, A.A., Popa, I., Mindruta, I., Beniczky, S., Donos, C., Daneasa, A., Mălîia, M.D., Băjenaru, O.A., Ciurea, J., Barborica, A., 2020. Sleep modulates effective connectiv- ity: a study using intracranial stimulation and recording. Clin. Neurophysiol. 131, 529–541.

Bernier, P.M., Grafton, S.T., 2010. Human posterior parietal cortex flexibly determines reference frames for reaching based on sensory context. Neuron 68, 776–788.

Bzdok, D., Heeger, A., Langner, R., Laird, A.R., Fox, P.T., Palomero-Gallagher, N., Vogt, B.A., Zilles, K., Eickhoff, S.B., 2015. Subspecialization in the human posterior medial cortex. Neuroimage 106, 55–71.

Caminiti, R., Genovesio, A., Marconi, B., Mayer, A.B., Onorati, P., Ferraina, S., Mitsuda, T., Giannetti, S., Squatrito, S., Maioli, M.G., 1999. Early coding of reaching: frontal and parietal association connections of parieto-occipital cortex. Eur. J. Neurosci. 11, 3339–3345.

Caruana, F., Gerbella, M., Avanzini, P., Gozzo, F., Pelliccia, V., Mai, R., Abdollahi, R.O., Cardinale, F., Sartori, I., Lo Russo, G., Rizzolatti, G., 2018. Motor and emotional be- haviours elicited by electrical stimulation of the human cingulate cortex. Brain 1, 1–17.

Cauda, F., Geminiani, G., D’Agata, F., Sacco, K., Duca, S., Bagshaw, A.P., Cavanna, A.E., 2010. Functional connectivity of the posteromedial cortex. PLoS One 5, e13107.

Cavanna, A.E., Trimble, M.R., 2006. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583.

Cha, J., Jo, H.J., Gibson, W.S., Lee, J.M., 2017. Functional organization of the human pos- terior cingulate cortex, revealed by multiple connectivity-based parcellation methods. Hum. Brain Mapp. 38, 2808–2818.

Christoff, K., Irving, Z.C., Fox, K.C., Spreng, R.N., Andrews-Hanna, J.R., 2016. Mind-wan- dering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17, 718–731.

Colby, C., Gattass, R., Olson, C., Gross, C., 1988. Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J. Comp. Neurol. 269, 392–413.

Conner, C.R., Ellmore, T.M., DiSano, M.A., Pieters, T.A., Potter, A.W., Tandon, N., 2011. Anatomic and electro-physiologic connectivity of the language system: a combined DTI-CCEP study. Comput. Biol. Med. 41, 1100–1109.

Daitch, A.L., Parvizi, J., 2018. Spatial and temporal heterogeneity of neural responses in human posteromedial cortex. Proc. Natl. Acad. Sci. U. S. A. 115, 4785–4790.

Dixon, M.L., De La Vega, A., Mills, C., Andrews-Hanna, J., Spreng, R.N., Cole, M.W., Christoff, K., 2018. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc. Natl. Acad. Sci., 201715766.

Donos, C., Maliia, M.D., Mindruta, I., Popa, I., Ene, M., Balanescu, B., Ciurea, A., Barbor- ica, A., 2016. A connectomics approach combining structural and effective connec- tivity assessed by intracranial electrical stimulation. Neuroimage 132, 344–358.

Emmanuel, P., Wilson Charles, R., Stoll Frederic, M., Faraut Maïlys, C., Michael, P., Cé- line, A., 2016. Midcingulate motor map and feedback detection: converging data from humans and monkeys.

Enatsu, R., Bulacio, J., Nair, D.R., Bingaman, W., Najm, I., Gonzalez-Martinez, J., 2014. Posterior cingulate epilepsy: clinical and neurophysiological analysis. J. Neurol. Neu- rosurg. Psychiatry 85, 44–50.

Enatsu, R., Gonzalez-Martinez, J., Bulacio, J., Kubota, Y., Mosher, J., Burgess, R.C., Najm, I., Nair, D.R., 2015. Connections of the limbic network: a corticocortical evoked potentials study. Cortex 62, 20–33.

Entz, L., Toth, E., Keller, C.J., Bickel, S., Groppe, D.M., Fabo, D., Kozak, L.R., Eross, L., Ulbert, I., Mehta, A.D., 2014. Evoked effective connectivity of the human neocortex. Hum. Brain Mapp. 35, 5736–5753.

Fernandez-Ruiz, J., Goltz, H.C., DeSouza, J.F., Vilis, T., Crawford, J.D., 2007. Human pari- etal "reach region" primarily encodes intrinsic visual direction, not extrinsic move- ment direction, in a visual motor dissociation task. Cereb. Cortex 17, 2283–2292.

Fox, K.C.R., Foster, B.L., Kucyi, A., Daitch, A.L., Parvizi, J., 2018. Intracranial Electro- physiology of the Human Default Network. Trends Cogn. Sci. 22, 307–324.

Fransson, P., Marrelec, G., 2008. The precuneus/posterior cingulate cortex plays a piv- otal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 42, 1178–1184.

Friston, K.J., 2011. Functional and effective connectivity: a review. Brain Connect 1, 13–36.

Glanz Iljina, O., Derix, J., Kaur, R., Schulze-Bonhage, A., Auer, P., Aertsen, A., Ball, T., 2018. Real-life speech production and perception have a shared premotor-cortical substrate. Sci. Rep. 8, 8898.

Harroud, A., Boucher, O., Tran, T.P.Y., Harris, L., Hall, J., Dubeau, F., Mohamed, I., Bouthillier, A., Nguyen, D.K., 2017. Precuneal epilepsy: clinical features and surgi- cal outcome. Epilepsy Behav. 73, 77–82.

Hoshi, E., Tanji, J., 2007. Distinctions between dorsal and ventral premotor areas: anatom- ical connectivity and functional properties. Curr. Opin. Neurobiol. 17, 234–242.

Humphreys, G.F., Lambon Ralph, M.A., 2015. Fusion and Fission of Cognitive Functions in the Human Parietal Cortex. Cereb. Cortex 25, 3547–3560.

Hutchison, R.M., Culham, J.C., Flanagan, J.R., Everling, S., Gallivan, J.P., 2015. Func- tional subdivisions of medial parieto-occipital cortex in humans and nonhuman pri- mates using resting-state fMRI. Neuroimage 116, 10–29.

Johnson, P.B., Ferraina, S., Bianchi, L., Caminiti, R., 1996. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb. Cortex 6, 102–119.

Keller, C.J., Bickel, S., Entz, L., Ulbert, I., Milham, M.P., Kelly, C., Mehta, A.D., 2011. Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proc. Natl. Acad. Sci. U. S. A. 108, 10308–10313.

Keller, C.J., Honey, C.J., Entz, L., Bickel, S., Groppe, D.M., Toth, E., Ulbert, I., Lado, F.A., Mehta, A.D., 2014a. Corticocortical evoked potentials reveal projectors and integra- tors in human brain networks. J. Neurosci. 34, 9152–9163.

Keller, C.J., Honey, C.J., Megevand, P., Entz, L., Ulbert, I., Mehta, A.D., 2014b. Mapping human brain networks with cortico-cortical evoked potentials. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369.

Kobayashi, K., Matsumoto, R., Matsuhashi, M., Usami, K., Shimotake, A., Kunieda, T., Kikuchi, T., Yoshida, K., Mikuni, N., Miyamoto, S., Fukuyama, H., Takahashi, R., Ikeda, A., 2017. High frequency activity overriding cortico-cortical evoked potentials reflects altered excitability in the human epileptic focus. Clin. Neurophysiol. 128, 1673–1681.

Kubota, Y., Enatsu, R., Gonzalez-Martinez, J., Bulacio, J., Mosher, J., Burgess, R.C., Nair, D.R., 2013. In vivo human hippocampal cingulate connectivity: a corticocor- tical evoked potentials (CCEPs) study. Clin. Neurophysiol. 124, 1547–1556.

Leichnetz, G.R., 2001. Connections of the medial posterior parietal cortex (area 7m) in the monkey. Anat. Rec. 263, 215–236.

Mailo, J., Tang-Wai, R., 2015. Insight into the precuneus: a novel seizure semiology in a child with epilepsy arising from the right posterior precuneus. Epileptic Disord. 17, 321–327.

Margulies, D.S., Vincent, J.L., Kelly, C., Lohmann, G., Uddin, L.Q., Biswal, B.B., Vill- ringer, A., Castellanos, F.X., Milham, M.P., Petrides, M., 2009. Precuneus shares in- trinsic functional architecture in humans and monkeys. Proc. Natl. Acad. Sci. U. S. A. 106, 20069–20074.

Mars, R.B., Jbabdi, S., Sallet, J., O’Reilly, J.X., Croxson, P.L., Olivier, E., Noonan, M.P., Bergmann, C., Mitchell, A.S., Baxter, M.G., Behrens, T.E., Johansen-Berg, H., Tomassini, V., Miller, K.L., Rushworth, M.F., 2011. Diffusion-weighted imaging trac- tography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J. Neurosci. 31, 4087–4100.

Matelli, M., Govoni, P., Galletti, C., Kutz, D.F., Luppino, G., 1998. Superior area 6 affer- ents from the superior parietal lobule in the macaque monkey. J. Comp. Neurol. 402, 327–352.

Matsumoto, R., Imamura, H., Inouchi, M., Nakagawa, T., Yokoyama, Y., Matsuhashi, M., Mikuni, N., Miyamoto, S., Fukuyama, H., Takahashi, R., Ikeda, A., 2011. Left anterior temporal cortex actively engages in speech perception: a direct cortical stimulation study. Neuropsychologia 49, 1350–1354.

Matsumoto, R., Kunieda, T., Nair, D., 2017. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 44, 27–36.

Matsumoto, R., Nair, D.R., Ikeda, A., Fumuro, T., Lapresto, E., Mikuni, N., Bingaman, W., Miyamoto, S., Fukuyama, H., Takahashi, R., Najm, I., Shibasaki, H., Luders, H.O., 2012. Parieto-frontal network in humans studied by cortico-cortical evoked potential. Hum. Brain Mapp. 33, 2856–2872.

Matsumoto, R., Nair, D.R., LaPresto, E., Bingaman, W., Shibasaki, H., Luders, H.O., 2007. Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain 130, 181–197.

Matsumoto, R., Nair, D.R., LaPresto, E., Najm, I., Bingaman, W., Shibasaki, H., Lud- ers, H.O., 2004. Functional connectivity in the human language system: a cortico– cortical evoked potential study. Brain 127, 2316–2330.

Nakae, T., Matsumoto, R., Kunieda, T., Arakawa, Y., Kobayashi, K., Shimotake, A., Ya- mao, Y., Kikuchi, T., Aso, T., Matsuhashi, M., Yoshida, K., Ikeda, A., Takahashi, R., Lambon Ralph, M.A., Miyamoto, S., 2020. Connectivity Gradient in the Human Left Inferior Frontal Gyrus: intraoperative Cortico-Cortical Evoked Potential Study. Cereb. Cortex 30, 4633–4650.

Pandya, D., Van Hoesen, G., Mesulam, M.-.M., 1981. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp. Brain Res. 42, 319–330.

Parvizi, J., Van Hoesen, G.W., Buckwalter, J., Damasio, A., 2006. Neural connections of the posteromedial cortex in the macaque. Proc. Natl. Acad. Sci. U. S. A. 103, 1563–1568. Parvizi, J., Braga, R.M., Kucyi, A., Veit, M.J., Pinheiro-Chagas, P., Perry, C., Sava-Segal, C.,

Zeineh, M., van Staalduinen, E.K., Henderson, J.M., Markert, M., 2021. Altered sense of self during seizures in the posteromedial cortex. Proc. Natl Acad. Sci. U S A 118.

Passarelli, L., Rosa, M.G., Gamberini, M., Bakola, S., Burman, K.J., Fattori, P., Galletti, C., 2011. Cortical connections of area V6Av in the macaque: a visual-input node to the eye/hand coordination system. J. Neurosci. 31, 1790–1801.

Paulk, A.C., Zelmann, R., Crocker, B., Widge, A.S., Dougherty, D.D., Eskandar, E.N., Weisholtz, D.S., Richardson, R.M., Cosgrove, G.R., Williams, Z.M., Cash, S.S., 2022. Local and distant cortical responses to single pulse intracranial stimulation in the human brain are differentially modulated by specific stimulation parameters. Brain Stimul. 15, 491–508.

Prime, D., Rowlands, D., O’Keefe, S., Dionisio, S., 2018. Considerations in performing and analyzing the responses of cortico-cortical evoked potentials in stereo-EEG. Epilepsia 59, 16–26.

Raichle, M.E., 2015. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L., 2001. A default mode of brain function. Proc. Natl. Acad. Sci. 98, 676–682.

Saeki, K., Saito, Y., Sugai, K., Nakagawa, E., Komaki, H., Sakuma, H., Sasaki, M., Kaneko, Y., 2009. Startle epilepsy associated with gait-induced seizures: pathome- chanism analysis using EEG, MEG, and PET studies. Epilepsia 50, 1274–1279.

Sugiura, M., Shah, N.J., Zilles, K., Fink, G.R., 2005. Cortical representations of personally familiar objects and places: functional organization of the human posterior cingulate cortex. J. Cogn. Neurosci. 17, 183–198.

Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N., Hirayama, K., 1997. Pure topo- graphic disorientation due to right retrosplenial lesion. Neurology 49, 464–469.

Toga, A.W., 2015. Brain mapping: An encyclopedic Reference. Academic Press.

Trebaul, L., Deman, P., Tuyisenge, V., Jedynak, M., Hugues, E., Rudrauf, D., Bhattachar- jee, M., Tadel, F., Chanteloup-Foret, B., Saubat, C., Reyes Mejia, G.C., Adam, C., Nica, A., Pail, M., Dubeau, F., Rheims, S., Trebuchon, A., Wang, H., Liu, S., Blauw- blomme, T., Garces, M., De Palma, L., Valentin, A., Metsahonkala, E.L., Petrescu, A.M., Landre, E., Szurhaj, W., Hirsch, E., Valton, L., Rocamora, R., Schulze-Bonhage, A., Mindruta, I., Francione, S., Maillard, L., Taussig, D., Kahane, P., David, O., 2018. Probabilistic functional tractography of the human cortex revisited. Neuroimage 181, 414–429.

Umeoka, S., Baba, K., Terada, K., Matsuda, K., Tottori, T., Usui, N., Usui, K., Nakamura, F., Inoue, Y., Fujiwara, T., Mihara, T., 2007. Bilateral symmetric tonic posturing suggest- ing propagation to the supplementary motor area in a patient with precuneate cortical dysplasia. Epileptic Disord. 9, 443–448.

Utevsky, A.V., Smith, D.V., Huettel, S.A., 2014. Precuneus is a functional core of the de- fault-mode network. J. Neurosci. 34, 932–940.

Veit, M.J., Kucyi, A., Hu, W., Zhang, C., Zhao, B., Guo, Z., Yang, B., Sava-Segal, C., Perry, C., Zhang, J., Zhang, K., Parvizi, J., 2021. Temporal order of signal propagation within and across intrinsic brain networks. Proc. Natl Acad. Sci. U S A 118.

Vogt, B., 2009. Cingulate Neurobiology and Disease. Oxford University Press.

Vogt, B.A., 2016. Midcingulate cortex: structure, connections, homologies, functions and diseases. J. Chem. Neuroanat. 74, 28–46.

Vogt, B.A., Nimchinsky, E.A., Vogt, L.J., Hof, P.R., 1995. Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J. Comp. Neurol. 359, 490–506.

Vogt, B.A., Pandya, D.N., 1987. Cingulate cortex of the rhesus monkey: II. Cortical affer- ents. J. Comp. Neurol. 262, 271–289.

Vogt, B.A., Vogt, L., Laureys, S., 2006. Cytology and functionally correlated circuits of human posterior cingulate areas. Neuroimage 29, 452–466.

Wang, J., Yang, Y., Fan, L., Xu, J., Li, C., Liu, Y., Fox, P.T., Eickhoff, S.B., Yu, C., Jiang, T., 2015. Convergent functional architecture of the superior parietal lob- ule unraveled with multimodal neuroimaging approaches. Hum. Brain Mapp. 36, 238–257.

Wiest, G., Zimprich, F., Prayer, D., Czech, T., Serles, W., Baumgartner, C., 2004. Vestibular processing in human paramedian precuneus as shown by electrical cortical stimula- tion. Neurology 62, 473–475.

Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D., 2011. Large-s- cale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670.

Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roff- man, J.L., Smoller, J.W., Zollei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L., 2011. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.

Yu, C., Zhou, Y., Liu, Y., Jiang, T., Dong, H., Zhang, Y., Walter, M., 2011. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. Neuroimage 54, 2571–2581.

Zhang, S., Li, C.S., 2012. Functional connectivity mapping of the human precuneus by resting state fMRI. Neuroimage 59, 3548–3562.

Zhang, Y., Fan, L., Zhang, Y., Wang, J., Zhu, M., Zhang, Y., Yu, C., Jiang, T., 2014. Con- nectivity-based parcellation of the human posteromedial cortex. Cereb. Cortex 24, 719–727.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る