リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「角度分解光電子分光による点および線ノードトポロジカル半金属の研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

角度分解光電子分光による点および線ノードトポロジカル半金属の研究

高根 大地 東北大学

2021.03.25

概要

絶縁体から始まった物質の電⼦波動関数のトポロジーによる分類の試みは近年、⾦属物質まで広がり、電⼦状態トポロジーに注⽬した新物質相と新物性の発⾒・確⽴をめざす研究が精⼒的に⾏われている。

絶縁体におけるトポロジーは時間反転対称性や結晶対称性の観点から定義され、例えば時間反転対称性を持つ⾮磁性 2 次元絶縁体の場合はそのバルクに対して 𝜈 = ℤ!の 2 値が定義される。真空状態も粒⼦-反粒⼦の間にギャップの開いた 𝜈 = 0 をもつ絶縁体とみなせる。

𝜈 = 0 をもつ 2 次元⾮磁性絶縁体は真空とトポロジカル数の変化なしに断熱変形でき、⾃明な絶縁体と呼ばれる。⼀⽅で、𝜈 = 1 を持つ場合は真空との間に特殊な境界状態を持ち、2次元トポロジカル絶縁体または量⼦スピンホール絶縁体と呼ばれる。このような物質系に対するトポロジカル数の定義は 2 次元絶縁体にとどまらず、3 次元絶縁体や超伝導体、3He超流動相などの電⼦状態にギャップがある相について広く⽤いられており、トポロジカル物質科学として物性物理学の新たな研究領域となっている。

電⼦状態に明確なギャップを定義できない 3 次元⾦属物質においても真空と異なるトポロジカル数を定義できるかという課題についても近年、理論実験双⽅から検討が進んでいる。ワイル半⾦属はトポロジカル数の異なる絶縁体間の相転移(トポロジカル相転移)の研究から理論的に発⾒された偶数個の 3 次元偶然縮退点をもつ⾦属状態である。その縮退点はチャーン数±1 の湧き出しとして特徴付けられ、そのバルクトポロジーを反映した表⾯状態として縮退点の射影をつなぐフェルミアーク表⾯状態をもつことが理論実験双⽅から確⽴しつつある。⼀⽅で、ワイル半⾦属に類似した 3 次元縮退構造を結晶対称性の要請から有する物質系が提案されており、ワイル半⾦属とともに総称してトポロジカル半⾦属と呼ばれている。これらの結晶対称性で保護された縮退ノード構造をもつ物質系については多くの実験的報告があるものの、そのバルクトポロジーと表⾯状態の関係は確⽴していない。このため、結晶対称性で保護された特異なノード構造を持つ物質系におけるノード構造とトポロジーの関係の解明が急務である。

本研究では、結晶対称性に保護された点及び線ノード半⾦属物質に注⽬し、ディラック線ノード半⾦属候補物質 HfSiS, CaAgAs, AlB2, および多重縮退点ノード半⾦属候補物質 CoSi について⾼分解能 ARPES 実験による縮退ノード構造の観測とトポロジカル表⾯状態の探索を⾏った。

この論文で使われている画像

参考文献

[1] K. von Klitzing, G. Dorda, and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance”, Phys. Rev. Lett. 45, 494 (1980).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conduc- tance in a Two-Dimensional Periodic Potential”, Phys. Rev. Lett. 49, 405 (1982).

[3] C. L. Kane and E. J. Mele, “Quantum Spin Hall Effect in Graphene”, Phys. Rev. Lett. 95, 226801 (2005).

[4] C. L. Kane and E. J. Mele, “Z2 Topological Order and the Quantum Spin Hall Effect”, Phys. Rev. Lett. 95, 146802 (2005).

[5] L. Fu and C. L. Kane, “Time reversal polarization and a Z2 adiabatic spin pump”, Phys. Rev. B 74, 195312 (2006).

[6] S. Murakami, “Quantum Spin Hall Effect and Enhanced Magnetic Response by Spin-Orbit Coupling”, Phys. Rev. Lett. 97, 236805 (2006).

[7] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, “Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors”, Phys. Rev. B 74, 085308 (2006).

[8] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells”, Science 314, 1757 (2006).

[9] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum Spin Hall Insulator State in HgTe Quantum Wells”, Science 318, 766 (2007).

[10] L. Fu, C. L. Kane, and E. J. Mele, “Topological Insulators in Three Dimensions”, Phys. Rev. Lett. 98, 106803 (2007).

[11] J. E. Moore and L. Balents, “Topological invariants of time-reversal-invariant band structures”, Phys. Rev. B 75, 121306(R) (2007).

[12] L. Fu and C. L. Kane, “Topological insulators with inversion symmetry”, Phys. Rev. B 76, 045302 (2007).

[13] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase”, Nature 452, 970 (2008).

[14] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of Unconventional Quantum Spin Textures in Topological Insulators”, Science 323, 919 (2009).

[15] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface”, Nat. Phys. 5, 438 (2009).

[16] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface”, Nat. Phys. 5, 398 (2009).

[17] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, “Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3”, Science 325, 178 (2009).

[18] H. Lin, R. S. Markiewicz, L. A. Wray, L. Fu, M. Z. Hasan, and A. Bansil, “Single-Dirac- Cone Topological Surface States in the TlBiSe2 Class of Topological Semiconductors”, Phys. Rev. Lett. 105, 036404 (2010).

[19] B. Yan, C.-X. Liu, H.-J. Zhang, C.-Y. Yam, X.-L. Qi, T. Frauenheim, and S.-C. Zhang, “Theoretical prediction of topological insulators in thallium-based III-V-VI2 ternary chalco- genides”, EPL (Europhysics Letters) 90, 37002 (2010).

[20] K. Kuroda, M. Ye, A. Kimura, S. V. Eremeev, E. E. Krasovskii, E. V. Chulkov, Y. Ueda, K. Miyamoto, T. Okuda, K. Shimada, H. Namatame, and M. Taniguchi, “Experimental Realization of a Three-Dimensional Topological Insulator Phase in Ternary Chalcogenide TlBiSe2”, Phys. Rev. Lett. 105, 146801 (2010).

[22] T. Sato, K. Segawa, H. Guo, K. Sugawara, S. Souma, T. Takahashi, and Y. Ando, “Direct Evidence for the Dirac-Cone Topological Surface States in the Ternary Chalcogenide TlBiSe2”, Phys. Rev. Lett. 105, 136802 (2010).

[23] Y. L. Chen, Z. K. Liu, J. G. Analytis, J.-H. Chu, H. J. Zhang, B. H. Yan, S.-K. Mo, R. G. Moore, D. H. Lu, I. R. Fisher, S. C. Zhang, Z. Hussain, and Z.-X. Shen, “Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family”, Phys. Rev. Lett. 105, 266401 (2010).

[24] Y. Ohtsubo, Patrick Le Fèvre, François Bertran, and Amina Taleb-Ibrahimi, “Dirac Cone with Helical Spin Polarization in Ultrathin α-Sn(001) Films”, Phys. Rev. Lett. 111, 216401 (2013).

[25] R. Noguchi, T. Takahashi, K. Kuroda, M. Ochi, T. Shirasawa, M. Sakano, C. Bareille, M. Nakayama, M. D. Watson, K. Yaji, A. Harasawa, H. Iwasawa, P. Dudin, T. K. Kim, M. Hoesch, V. Kandyba, A. Giampietri, A. Barinov, S. Shin, R. Arita, T. Sasagawa, and Takeshi Kondo, “A weak topological insulator state in quasi-one-dimensional bismuth iodide”, Nature 566, 518 (2019).

[26] L. Fu, “Topological Crystalline Insulators”, Phys. Rev. Lett. 106, 106802 (2011).

[27] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansi, and L. Fu, “Topological crystalline insulators in the SnTe material class”, Nat. Commun. 3, 982 (2012).

[28] Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, and Y. Ando, “Experimental realization of a topological crystalline insulator in SnTe”, Nat. Phys. 8, 800 (2012).

[29] Z. Wang, A. Alexandradinata, R. J. Cava, and B. A. Bernevig, “Hourglass fermions”, Nature 532, 189 (2016).

[30] J. Ma, C. Yi, B. Q. Lv, Z. Wang, S. Nie, L. Wang, L. Kong, Y. Huang, P. Richard, P. Zhang, K. Yaji, K. Kuroda, S. Shin, H. Weng, B. A. Bernevig, Y. Shi, T. Qian, and H. Ding, “Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb”, Sci. Adv. 3, e1602415 (2017).

[31] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, “Classification of topological insulators and superconductors in three spatial dimensions”, Phys. Rev. B 78, 195125 (2008).

[32] S. Murakami, “Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase”, New J. Phys. 9, 356 (2007).

[33] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates”, Phys. Rev. B 83, 205101(2011).

[34] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, “Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides”, Phys. Rev. X 5, 011029 (2015).

[35] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, “A Weyl Fermion Semimetal with Surface Fermi Arcs in the Transition Metal Monopnictide TaAs Class”, Nat. Commun. 6, 7373 (2015).

[36] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental Discovery of Weyl Semimetal TaAs”, Phys. Rev. X 5, 031013 (2015).

[37] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a Weyl fermion semimetal and topological Fermi arcs”, Science 349, 613 (2015).

[38] B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding “Observation of Weyl nodes in TaAs”, Nat. Phys. 11, 724 (2015).

[39] L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.-K. Mo, C. Felser, B. Yan, and Y. L. Chen, “Weyl semimetal phase in the non-centrosymmetric compound TaAs”, Nat. Phys. 11, 728 (2015).

[40] S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B. K. Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide”, Nat. Phys. 11, 748 (2015).

[41] N. Xu, H. M. Weng, B. Q. Lv, C. E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autès, O. V. Yazyev, Z. Fang, X. Dai, T. Qian, J. Mesot, H. Ding, and M. Shi, “Observation of Weyl nodes and Fermi arcs in tantalum phosphide”, Nat. Commun. 7, 11006 (2016).

[42] S.-Y. Xu, I. Belopolski, D. S. Sanchez, C. Zhang, G. Chang, C. Guo, G. Bian, Z. Yuan, H Lu, T.-R. Chang, P. P. Shibayev, M. L. Prokopovych, N. Alidoust, H. Zheng, C.-C. Lee, S.- M. Huang, R. Sankar, F. Chou, C.-H. Hsu, H.-T. Jeng, A. Bansil, T. Neupert, V. N. Strocov, H. Lin, S. Jia, and M. Z. Hasan, “Experimental discovery of a topological Weyl semimetal state in TaP”, Sci. Adv. 1, e1501092 (2015).

[43] D.-F. Xu, Y.-P. Du, Z. Wang, Y.-P. Li, X.-H. Niu, Q. Yao, D. Pavel, Z.-A. Xu, X.-G. Wan, and D.-L. Feng, “Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP”, Chin. Phys. Lett. 32, 107101 (2015).

[44] Z. K. Liu, L. X. Yang, Y. Sun, T. Zhang, H. Peng, H. F. Yang, C. Chen, Y. Zhang, Y. F. Guo, D. Prabhakaran, M. Schmidt, Z. Hussain, S.-K. Mo, C. Felser, B. Yan, and Y. L. Chen, “Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family”, Nat. Mater. 15, 27 (2016).

[45] S. Souma, Z. Wang, H. Kotaka, T. Sato, K. Nakayama, Y. Tanaka, H. Kimizuka, T. Takahashi, K. Yamauchi, T. Oguchi, Kouji Segawa, and Yoichi Ando, “Direct observation of nonequivalent Fermi-arc states of opposite surfaces in the noncentrosymmetric Weyl semimetal NbP”, Phys. Rev. B 93, 161112(R) (2016).

[46] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, J. Mele, and A. M. Rappe, “Dirac Semimetal in Three Dimensions”, Phys. Rev. Lett. 108, 140405 (2012).

[47] B. J. Yang and N. Nagaosa, “Classification of stable three-dimensional Dirac semimetals with nontrivial topology”, Nat. Commun. 5, 4898 (2014).

[48] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, “Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb)”, Phys. Rev. B 85, 195320 (2012).

[49] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi”, Science 343, 864 (2014).

[50] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, “Three-dimensional Dirac semimetal and quantum transport in Cd3As2”, Phys. Rev. B 88, 125427 (2013).

[51] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2”, Nat. Mater. 13, 677 (2014).

[52] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three- dimensional topological Dirac semimetal phase in high-mobility Cd3As2”, Nat. Commun. 5, 3786 (2014).

[53] M. Kargarian, M. Randeria, and Y.-M. Lu, “Are the surface Fermi arcs in Dirac semimetals topologically protected?”, Proc. Natl. Acad. Sci. U.S.A. 113, 8648 (2016).

[54] S.-Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang, H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, P. P. Shibayev, F.-C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal”, Science 347, 294 (2015).

[55] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, “Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals”, Science 353, 6299 (2016).

[56] A. A. Burkov, M. D. Hook, and Leon Balents, “Topological nodal semimetals”, Phys. Rev. B 84, 235126 (2011).

[57] R. B. Laughlin, “Quantized Hall conductivity in two dimensions”, Phys. Rev. B 23, 5632 (1981).

[58] M. Khomoto, “Topological Invariant and the Quantization of the Hall Conductance”, Ann. Phys. (N. Y.) 160, 355 (1985).

[59] X. G. Wen, “THEORY OF THE EDGE STATES IN FRACTIONAL QUANTUM HALL EFFECTS”, Int. J. Mod. Phys. 6, 1711 (1992).

[60] Y. Hatsugai, “Chern number and edge states in the integer quantum Hall effect”, Phys. Rev. Lett. 71, 3697 (1997).

[61] Y. Hatsugai, “Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function”, Phys. Rev. B 48, 11851 (1993).

[62] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, “Quantized anomalous Hall effect in magnetic topological insulators.”, Science 329, 61 (2010).

[63] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, “Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator.”, Science 340, 167 (2013).

[64] S. Murakami and S.-i Kuga, “Universal phase diagrams for the quantum spin Hall systems”, Phys. Rev. B 78, 165313 (2008).

[65] L. Balents, “Weyl Electrons Kiss”, Physics 4, 36 (2011).

[66] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, “Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals”, Science 353, aaf5037 (2016).

[67] P. Tang, Q. Zhou, and S.-C. Zhang, “Multiple Types of Topological Fermions in Transition Metal Silicides”, Phys. Rev. Lett. 119, 206402 (2017).

[68] A. A. Burkov, M. D. Hook, and L. Balents, “Topological nodal semimetals”, Phys. Rev. B 84, 235126 (2011).

[69] H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, “Topological node- line semimetal in three-dimensional graphene networks”, Phys. Rev. B 92 045108 (2015).

[70] Q-. F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, “Node-surface and node-line fermions from nonsymmorphic lattice symmetries”, Phys. Rev. B 93, 085427 (2016).

[71] C. Fang, H. Weng, X. Dai, and Z. Fang, “Topological nodal line semimetals”, Chin. Phys. B 25, 117106 (2016).

[72] K. Koepernik, D. Kasinathan, D. V. Efremov, S. Khim, S. Borisenko, B. Büchne and J. v. d. Brink, “TaIrTe4: A ternary type-II Weyl semimetal”, Phys. Rev. B 93, 201101(R) (2016).

[73] E. Haubold, K. Koepernik, D. Efremov, S. Khim, A. Fedorov, Y. Kushnirenko, J. van den Brink, S. Wurmehl, B. Büchner, T. K. Kim, M. Hoesch, K. Sumida, K. Taguchi, T. Yoshikawa, A. Kimura, T. Okuda, and S. V. Borisenko “Experimental realization of type- II Weyl state in noncentrosymmetric TaIrTe4”, Phys. Rev. B 95, 241108(R) (2017).

[74] I. Belopolski, P. Yu, D. S. Sanchez, Y. Ishida, T.-R. Chang, S. S. Zhang, S.-Y. Xu, H. Zheng, G. Chang, G. Bian, H.-T. Jeng, T. Kondo, H. Lin, Z. Liu, S. Shin, and M. Z. Hasan, “Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points”, Nat. Commun. 8, 942 (2017).

[75] Q. Xu, E. Liu, W. Shi, L. Muechler, J. Gayles, C. Felser, and Y. Sun, “Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2”, Phys. Rev. B 97, 235416 (2018).

[76] D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, and Y. L. Chen, “Magnetic Weyl semimetal phase in a Kagomé crystal”, Science 365,1282 (2019).

[77] S.-Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang, H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, P. P. Shibayev, F.-C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal”, Science 347, 294 (2015).

[78] M. S. Bahramy, O. J. Clark, B.-J. Yang, J. Feng, L. Bawden, J. M. Riley, I. Marković, F. Mazzola, V. Sunko, D. Biswas, S. P. Cooil, M. Jorge, J. W. Wells, M. Leandersson, T. Balasubramanian, J. Fujii, I. Vobornik, J. E. Rault, T. K. Kim, M. Hoesch, K. Okawa, M. Asakawa, T. Sasagawa, T. Eknapakul, W. Meevasana, and P. D. C. King “Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides”, Nat. Mater. 17, 21, (2018).

[79] G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T. Neupert, C.-K. Chiu, S.-M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C.-C. Lee, H.-T. Jeng, C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, and M. Z. Hasan, “Topological nodal-line fermions in spin-orbit metal PbTaSe2”, Nat. Commun. 7, 10556 (2015).

[80] I. Belopolski, K. Manna, D. S. Sanchez, G. Chang, B. Ernst, J. Yin, S. S. Zhang, T. Cochran, N. Shumiya, H. Zheng, B. Singh, G. Bian, D. Multer, M. Litskevich, X. Zhou, S.-M. Huang, B. Wang, T.-R. Chang, S.-Y. Xu, A. Bansil, C. Felser, H. Lin, and M. Z. Hasan “Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet”, Science 365, 1278, (2019).

[81] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim “The electronic properties of graphene”, Rev. Mod. Phys. 81, 109 (2009).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る