リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Novel Antibody for Antibody Therapeutics against Cancer Specific Target, Nectin-2」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Novel Antibody for Antibody Therapeutics against Cancer Specific Target, Nectin-2

大島, 勉 筑波大学 DOI:10.15068/00160400

2020.07.21

概要

Cancer incidence is one of the most rapidly growing disease worldwide. Current standard of care is mainly small molecule treatment. Cancer cells are rapidly growing compared to normal cells, therefore, those small molecules target mainly growing cells. However, normal cells like skin, colon, bone marrow and hair, also grow very rapidly, and the anti-cancer drugs also affect those first growing normal cells resulted in inducing severe side-effect. Recently, target therapy (or molecular targeted therapy) using antibodies, proteins, or small molecules, are actively researched and developed in many pharmaceuticals. Mainly antibody therapeutics are commonly developed as anti-cancer therapeutics. The main functions of antibodies in body are to neutralize pathogens such as pathogenic bacteria and viruses with high specificity and binding activity. Antibody therapeutics in especially cancer treatment has a potential to inhibit cancer cell growth and/or kill cancer cells with limited side-effect due to the high specificity and binding activity. Antibody therapeutics are multi-function therapeutics depending on the target, its binding site and effector functions. Those functions include cancer cell growth inhibition, induction of apoptosis, CDC, ADCC, ADCP.

To discover novel antibody therapeutics for cancer treatment, I performed gene expression profile analysis, immunohistochemistry and flow cytometry analysis, and discovered in the study described in Chapter 1 that both gene and protein expression level of Nectin-2 were up-regulated in breast and ovarian cancer tissues. I also characterized antibodies in in vitro cancer cell growth inhibition, Nectin-2-Nectin-2 or Nectin-2-Nectin- 3 trans binding inhibition, ADCC, and epitope binning study. Representative antibodies in epitope bin were applied in in vivo anti-tumor models. The antibodies showed strong anti-tumor effects in mouse therapeutic models, and I found that its main mechanism of action appeared to be ADCC by performing further in vivo studies with IgG4 forms of anti-Nectin-2, which did not have ADCC. I performed monkey toxicological study with lead anti-Nectin-2 antibody, Y-443, which is described in Chapter 2. The Y-443, unexpectedly, induced strong platelet reduction, bleeding tendency, hemorrhage in organs, and splenomegaly upon administration, which was similar to symptoms of thrombocytopenia, presumably Y-443 bound to the Nectin-2 on platelet followed by phagocytosis by macrophages, and platelets were digested in spleen. To mitigate this adverse effect, I mutated the Fc region of Y-443 to reduce the Fc binding to Fcγ receptor I, which is the main receptor for phagocytosis on macrophages. In addition, I engineered the Fc through defucosylation to maintain ADCC. The Fc engineered antibody, Y-634, demonstrated diminished thrombocytopenia symptoms with maintaining anti-tumor activity through ADCC in mouse xenograft models. These results from my studies indicate the potential usage of anti-Nectin-2 antibody for the treatment of cancer patients and the potential mitigation strategy by Fc engineering to ameliorate safety liabilities in antibody induced thrombocytopenia.

この論文で使われている画像

参考文献

• Alewine C., Hassan R., and Pastan I. (2015). Advances in anticancer immunotoxin therapy. Oncologist 20, 176-185

• Angelousi A., Chatzellis E., and Kaltsas G. (2018). New molecular, biological, and immunological agents inducing hypotphysitis. Neuroendocrinology 106, 89- 100

• Aoki J., Koike S., Asou H., Ise I., Suwa H., Tanaka T., Miyasaka M., and Nomoto A. (1997). Mouse homolog of poliovirus receptor-related gene 2 product, mPRR2, mediates homophilic cell aggregation. Exp Cell Res 235, 374-384

• Baeuerle P. A., and Reinhardt C. (2009). Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 69, 4941-4944

• Beck A., Goetsch L., Dumontet C., and Corvaïa N. (2017). Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16, 315-337

• Bottino C., Castriconi R., Pende D., Rivera P., Nanni M., Carnemolla B., Cantoni C., Grassi J., Marcenaro S., Reymond N., Vitale M., Moretta L., Lopez M., and Moretta A. (2003). Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198, 557-567

• Bouchard M. J., Dong Y., McDermott B. M. Jr., Lam D. H., Brown K. R., Shelanski M., Bellve A. R., and Racaniello V. R. (2000). Defects in nuclear and cytoskeletal morphology and mitochondrial localization in spermatozoa of mice lacking nectin-2, a component of cell-cell adherens junctions. Mol Cell Biol 20, 2865-2873

• Bussel J. B. (2000). Fc receptor blockade and immune thrombocytopenic purpura. Semin. Hematol 37, 261-266

• Castriconi R., Dondero A., Corrias M. V., Lanino E., Pende D., Moretta L., Bottino C., and Moretta A. (2004). Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1- poliovirus receptor interaction. Cancer Res 64, 9180-9184

• Chan C. J., Andrews D. M., and Smyth M. J. (2012). Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr Opin Immunol 24, 246-251

• Chappel M. S., Isenman D. E., Everett M., Xu Y. Y., Dorrington K. J., and Klein M. H. (1991). Identification of the Fcγ receptor class I binding site in human IgG through the use of recombinant IgG1/IgG2 hybrid and point-mutated antibodies. Proc Natl Acad Sci USA 88, 9036-9040

• Ciardiello F., Troiani T., Bianco R., Orditura M., Morgillo F., Martinelli E., Morelli M. P., Cascone T., and Tortora G. (2006) Interaction between the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor (VEGF) pathways: a rational approach for multi-target anticancer therapy. Ann Oncol 17, 109-114

• Cines D. B., and Blanchette V. S. (2002). Immune thrombocytopenic purpura. New Engl J Med 346, 995-1008

• Cleary K. L. S., Chan H. T. C., James S., Glennie M. J., and Cragg M. S. (2017). Antibody distance from the cell membrane regulates antibody effector mechanisms. J Immunol 198, 3999-4011

• Clynes R. A., Towers T. L., Presta L. G., and Ravetch J. V. (2000). Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6, 443-446

• Coopamah M., Garvey M., Freedman J., and Semple J. (2003). Cellular immune mechanisms in autoimmune thrombocytopenic purpura: An update. Transfus Med Rev 17, 69-80

• Debre M., Griscelli C., Bonnet M. C., Carosella E., Phillippe N., Reinert P., Vilmer E., Kaplan C., Teillaud J. L., and Griscelli C. (1993). Infusion of Fcγ fragments for treatment of children with acute immune thrombocytopenic purpura. The Lancet 342, 945-949

• Delboy M. G., Patterson J. L., Hollander A. M., and Nicola A. V. (2006). Nectin- 2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells. Virol J 3, 105

• Desjarlais R. J., Karki B. S., Lazar A. G., Richards O. J., Moore L. G., and Carmichael F. D. (2007). Fc variants with optimized Fc receptor binding properties. WO Patent No. WO2007041635 A2

• Deuss F. A., Gully B. S., Rossjohn J., and Berry R. (2017). Recognition of nectin- 2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT). J Biol Chem 292, 11413-11422

• Dowell J., and Minna D. J. (2005). Erlotinib hydrochloride. Nature Reviews Drug Discovery 4, 13-14

• Duncan A. R., Woof J. M., Partridge L. J., Burton D. R., and Winter G. (1988). Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature 332, 563-564

• Everds N., Li N., Bailey K., Fort M., Stevenson R., Jawando R., Salyers K., Narayanan P., Stevens E., He C., Nguyen M. P., Tran S., Doyle N., Poitout- Belissent F., Jolette J., Xu C., and Sprugel K. (2013). Unexpected thrombocytopenia and anemia in cynomolgus monkeys induced by a therapeutic human monoclonal antibody. Toxicol Pathol 41, 951-969

• Fabre S., Reymond N., Cocchi F., Menotti L., Dubreuil P., Campadelli-Fiume G., and Lopez M. (2002). Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C-C'-C"-D beta-strands of the nectin1 V domain. J Biol Chem 277, 27006-27013

• Fan Z., and Mendelsohn J. (1998). Therapeutic application of anti-growth factor receptor antibodies. Curr Opin Oncol 10, 67-73

• Ferrara N. (1995). The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat 36, 127–137.

• Ferrara N., Hillan J. Kenneth., and Novotny W. (2005). Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333, 328-335

• Fox S. B., Smith K., Hollyer J., Greenall M., Hastrich D., and Harris A. L. (1994). The epidermal growth factor receptor as a prognostic marker: Results of 370 patients and review of 3009 patients. Breast Cancer Res Treat 29, 41-49

• Fukuhara A., Irie K., Nakanishi H., Takekuni K., Kawakatsu T., Ikeda W., Yamada A., Katata T., Honda T., Sato T., Shimizu K., Ozaki H., Horiuchi H., Kita T., and Takai Y. (2002a). Involvement of nectin in the localization of junctional adhesion molecule at tight junctions. Oncogene 21, 7642-7655

• Fukuhara A., Irie K., Yamada A., Katata T., Honda T., Shimizu K., Nakanishi H., and Takai Y. (2002b). Role of nectin in organization of tight junctions in epithelial cells. Genes Cells 7, 1059-1072

• Fukuhara A., Shimizu K., Kawakatsu T., Fukuhara T., and Takai Y. (2003). Involvement of nectin-activated Cdc42 small G protein in organization of adherens and tight junctions in Madin-Darby canine kidney cells. J Biol Chem 278, 51885-51893

• Go R. S., Johnston K. L., and Bruden K. C. (2007). The association between platelet autoantibody specificity and response to intravenous immunoglobulin G in the treatment of patients with immune thrombocytopenia. Haematologica 92, 283-284

• Grapin M., Richard C., Limagne E., Boidot R., Morgand V., Bertaut A., Derangere V., Laurent P. A., Thibaudin M., Fumet J. D., Crehange G., Ghiringhelli F., and Mirjolet C. (2019). Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination. J Immunother Cancer 7:160

• Guillerey C., Harjunpää H., Carrié N., Kassem S., Teo T., Miles K., Krumeich S., Weulersse M., Cuisinier M., Stannard K., Yu Y., Minnie S. A., Hill G. R., Dougall W. C., Avet-Loiseau H., Teng M. W. L., Nakamura K., Martinet L., and Smyth M. J. (2018). TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood 132, 1689-1694

• Gül N., and van Egmond M. (2015). Antibody-dependent phagocytosis of tumor cells by macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer. Cancer Res 75, 5008-5013

• Horne H. N., Sherman M. E., Garcia-Closas M., Pharoah P. D., Blows F. M., Yang X. R., Hewitt S. M., Conway C. M., Lissowska J., Brinton L. A., Prokunina- Olsson L., Dawson S. J., Caldas C., Easton D. F., Chanock S. J., and Figueroa J. D. (2014). Breast cancer susceptibility risk associations and heterogeneity by E- cadherin tumor tissue expression. Breast Cancer Res Treat 143, 181-187

• Iamele L., Vacchia L., and Scotti C. (2015). Antibody-drug conjugates: targeted weapons against cancer. Antibody tech J 5, 1-13

• Inagaki M., Irie K., Deguchi-Tawarada M., Ikeda W., Ohtsuka T., Takeuchi M., and Takai Y. (2003). Nectin-dependent localization of ZO-1 at puncta adhaerentia junctions between the mossy fiber terminals and the dendrites of the pyramidal cells in the CA3 area of adult mouse hippocampus. J Comp Neurol 460, 514-524

• Ishida Y., Agata Y., Shibahara K., and Honjo T. (1992). Induced expression of PD- 1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11, 3887-3895

• Jefferis R., Lund J., and Pound J. (1990). Molecular definition of interaction site on human IgG for Fc receptors (huFc gamma R). Molecular Immunology 27, 1237-1240

• Jie D., Zhongmin Z., Guoqing L., Sheng L., Yi Z., Jing W., and Liang Z. (2013). Positive expression of LSD1 and negative expression of E-cadherin correlate with metastasis and poor prognosis of colon cancer. Dig Dis Sci 58, 1581-1589

• Johnston R. J., Comps-Agrar L., Hackney J., Yu X., Huseni M., Yang Y., Park S., Javinal V., Chiu H., Irving B., Eaton D. L., and Grogan J. L. (2014). The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26, 923-937

• Kanda Y., Yomane-Ohnuki N., Sakai N., Yamano K., Nakano R., Inoue M., Misaka H., Iida S., Wakitani M., Yano K., Shitara K., Hosoi S., and Satoh M. (2006). Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC. Biotech Bioeng 94, 680-688

• Kiyoshi M., Caaveiro J. M., Kawai T., Tashiro S., Ide T., Asaoka Y., Hatayama K., and Tsumoto K. (2015). Structural basis for binding of human IgG1 to its high- affinity human receptor FcγRI. Nat Commun 6, 6866

• Kurokawa T., Wuhrer M., Lochnit G., Geyer H., Markl J., and Geyer R. (2002). Hemocyanin from the keyhole limpet Megathura crenulata (KLH) carries a novel type of N-glycans with Gal (b1–6) Man-motifs. Eur J Biochem 269, 5459-5473

• Leach D. R., Krummel M. F., and Allison J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734-1736

• Liu J., Qian X., Chen Z., Xu X., Gao F., Zhang S., Zhang R., Qi J., Gao G. F., and Yan J. (2012). Crystal structure of cell adhesion molecule nectin-2/CD112 and its binding to immune receptor DNAM-1/CD226. J Immunol 188, 5511-5520

• Lopez M., Aoubala M., Jordier F., Isnardon D., Gomez S., and Dubreuil P. (1998). The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule. Blood 92, 4602-4611

• Lozano E., Dominguez-Villar M., Kuchroo V., and Hafler D. A. (2012). The TIGIT/CD226 axis regulates human T cell function. J Immunol 188, 3869-3875

• Lund J., Winter G., Jones P. T., Pound J. D., Tanaka T., Walker M. R., Artymiuk P. J., Arata Y., Burton D. R., and Jefferis R. (1991). Human FcγRI and FcγRII interact with distinct but overlapping sites on human IgG. J Immunol 147, 2657- 2662

• Maron B. S., Alpert L., Kwak A. H., Lomnicki S., Chase L., Xu D., O’Day E., Nagy J. R., Lanman B. R., Cecchi F., Hembrough T., Schrock A., Hart J., Xiao S., Setia N., and Catenacci V. T. D. (2018). Targeted Therapies for Targeted Populations: Anti-EGFR Treatment for EGFR-Amplified Gastroesophageal Adenocarcinoma. Cancer Disc 8, 696-713

• Mattes M. J., (2002). Radionuclide-antibody conjugates for single-cell cytotoxicity. Cancer 94, 1215-1223

• McMillan R., Tani P., Millard F., Berchtold P., Renshaw L., and Woods V. L. Jr. (1987). Platelet-associated and plasma anti-glycoprotein autoantibodies in chronic ITP. Blood 70, 1040-1045

• Miyahara M., Nakanishi H., Takahashi K., Satoh-Horikawa K., Tachibana K., and Takai Y. (2000). Interaction of nectin with afadin is necessary for its clustering at cell-cell contact sites but not for its cis dimerization or trans interaction. J Biol Chem 275, 613-618

• Mizoguchi A., Nakanishi H., Kimura K., Matsubara K., Ozaki-Kuroda K., Katata T., Honda T., Kiyohara Y., Heo K., Higashi M., Tsutsumi T., Sonoda S., Ide C., and Takai Y. (2002). Nectin: an adhesion molecule involved in formation of synapses. J Cell Biol 156, 555-565

• Momose Y., Honda T., Inagaki M., Shimizu K., Irie K., Nakanishi H., and Takai Y. (2002). Role of the second immunoglobulin-like loop of nectin in cell-cell adhesion. Biochem Biophys Res Commun 293, 45-49

• Morgan A., Jones N. D., Nesbitt A. M., Chaplin L., Bodmer M. W., and Emtage J. S. (1995). The N-terminal end of the CH2 domain of chimeric human IgG1 anti- HLA-DR is necessary for C1q, FcγRI and FcγRIII binding. Immunology 86, 319- 324

• Morita H., Nandadasa S., Yamamoto T. S., Terasaka-Iioka C., Wylie C., and Ueno N. (2010). Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of Xenopus neural tube morphogenesis. Development 137, 1315-1325

• Ober R. J., Radu C. G., Ghetie V., and Ward E. S. (2001). Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Intl Immunol 13, 1551-1559

• Pende D., Spaggiari G. M., Marcenaro S., Martini S., Rivera P., Capobianco A., Falco M., Lanino E., Pierri I., Zambello R., Bacigalupo A., Mingari M. C., Moretta A., and Moretta L. (2005). Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105, 2066-2073

• Reymond N., Fabre S., Lecocq E., Adelaide J., Dubreuil P., and Lopez M. (2001). Nectin4/PRR4, a new afadin-associated member of the nectin family that trans- interacts with nectin1/PRR1 through V domain interaction. J Biol Chem 276, 43205-43215

• Rogers K. A., Scinicariello F., and Attanasio R. (2006). IgG Fc receptor III homologues in nonhuman primate species: genetic characterization and ligand interactions. J Immunol 177, 3848-3856

• Satoh-Horikawa K., Nakanishi H., Takahashi K., Miyahara M., Nishimura M., Tachibana K., Mizoguchi A., and Takai Y. (2000). Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J Biol Chem 275,10291-10299

• Semple J. W., and Freedman J. (1995). Abnormal cellular immune mechanisms associated with autoimmune thrombocytopenia. Transfusion Medicine Reviews 9, 327-338

• Shields R. L., Lai J., Keck R., O’Connell L. Y., Hong K., Meng Y. G., Weikert S. H., and Presta L. G. (2002). Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody- dependent cellular toxicity. J Biol Chem 277, 26733-26740

• Stanietsky N., Simic H., Arapovic J., Toporik A., Levy O., Novik A., Levine Z., Beiman M., Dassa L., Achdout H., Stem-Ginossar N., Tsukerman P., Jonjic S., and Mandelboim O. (2009). The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U. S. A. 106, 17858-17863

• Steplewski Z., Sun L. K., Shearman C. W., Ghrayeb J., Daddona P., and Koprowski H. (1988). Biological activity of human-mouse IgG1, IgG2, IgG3, and IgG4 chimeric monoclonal antibodies with antitumor specificity. Proc Natl Acad Sci U. S. A. 85, 4852-4856

• Suurs F. V., Lub-de Hooge M. N., de Vries E. G. E., and de Groot D. J. A. (2019). A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther 201, 103-119

• Tahara-Hanaoka S., Shibuya K., Kai H., Miyamoto A., Morikawa Y., Ohkochi N., Honda S., and Shibuya A. (2006). Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 107, 1491-1496

• Tahara-Hanaoka S., Shibuya K., Onoda Y., Zhang H., Yamazaki S., Miyamoto A., Honda S., Lanier L. L., and Shibuya A. (2004). Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR- 2/CD112). Int Immunol 16, 533-538

• Takai Y., and Nakanishi H. (2003). Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116, 17-27

• Tao M. H., Canfield S. M., and Morrison S. L. (1991). The differential ability of human IgG1 and IgG4 to activate complement is determined by the COOH- terminal sequence of the CH2 domain. J Exp Med 173, 1025-1028

• Tomizuka K., Shinohara T., Yoshida H., Uejima H., Ohguma A., Tanaka S., Sato K., Oshimura M., and Ishida I. (2000). Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U. S. A. 97, 722-727

• Yasumi M., Shimizu K., Honda T., Takeuchi M., and Takai Y. (2003). Role of each immunoglobulin-like loop of nectin for its cell-cell adhesion activity. Biochem Biophys Res Commun 302, 61-66

• Waks G. A., and Winer P. E. (2019). Breast cancer treatment. JAMA 321, 288-300

• Wallace P. K., Keler T., Guyre P. M., and Fanger M. W. (1997). FcγRI blockade and modulation for immunotherapy. Cancer Immunol Immunother 45, 137-141

• Wan H. (2016). An overall comparison of small molecules and large biologics in ADME testing. ADMET & DMPK 4, 1-22

• Wang W., Erbe K. A., Hank A. J., Morris S. Z., and Sondel M. P. (2015). NK cell- mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 6: 368

• Warncke M., Calzascia T., Coulot M., Balke N., Touil R., Kolbinger F., and Heusser C. (2012). Different adaptations of IgG effector function in human and nonhuman primates and implications for therapeutic antibody treatment. J Immunol 88, 4405-4411

• Warner M. S., Geraghty R. J., Martinez W. M., Montgomery R. I., Whitbeck J. C., Xu R., Eisenberg R. J., Cohen G. H., and Spear P. G. (1998). A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246, 179-189

• Webster M. L., Sayeh E., Crow M., Chen P., Nieswandt B., Freedman J., and Ni H. (2006). Relative efficacy of intravenous immunoglobulin G in ameliorating thrombocytopenia induced by platelet GPIIb/IIIa versus GPIbalpha antibodies. Blood 108, 943-946

• Wong S. H. M., Fang C. M., Chuah L. H., Leong C. O., and Ngai S. C. (2018). E- cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol 121, 11-22

• Xing B. X., Tang Y., Yuan G., Wang Y., Wang J., Yang Y., and Chen M. (2013). The prognostic value of E-cadherin in gastric cancer: A meta‐analysis. Int J Cancer 132, 2589-2596

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る