リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「子宮頸がん放射線治療における非剛体位置合わせを用いた危険臓器の有害事象予測に関する検討」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

子宮頸がん放射線治療における非剛体位置合わせを用いた危険臓器の有害事象予測に関する検討

宮坂 友侑也 東北大学

2021.03.25

概要

【目的】子宮頸がんに対する標準的な放射線治療では、体の外から放射線を照射する EBRT(external beam radiotherapy;外部照射)と子宮の中から放射線を照射するBT(brachytherapy;小線源治療)を組みあわせた治療が実施される。この一連の治療を通した OAR(organ at risk;危険臓器)の合算線量の算出は、 OAR の有害事象を予測するための重要な評価項目である。この合算線量の算出を、従来までは各治療計画の線量指標の値を算術的に足し算する方法 (従来法)で行っていたが、この方法で評価している線量は、高線量照射される領域が各治療において臓器の同一の場所で重なっていた場合の線量である。しかしながら、各治療における臓器は全く同じ位置ではなく、高線量域が毎回の治療時に同じ位置に重なるという保証はないため、従来法では OAR の線量が最も高くなる状況を評価することになり、OAR 線量を過大評価するという欠点がある。この解決策として 、DIR(deformable image registration;非剛体位置合わせ)を用いた OAR 合算線量評価法(新手法)が提案されている。DIR は画像変形を用いた位置合わせ技術であり、臓器形状の違う各治療の CT 画像を、目標とするある治療回の CT 画像と一致するように変形することにより、各治療の臓器変動を考慮した合算線量の評価が可能となる。しかしながら、現在まで新手法による合算線量と有害事象の相関関係については明らかになっていない。よって、本研究では、放射線治療を施行した子宮頸がん患者に実際に発生した腸管有害事象と、従来法と新手法のそれぞれで算出した合算線量の関係から、新手法の有効性を評価した。また、有害事象評価において誤差の要因となりえる、BT の治療中変動が、合算線量評価に影響を与える可能性があるかを評価した。

【方法】新手法の有害事象予測能力の評価のため、BT と EBRT を施行した子宮頸がん 59 症例を対象とした。全症例で従来法と、BT と EBRT の全線量を DIR により用いて合算した新手法 A、全 BT の線量を DIR で合算した後、全骨盤照射の線量を算術的に合算した新手法 B の三種類の方法で合算線量を算出した。直腸および S 状結腸の有害事象 grade1 以上が確認された有害事象あり群と、grade0 以下であった有害事象なし群の間で、各合算線量算出手法によって算出した線量指標(𝐷𝐷2𝑐𝑐𝑐𝑐3 、𝐷𝐷1𝑐𝑐𝑐𝑐3 、𝐷𝐷0.1𝑐𝑐𝑐𝑐3 、V50Gy、V60Gy、 V70Gy)を比較した。また、有害事象予測能力比較のために、各合算線量算出手法による線量指標の ROC 曲線から算出される AUC の値を比較した。次に、BT 治療中の直腸の線量変動を評価した。BT を施行された 15 症例に対して実施された 58 治療回のデータを解析した。治療計画 CT である治療前 CT と、BT 後直ちに取得した治療後 CT とをアプリケータが一致するように剛体位置合わせを実施した。剛体位置合わせに従い、BT 前 CT 上の予定線量を、治療後 CT へ割り付け、これを実線量とした。予定線量と実線量の比較により、直腸の治療中変動を評価した。

【結果】新手法の有害事象予測能力の評価について、𝐷𝐷2𝑐𝑐𝑐𝑐3 の有害事象ありとなしの群間の線量差は従来法、新手法 A、新手法 B でそれぞれ 0.2、5.7、3.1 Gy であり、新手法 A が最も大きな線量差を示した。また、𝐷𝐷2𝑐𝑐𝑐𝑐3 の AUCは従来法、新手法 A、新手法 B で、それぞれ 0.51、0.67、0.57 であり、新手法 A が最も高い値を示し、従来法に対する有意差が確認された。新手法 Aで算出した V60Gy と V70Gy の AUC は、それぞれ 0.63、0.65 であった。BT治療中変動に起因した直腸の𝐷𝐷2𝑐𝑐𝑐𝑐3 の線量変動について、各症例で解析した際の平均の変動は-2.3%であったが、最大の変動を示した症例では-13.3%の変動が確認された。

【結論】新手法は従来法に比較し、腸管有害事象の発生をより高精度に予測できる可能性があることが分かった。また、骨盤内へ照射されたすべての線量を、DIR を用いて合算するという方法により、より精度の高い有害事象予測が可能となることが示唆された。BT 治療中変動について、大きな変動を生じている症例が確認されたことから、治療中変動の低減、および適切な変動の考慮は有害事象予測能力のさらなる向上につながると考えられる。

この論文で使われている画像

参考文献

1. 厚生労働省. 平成 30 年(2018) 人口動態統計月報年計(概数) の概況. Journal. 2018.https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/geppo/nengai18/index.html.

2. 国立がん研究センターがん情報サー ビス : 「 がん登録・統計」 . Journal.https://ganjoho.jp/reg_stat/statistics/dl/index.html.

3. 厚生労働省健康局がん・疾病対策課. 平成 29 年 全国がん登録 罹患数・率報告 Journal. 2017.https://www.mhlw.go.jp/content/10900000/000624853.pdf.

4. 日本がん登録協議会.本当に増えているがん、減っているがん. Journal. 2016.http://www.jacr.info/publicication/pub_m_supp_02.html. 2020年12 月 28日

5. 日 本 産 婦 人 科 学 会 婦 人 科 腫 瘍 委 員 会 . 患 者 年 俸 . Journal. 2012.http://www.jsog.or.jp/activity/pdf/shuyou_vol64no12.pdf. 2020 年 12 月 28 日

6. 日本臨床腫瘍学会. 新臨床腫瘍学 第 4 版. 南江堂. 2015.

7. Lutz G, issmann, Luts W, Hans I, Ursula K, Hans G, Schnurch, Harald Z, Hausen. Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. ProcNatlAcadSci. 1983;80:4.

8. Matthias D, Lutz G, Hans I, Harald z, Hausen. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci. 1983;80:4.

9. Michael B, Luts G, Hans L, Andreas K, Wolfram S, Harald z, Hausen. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. The Embo Journal. 1984;3:7.

10. 厚 生 労 働 省 . 厚 生 労 働 省 政 策 に つ い て . Journal.https://www.mhlw.go.jp/stf/seisakunitsuite/index.html.

11. Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009;105:103-4.

12. 日本産婦人科学会、日本病理学会、日本医学放射線学会、日本放射線腫瘍学会. 子宮頸癌取り扱い規約、第 3 版. 金原出版株式会社. 2012.

13. がん対策情報センター 国. がん診療連携拠点病院等院内がん登録 2010-2011 年 5年生存率集計報告書. Journal. 2019.https://ganjoho.jp/reg_stat/statistics/brochure/hosp_c_reg_surv.html.

14. 日本婦人科腫瘍学会. 子宮頸癌治療ガイドライン 2017 年度版. 金原出版株式会社. 2017.

15. 放射線腫瘍学会. 放射線治療計画ガイドライン 2016 年度版. 金原出版株式会社. 2016.

16. Landoni F, Maneo A, Colombo A, Placa F, Milani R, Perego P, et al. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. The Lancet. 1997;350:535- 40.

17. Toita T, Kato S, Niibe Y, Ohno T, Kazumoto T, Kodaira T, et al. Prospective multi-institutional study of definitive radiotherapy with high-dose-rate intracavitary brachytherapy in patients with nonbulky (<4-cm) stage I and II uterine cervical cancer (JAROG0401/JROSG04-2). Int J Radiat Oncol Biol Phys. 2012;82:e49-56.

18. Ariga T, Toita T, Kato S, Kazumoto T, Kubozono M, Tokumaru S, et al. Treatment outcomes of patients with FIGO Stage I/II uterine cervical cancer treated with definitive radiotherapy: a multi-institutional retrospective research study. J Radiat Res. 2015;56:841-8.

19. Zheng M, Huang L, He L, Ding H, Wang HY, Zheng LM. Evaluation of the effects of type II radical hysterectomy in the treatment of 960 patients with stage IB-IIB cervical carcinoma: A retrospective study. J Surg Oncol. 2011;103:435-41.

20. Toita T, Moromizato H, Ogawa K, Kakinohana Y, Maehama T, Kanazawa K, et al. Concurrent chemoradiotherapy using high-dose-rate intracavitary brachytherapy for uterine cervical cancer. Gynecol Oncol. 2005;96:665-70.

21. Toita T, Kitagawa R, Hamano T, Umayahara K, Hirashima Y, Aoki Y, et al. Phase II study of concurrent chemoradiotherapy with high-dose-rate intracavitary brachytherapy in patients with locally advanced uterine cervical cancer: efficacy and toxicity of a low cumulative radiation dose schedule. Gynecol Oncol. 2012;126:211-6.

22. Lukka H, Hirte H, Fyles A, Thomas G, Elit L, Johnston M, et al. Concurrent cisplatin-based chemotherapy plus radiotherapy for cervical cancer--a meta-analysis. Clin Oncol (R Coll Radiol). 2002;14:203-12.

23. Green JA, Kirwan JM, Tierney JF, Symonds P, Fresco L, Collingwood M, et al. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. The Lancet. 2001;358:781-6.

24. National Cancer Institute. Cervical Cancer Treatment(PQD®)-Health Professional Version.

25. Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, et al. Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019;17:64-84.

26. Coia L, Won M, Lanciano R, Marcial V, Marts K, Hanks G. The patterns of care outcome study for cancer of the uterine cervix results of the second national practice survey. Cancer. 1990;66:6.

27. Toita T, Kakinohana Y, Ogawa K, Adachi G, Moromizato H, Nagai Y, et al. Combination external beam radiotherapy and high-dose-rate intracavitary brachytherapy for uterine cervical cancer: Analysis of dose and fractionation schedule. Int J Radiat Oncol Biol Phys. 2003;56:1344-53.

28. Nakano T, Kato S, Ohno T, Tsujii H, Sato S, Fukuhisa K, et al. Long-term results of high-dose rate intracavitary brachytherapy for squamous cell carcinoma of the uterine cervix. Cancer. 2005;103:92-101.

29. Simone M, Christhardt K, Volker B, Oliver N, Anne K, Waldemar W, et al. Brachytherapy- emulating robotic radiosurgery in patients with cervical carcinoma. Radiation Oncology. 2013;8:8.

30. Molla M, Escude L, Nouet P, Popowski Y, Hidalgo A, Rouzaud M, et al. Fractionated stereotactic radiotherapy boost for gynecologic tumors: an alternative to brachytherapy? Int J Radiat Oncol Biol Phys. 2005;62:118-24.

31. Gill BS, Lin JF, Krivak TC, Sukumvanich P, Laskey RA, Ross MS, et al. National Cancer Data Base analysis of radiation therapy consolidation modality for cervical cancer: the impact of new technological advancements. Int J Radiat Oncol Biol Phys. 2014;90:1083-90.

32. 大西洋, 唐澤久美子, 唐澤克之. がん放射線療法 2017. 秀潤社. 2017.

33. Surbir N, Beth E, Bruce T, Colin O, Jeffrey DD, Daniel P. The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2000;48:11.

34. Chassagne D, Dutreix A, Almond P, Burger JMV, Bush M, Joslin C. ICRU report 38. Dose and volume specification for reporting intracavitary therapy in gynecology. ICRU. 1985.

35. Kang HC, Shin KH, Park SY, Kim JY. 3D CT-based high-dose-rate brachytherapy for cervical cancer: clinical impact on late rectal bleeding and local control. Radiother Oncol. 2010;97:507- 13.

36. Briot E, Crevoisier R, Petrow P, Delapierre M, Albano M, Petit C, et al. Dose-volume histgrom analysis for tumor and critical organs in intracavity brachytherapy of cervical cancer with the use of MRI. Radiother Oncol. 2001;60:S3.

37. Claudia F, Rochard P, Tomas HK, Andere W. Comparison of radiography- and computed tomography-based treatment planning in cervix cancer in brachytherapy with specific attention to some quality assurance aspects. Radiother Oncol. 2001;58:10.

38. Haie-Meder C, Potter R, Van Limbergen E, Briot E, De Brabandere M, Dimopoulos J, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235-45.

39. Potter R, Haie-Meder C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67-77.

40. Kato S, Tran DNL, Ohno T, Nakano T, Kiyohara H, Ohkubo Y, et al. CT-based 3D Dose- Volume Parameter of the Rectum and Late Rectal Complication in Patients with Cervical Cancer Treated with High-Dose-Rate Intracavitary Brachytherapy. Journal of Radiation Research. 2010;51:215-21.

41. Koom WS, Sohn DK, Kim JY, Kim JW, Shin KH, Yoon SM, et al. Computed tomography- based high-dose-rate intracavitary brachytherapy for uterine cervical cancer: preliminary demonstration of correlation between dose-volume parameters and rectal mucosal changes observed by flexible sigmoidoscopy. Int J Radiat Oncol Biol Phys. 2007;68:1446-54.

42. Georg P, Kirisits C, Goldner G, Dorr W, Hammer J, Potzi R, et al. Correlation of dose-volume parameters, endoscopic and clinical rectal side effects in cervix cancer patients treated with definitive radiotherapy including MRI-based brachytherapy. Radiother Oncol. 2009;91:173-80.

43. Isohashi F, Yoshioka Y, Koizumi M, Suzuki O, Konishi K, Sumida I, et al. Rectal dose and source strength of the high-dose-rate iridium-192 both affect late rectal bleeding after intracavitary radiation therapy for uterine cervical carcinoma. Int J Radiat Oncol Biol Phys. 2010;77:758-64.

44. Lee C, Langen KM, Lu W, Haimerl J, Schnarr E, Ruchala KJ, et al. Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys. 2008;71:1563-71.

45. Wu Q, Chi Y, Chen PY, Krauss DJ, Yan D, Martinez A. Adaptive replanning strategies accounting for shrinkage in head and neck IMRT. Int J Radiat Oncol Biol Phys. 2009;75:924-32.

46. Lu J, Ma Y, Chen J, Wang L, Zhang G, Zhao M, et al. Assessment of anatomical and dosimetric changes by a deformable registration method during the course of intensity-modulated radiotherapy for nasopharyngeal carcinoma. J Radiat Res. 2014;55:97-104.

47. Veiga C, McClelland J, Moinuddin S, Lourenco A, Ricketts K, Annkah J, et al. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for "dose of the day" calculations. Med Phys. 2014;41:031703.

48. Chao KS, Bhide S, Chen H, Asper J, Bush S, Franklin G, et al. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int J Radiat Oncol Biol Phys. 2007;68:1512-21.

49. Walker GV, Awan M, Tao R, Koay EJ, Boehling NS, Grant JD, et al. Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer. Radiother Oncol. 2014;112:321-5.

50. Teguh DN, Levendag PC, Voet PW, Al-Mamgani A, Han X, Wolf TK, et al. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Int J Radiat Oncol Biol Phys. 2011;81:950-7.

51. Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017;44:e43-e76.

52. 日本放射線腫瘍学会 QA 委員会 DIR ガイドラインワーキンググループ. 放射線治療における非剛体レジストレーション利用のためのガイドライン 2018 年度版. 2018.

53. Hayashi K, Isohashi F, Akino Y, Wakai N, Mabuchi S, Suzuki O, et al. Estimation of the total rectal dose of radical external beam and intracavitary radiotherapy for uterine cervical cancer using the deformable image registration method. J Radiat Res. 2015;56:546-52.

54. Kadoya N, Miyasaka Y, Yamamoto T, Kuroda Y, Ito K, Chiba M, et al. Evaluation of rectum and bladder dose accumulation from external beam radiotherapy and brachytherapy for cervical cancer using two different deformable image registration techniques. J Radiat Res. 2017;58:720- 8.

55. Teo BK, Bonner Millar LP, Ding X, Lin LL. Assessment of cumulative external beam and intracavitary brachytherapy organ doses in gynecologic cancers using deformable dose summation. Radiother Oncol. 2015;115:195-202.

56. Mohammadi R, Mahdavi SR, Jaberi R, Siavashpour Z, Janani L, Meigooni AS, et al. Evaluation of deformable image registration algorithm for determination of accumulated dose for brachytherapy of cervical cancer patients. J Contemp Brachytherapy. 2019;11:469-78.

57. Reniers B, Janssens G, Orban de Xivry J, Landry G, Verhaegen F. Dose distribution for gynecological brachytherapy with dose accumulation between insertions: Feasibility study. Brachytherapy. 2016;15:504-13.

58. Kobayashi K, Murakami N, Wakita A, Nakamura S, Okamoto H, Umezawa R, et al. Dosimetric variations due to interfraction organ deformation in cervical cancer brachytherapy. Radiother Oncol. 2015;117:555-8.

59. Kim H, Huq MS, Houser C, Beriwal S, Michalski D. Mapping of dose distribution from IMRT onto MRI-guided high dose rate brachytherapy using deformable image registration for cervical cancer treatments: preliminary study with commercially available software. J Contemp Brachytherapy. 2014;6:178-84.

60. Zakariaee R, Hamarneh G, Brown CJ, Gaudet M, Aquino-Parsons C, Spadinger I. Bladder accumulated dose in image-guided high-dose-rate brachytherapy for locally advanced cervical cancer and its relation to urinary toxicity. Phys Med Biol. 2016;61:8408-24.

61. Kobayashi K, Murakami N, Inaba K, Wakita A, Nakamura S, Okamoto H, et al. Dose reconstruction technique using non-rigid registration to evaluate spatial correspondence between high-dose region and late radiation toxicity: a case of tracheobronchial stenosis after external beam radiotherapy combined with endotracheal brachytherapy for tracheal cancer. J Contemp Brachytherapy. 2016;8:156-63.

62. Takayama Y, Kadoya N, Yamamoto T, Ito K, Chiba M, Fujiwara K, et al. Evaluation of the performance of deformable image registration between planning CT and CBCT images for the pelvic region: comparison between hybrid and intensity-based DIR. J Radiat Res. 2017;58:567- 71.

63. Kadoya N, Miyasaka Y, Nakajima Y, Kuroda Y, Ito K, Chiba M, et al. Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom. Med Phys. 2017;44:1445-55.

64. Nomden CN, de Leeuw AA, Roesink JM, Tersteeg RJ, Westerveld H, Jurgenliemk-Schulz IM. Intra-fraction uncertainties of MRI guided brachytherapy in patients with cervical cancer. Radiother Oncol. 2014;112:217-20.

65. Anderson C, Lowe G, Wills R, Inchley D, Beenstock V, Bryant L, et al. Critical structure movement in cervix brachytherapy. Radiother Oncol. 2013;107:39-45.

66. Nesvacil N, Tanderup K, Hellebust TP, De Leeuw A, Lang S, Mohamed S, et al. A multicentre comparison of the dosimetric impact of inter- and intra-fractional anatomical variations in fractionated cervix cancer brachytherapy. Radiother Oncol. 2013;107:20-5.

67. Simha V, Patel FD, Sharma SC, Rai B, Oinam AS, krishnatry R, et al. Evaluation of intrafraction motion of the organs at risk in image-based brachytherapy of cervical cancer. Brachytherapy. 2014;13:562-7.

68. Han Y, Shin EH, Huh SJ, Lee JE, Park W. Interfractional dose variation during intensity- modulated radiation therapy for cervical cancer assessed by weekly CT evaluation. Int J Radiat Oncol Biol Phys. 2006;65:617-23.

69. van Heerden LE, Visser J, Koedooder K, Rasch CR, Pieters BR, Bel A. Role of deformable image registration for delivered dose accumulation of adaptive external beam radiation therapy and brachytherapy in cervical cancer. J Contemp Brachytherapy. 2018;10:542-50.

70. Heijkoop ST, Langerak TR, Quint S, Mens JW, Zolnay AG, Heijmen BJ, et al. Quantification of intra-fraction changes during radiotherapy of cervical cancer assessed with pre- and post- fraction Cone Beam CT scans. Radiother Oncol. 2015;117:536-41.

71. Andre Buchali, Stefan Koswig, Stefan Dinges, Peter Rosenthal, JuÈrgen Salk, Gundula Lackner, et al. Impact of the filling status of the bladder and rectum on their integral dose distribution and the movement of the uterus in the treatment planning of gynaecological cancer. Radiotherapy and Oncology. 1999;52:6.

72. Murakami N, Kato S, Nakano T, Uno T, Yamanaka T, Sakurai H, et al. A phase I/II clinical trial for the hybrid of intracavitary and interstitial brachytherapy for locally advanced cervical cancer. BMC Cancer. 2016;16:640.

73. Otter S, Franklin A, Ajaz M, Stewart A. Improving the efficiency of image guided brachytherapy in cervical cancer. J Contemp Brachytherapy. 2016;8:557-65.

74. Fokdal L, Sturdza A, Mazeron R, Haie-Meder C, Tan LT, Gillham C, et al. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: Analysis from the retroEMBRACE study. Radiother Oncol. 2016;120:434-40.

75. Rivard MJ, Coursey BM, DeWerd LA, F.Hanson W, Huq MS, Ibbott GS, et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31:633-74.

76. Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015;42:40-53.

77. Dice LR. Measures of the Amount of Ecologic Association Between Species. Ecology. 1945;26:297-302.

78. Raj V, Grigorios K, Karthik K, Susanta H. A framework for deformable image registration validation in radiotherapy clinical applications J Appl Clin Med Phys. 2013;14.

79. Zhang T, Chi Y, Meldolesi E, Yan D. Automatic delineation of on-line head-and-neck computed tomography images: toward on-line adaptive radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68:522-30.

80. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62:679-94.

81. 青山喬, 丹羽太貫. 放射線基礎医学. 金芳堂. 2016.

82. Konishi K, Yoshioka Y, Isohashi F, Sumida I, Kawaguchi Y, Kotsuma T, et al. Correlation between dosimetric parameters and late rectal and urinary toxicities in patients treated with high- dose-rate brachytherapy used as monotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2009;75:1003-7.

83. Huang EY, Sung CC, Ko SF, Wang CJ, Yang KD. The different volume effects of small-bowel toxicity during pelvic irradiation between gynecologic patients with and without abdominal surgery: a prospective study with computed tomography-based dosimetry. Int J Radiat Oncol Biol Phys. 2007;69:732-9.

84. Institute DoHaHSNIoHNC. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. 2010.

85. Ospina JD, Zhu J, Chira C, Bossi A, Delobel JB, Beckendorf V, et al. Random forests to predict rectal toxicity following prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2014;89:1024-31.

86. Martinez-Monge R, Moreno M, Ciervide R, Cambeiro M, Perez-Gracia JL, Gil-Bazo I, et al. External-beam radiation therapy and high-dose rate brachytherapy combined with long-term androgen deprivation therapy in high and very high prostate cancer: preliminary data on clinical outcome. Int J Radiat Oncol Biol Phys. 2012;82:e469-76.

87. Skwarchuk MW, Jackson A, Zelefsky MJ, Venkatraman ES, Cowen DM, Levegrün S, et al. Late rectal toxicity after conformal radiotherapy of prostate cancer (I) multivariate analysis and dose–response. Int J Radiat Oncol Biol Phys. 2000;27:103-13.

88. Tod M, Meredith WJ. Treatment of Cancer of the Cervix Uteri- A Revised "Manchester Mehods". Br J Radiol. 1953;26:6.

89. Mazeron R, Fokdal LU, Kirchheiner K, Georg P, Jastaniyah N, Segedin B, et al. Dose-volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI- guided adaptive brachytherapy for locally advanced cervical cancer: Results from the prospective multicenter EMBRACE study. Radiother Oncol. 2016;120:412-9.

90. Ding GX, Alaei P, Curran B, Flynn R, Gossman M, Mackie TR, et al. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180. Med Phys. 2018;45:e84-e99.

91. Kadoya N, Kito S, Kurooka M, Saito M, Takemura A, Tohyama N, et al. Factual survey of the clinical use of deformable image registration software for radiotherapy in Japan. J Radiat Res. 2019;60:546-53.

92. Punithakumar K, Boulanger P, Noga M. A GPU-Accelerated Deformable Image Registration Algorithm With Applications to Right Ventricular Segmentation. IEEE Access. 2017;5:20374-82.

93. Raudaschl PF, Zaffino P, Sharp GC, Spadea MF, Chen A, Dawant BM, et al. Evaluation of segmentation methods on head and neck CT: Auto-segmentation challenge 2015. Med Phys. 2017;44:2020-36.

94. Ramadaan IS, Peick K, Hamilton DA, Evans J, Iupati D, Nicholson A, et al. Validation of Varian's SmartAdapt(R) deformable image registration algorithm for clinical application. Radiat Oncol. 2015;10:73.

95. Men K, Dai J, Li Y. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Med Phys. 2017;44:6377-89.

96. van Dijk LV, Van den Bosch L, Aljabar P, Peressutti D, Both S, R JHMS, et al. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. Radiother Oncol. 2020;142:115-23.

97. 角谷 倫之, 木藤 哲史, 黒岡 将彦, 武川 英樹, 藤田 幸男, 宮部 結城. 詳説 非剛体レジストレーション ー放射線治療領域ー. 中外医学社. 2020.

98. Swaminath A, Massey C, Brierley JD, Dinniwell R, Wong R, Kim JJ, et al. Accumulated Delivered Dose Response of Stereotactic Body Radiation Therapy for Liver Metastases. Int J Radiat Oncol Biol Phys. 2015;93:639-48.

99. Lee DS, Woo JY, Kim JW, Seong J. Re-Irradiation of Hepatocellular Carcinoma: Clinical Applicability of Deformable Image Registration. Yonsei Med J. 2016;57:41-9.

100. Rigaud B, Cazoulat G, Vedam S, Venkatesan AM, Peterson CB, Taku N, et al. Modeling Complex Deformations of the Sigmoid Colon Between External Beam Radiation Therapy and Brachytherapy Images of Cervical Cancer. Int J Radiat Oncol Biol Phys. 2020;106:1084-94.

101. Rigaud B, Klopp A, Vedam S, Venkatesan A, Taku N, Simon A, et al. Deformable image registration for dose mapping between external beam radiotherapy and brachytherapy images of cervical cancer. Phys Med Biol. 2019;64:115023.

102. Sturdza A, Hofmann S, Kranawetter M, Polterauer S, Grimm C, Krainer M, et al. Increased genitourinary fistula rate after bevacizumab in recurrent cervical cancer patients initially treated with definitive radiochemotherapy and image-guided adaptive brachytherapy. Strahlenther Onkol. 2017;193:1056-65.

103. Jacob D, Lamberto M, DeSouza Lawrence L, Mourtada F. Clinical transition to model-based dose calculation algorithm: A retrospective analysis of high-dose-rate tandem and ring brachytherapy of the cervix. Brachytherapy. 2017;16:624-9.

104. Fotina I, Zourari K, Lahanas V, Pantelis E, Papagiannis P. A comparative assessment of inhomogeneity and finite patient dimension effects in (60)Co and (192)Ir high-dose-rate brachytherapy. J Contemp Brachytherapy. 2018;10:73-84.

105. Abe K, Kadoya N, Sato S, Hashimoto S, Nakajima Y, Miyasaka Y, et al. Impact of a commercially available model-based dose calculation algorithm on treatment planning of high- dose-rate brachytherapy in patients with cervical cancer. J Radiat Res. 2018;59:198-206.

106. H.Barrow, J. Tenenbaum, R. Bolles, Walf H. Parametric correspondence and chamfer matching: Two new techniques for image matching. In Int’l Joint Conf of Artif Intel. 1977:5.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る